| 1 | 
//
 | 
| 2 | 
// cSite.cpp
 | 
| 3 | 
//
 | 
| 4 | 
// Copyright (c) 2003 Michael F. Henry
 | 
| 5 | 
//
 | 
| 6 | 
//////////////////////////////////////////////////////////////////////////////
 | 
| 7 | 
#include "stdafx.h"
 | 
| 8 | 
#include "cSite.h"
 | 
| 9 | 
#include "globals.h"
 | 
| 10 | 
 | 
| 11 | 
//////////////////////////////////////////////////////////////////////////////
 | 
| 12 | 
// Construction/Destruction
 | 
| 13 | 
cSite::cSite(const cCoordGeo &geo) : m_geo(geo)
 | 
| 14 | 
{}
 | 
| 15 | 
 | 
| 16 | 
//////////////////////////////////////////////////////////////////////////////
 | 
| 17 | 
// c'tor accepting:
 | 
| 18 | 
//    Latitude  in degress (negative south)
 | 
| 19 | 
//    Longitude in degress (negative west)
 | 
| 20 | 
//    Altitude  in km
 | 
| 21 | 
cSite::cSite(double degLat, double degLon, double kmAlt) :
 | 
| 22 | 
   m_geo(deg2rad(degLat), deg2rad(degLon), kmAlt)
 | 
| 23 | 
{}
 | 
| 24 | 
 | 
| 25 | 
cSite::~cSite()
 | 
| 26 | 
{}
 | 
| 27 | 
 | 
| 28 | 
//////////////////////////////////////////////////////////////////////////////
 | 
| 29 | 
// setGeo()
 | 
| 30 | 
// Set a new geographic position
 | 
| 31 | 
void cSite::setGeo(const cCoordGeo &geo)
 | 
| 32 | 
{
 | 
| 33 | 
   m_geo = geo;
 | 
| 34 | 
}
 | 
| 35 | 
 | 
| 36 | 
//////////////////////////////////////////////////////////////////////////////
 | 
| 37 | 
// getPosition()
 | 
| 38 | 
// Return the ECI coordinate of the site at the given time.
 | 
| 39 | 
cEci cSite::getPosition(const cJulian &date) const
 | 
| 40 | 
{
 | 
| 41 | 
   return cEci(m_geo, date);
 | 
| 42 | 
}
 | 
| 43 | 
 | 
| 44 | 
//////////////////////////////////////////////////////////////////////////////
 | 
| 45 | 
// getLookAngle()
 | 
| 46 | 
// Return the topocentric (azimuth, elevation, etc.) coordinates for a target
 | 
| 47 | 
// object described by the input ECI coordinates.
 | 
| 48 | 
cCoordTopo cSite::getLookAngle(const cEci &eci) const
 | 
| 49 | 
{
 | 
| 50 | 
   // Calculate the ECI coordinates for this cSite object at the time
 | 
| 51 | 
   // of interest.
 | 
| 52 | 
   cJulian date = eci.getDate();
 | 
| 53 | 
   cEci eciSite(m_geo, date); 
 | 
| 54 | 
 | 
| 55 | 
   // The Site ECI units are km-based; ensure target ECI units are same
 | 
| 56 | 
   assert(eci.UnitsAreKm());
 | 
| 57 | 
 | 
| 58 | 
   cVector vecRgRate(eci.getVel().m_x - eciSite.getVel().m_x,
 | 
| 59 | 
                     eci.getVel().m_y - eciSite.getVel().m_y,
 | 
| 60 | 
                     eci.getVel().m_z - eciSite.getVel().m_z);
 | 
| 61 | 
 | 
| 62 | 
   double x = eci.getPos().m_x - eciSite.getPos().m_x;
 | 
| 63 | 
   double y = eci.getPos().m_y - eciSite.getPos().m_y;
 | 
| 64 | 
   double z = eci.getPos().m_z - eciSite.getPos().m_z;
 | 
| 65 | 
   double w = sqrt(sqr(x) + sqr(y) + sqr(z));
 | 
| 66 | 
 | 
| 67 | 
   cVector vecRange(x, y, z, w);
 | 
| 68 | 
 | 
| 69 | 
   // The site's Local Mean Sidereal Time at the time of interest.
