| 1 |
//
|
| 2 |
// globals.cpp
|
| 3 |
//
|
| 4 |
#include "stdafx.h"
|
| 5 |
#include "globals.h"
|
| 6 |
|
| 7 |
//////////////////////////////////////////////////////////////////////////////
|
| 8 |
double sqr(const double x)
|
| 9 |
{
|
| 10 |
return (x * x);
|
| 11 |
}
|
| 12 |
|
| 13 |
//////////////////////////////////////////////////////////////////////////////
|
| 14 |
double Fmod2p(const double arg)
|
| 15 |
{
|
| 16 |
double modu = fmod(arg, TWOPI);
|
| 17 |
|
| 18 |
if (modu < 0.0)
|
| 19 |
modu += TWOPI;
|
| 20 |
|
| 21 |
return modu;
|
| 22 |
}
|
| 23 |
|
| 24 |
//////////////////////////////////////////////////////////////////////////////
|
| 25 |
// AcTan()
|
| 26 |
// ArcTangent of sin(x) / cos(x). The advantage of this function over arctan()
|
| 27 |
// is that it returns the correct quadrant of the angle.
|
| 28 |
double AcTan(const double sinx, const double cosx)
|
| 29 |
{
|
| 30 |
double ret;
|
| 31 |
|
| 32 |
if (cosx == 0.0)
|
| 33 |
{
|
| 34 |
if (sinx > 0.0)
|
| 35 |
ret = PI / 2.0;
|
| 36 |
else
|
| 37 |
ret = 3.0 * PI / 2.0;
|
| 38 |
}
|
| 39 |
else
|
| 40 |
{
|
| 41 |
if (cosx > 0.0)
|
| 42 |
ret = atan(sinx / cosx);
|
| 43 |
else
|
| 44 |
ret = PI + atan(sinx / cosx);
|
| 45 |
}
|
| 46 |
|
| 47 |
return ret;
|
| 48 |
}
|
| 49 |
|
| 50 |
//////////////////////////////////////////////////////////////////////////////
|
| 51 |
double rad2deg(const double r)
|
| 52 |
{
|
| 53 |
const double DEG_PER_RAD = 180.0 / PI;
|
| 54 |
return r * DEG_PER_RAD;
|
| 55 |
}
|
| 56 |
|
| 57 |
//////////////////////////////////////////////////////////////////////////////
|
| 58 |
double deg2rad(const double d)
|
| 59 |
{
|
| 60 |
const double RAD_PER_DEG = PI / 180.0;
|
| 61 |
return d * RAD_PER_DEG;
|
| 62 |
}
|
| 63 |
|