 | 
| 70 | 
   double theta = date.toLMST(getLon());
 | 
| 71 | 
 | 
| 72 | 
   double sin_lat   = sin(getLat());
 | 
| 73 | 
   double cos_lat   = cos(getLat());
 | 
| 74 | 
   double sin_theta = sin(theta);
 | 
| 75 | 
   double cos_theta = cos(theta);
 | 
| 76 | 
 | 
| 77 | 
   double top_s = sin_lat * cos_theta * vecRange.m_x + 
 | 
| 78 | 
                  sin_lat * sin_theta * vecRange.m_y - 
 | 
| 79 | 
                  cos_lat * vecRange.m_z;
 | 
| 80 | 
   double top_e = -sin_theta * vecRange.m_x + 
 | 
| 81 | 
                   cos_theta * vecRange.m_y;
 | 
| 82 | 
   double top_z = cos_lat * cos_theta * vecRange.m_x + 
 | 
| 83 | 
                  cos_lat * sin_theta * vecRange.m_y + 
 | 
| 84 | 
                  sin_lat * vecRange.m_z;
 | 
| 85 | 
   double az    = atan(-top_e / top_s);
 | 
| 86 | 
 | 
| 87 | 
   if (top_s > 0.0)
 | 
| 88 | 
      az += PI;
 | 
| 89 | 
 | 
| 90 | 
   if (az < 0.0)
 | 
| 91 | 
      az += 2.0*PI;
 | 
| 92 | 
 | 
| 93 | 
   double el   = asin(top_z / vecRange.m_w);
 | 
| 94 | 
   double rate = (vecRange.m_x * vecRgRate.m_x + 
 | 
| 95 | 
                  vecRange.m_y * vecRgRate.m_y + 
 | 
| 96 | 
                  vecRange.m_z * vecRgRate.m_z) / vecRange.m_w;
 | 
| 97 | 
 | 
| 98 | 
   cCoordTopo topo(az,           // azimuth,   radians
 | 
| 99 | 
                   el,           // elevation, radians
 | 
| 100 | 
                   vecRange.m_w, // range, km
 | 
| 101 | 
                   rate);        // rate,  km / sec
 | 
| 102 | 
 | 
| 103 | 
#ifdef WANT_ATMOSPHERIC_CORRECTION
 | 
| 104 | 
   // Elevation correction for atmospheric refraction.
 | 
| 105 | 
   // Reference:  Astronomical Algorithms by Jean Meeus, pp. 101-104
 | 
| 106 | 
   // Note:  Correction is meaningless when apparent elevation is below horizon
 | 
| 107 | 
   topo.m_El += deg2rad((1.02 / 
 | 
| 108 | 
                        tan(deg2rad(rad2deg(el) + 10.3 / 
 | 
| 109 | 
                                    (rad2deg(el) + 5.11)))) / 60.0);
 | 
| 110 | 
   if (topo.m_El < 0.0)
 | 
| 111 | 
      topo.m_El = el;    // Reset to true elevation
 | 
| 112 | 
 | 
| 113 | 
   if (topo.m_El > (PI / 2))
 | 
| 114 | 
      topo.m_El = (PI / 2);
 | 
| 115 | 
#endif
 | 
| 116 | 
 | 
| 117 | 
   return topo;
 | 
| 118 | 
}
 | 
| 119 | 
 | 
| 120 | 
//////////////////////////////////////////////////////////////////////////////
 | 
| 121 | 
// toString()
 | 
| 122 | 
//
 | 
| 123 | 
string cSite::toString() const
 | 
| 124 | 
{
 | 
| 125 | 
   const int TEMP_SIZE = 128;
 | 
| 126 | 
   char sz[TEMP_SIZE];
 | 
| 127 | 
 | 
| 128 | 
   bool LatNorth = true;
 | 
| 129 | 
   bool LonEast  = true;
 | 
| 130 | 
 | 
| 131 | 
   if (m_geo.m_Lat < 0.0) 
 | 
| 132 | 
   {
 | 
| 133 | 
      LatNorth = false;
 | 
| 134 | 
   }
 | 
| 135 | 
 | 
| 136 | 
   if (m_geo.m_Lon < 0.0)
 | 
| 137 | 
   {
 | 
| 138 | 
      LonEast = false;
 | 
| 139 | 
   }
 | 
| 140 | 
 | 
| 141 | 
   snprintf(sz, TEMP_SIZE, 
 | 
| 142 | 
             "%06.3f%c, ", 
 | 
| 143 | 
             fabs(rad2deg(m_geo.m_Lat)),
 | 
| 144 | 
             (LatNorth ? 'N' : 'S'));
 | 
| 145 | 
 | 
| 146 | 
   string strLoc = sz;
 | 
| 147 | 
 | 
| 148 | 
   snprintf(sz, TEMP_SIZE, 
 | 
| 149 | 
             "%07.3f%c, ", 
 | 
| 150 | 
             fabs(rad2deg(m_geo.m_Lon)),
 | 
| 151 | 
             (LonEast ? 'E' : 'W'));
 | 
| 152 | 
   strLoc += sz;
 | 
| 153 | 
 | 
| 154 | 
   snprintf(sz, TEMP_SIZE, 
 | 
| 155 | 
            "%.1fm\n", 
 | 
| 156 | 
            (m_geo.m_Alt * 1000.0));
 | 
| 157 | 
   strLoc += sz;
 | 
| 158 | 
 | 
| 159 | 
   return strLoc;
 | 
| 160 | 
}
 | 
| 161 | 
 |