| 1 | // | 
| 2 | // cOrbit.cpp | 
| 3 | // | 
| 4 | // Copyright (c) 2002-2003 Michael F. Henry | 
| 5 | // | 
| 6 | // mfh 11/15/2003 | 
| 7 | // | 
| 8 | #include "stdafx.h" | 
| 9 |  | 
| 10 | #include "cOrbit.h" | 
| 11 | #include "math.h" | 
| 12 | #include "time.h" | 
| 13 | #include "cVector.h" | 
| 14 | #include "cEci.h" | 
| 15 | #include "coord.h" | 
| 16 | #include "cJulian.h" | 
| 17 | #include "cNoradSGP4.h" | 
| 18 | #include "cNoradSDP4.h" | 
| 19 |  | 
| 20 | ////////////////////////////////////////////////////////////////////// | 
| 21 | cOrbit::cOrbit(const cTle &tle) : | 
| 22 | m_tle(tle), | 
| 23 | m_pNoradModel(NULL) | 
| 24 | { | 
| 25 | m_tle.Initialize(); | 
| 26 |  | 
| 27 | int    epochYear = (int)m_tle.getField(cTle::FLD_EPOCHYEAR); | 
| 28 | double epochDay  =      m_tle.getField(cTle::FLD_EPOCHDAY ); | 
| 29 |  | 
| 30 | if (epochYear < 57) | 
| 31 | epochYear += 2000; | 
| 32 | else | 
| 33 | epochYear += 1900; | 
| 34 |  | 
| 35 | m_jdEpoch = cJulian(epochYear, epochDay); | 
| 36 |  | 
| 37 | m_secPeriod = -1.0; | 
| 38 |  | 
| 39 | // Recover the original mean motion and semimajor axis from the | 
| 40 | // input elements. | 
| 41 | double mm     = mnMotion(); | 
| 42 | double rpmin  = mm * 2 * PI / MIN_PER_DAY;   // rads per minute | 
| 43 |  | 
| 44 | double a1     = pow(XKE / rpmin, TWOTHRD); | 
| 45 | double e      = Eccentricity(); | 
| 46 | double i      = Inclination(); | 
| 47 | double temp   = (1.5 * CK2 * (3.0 * sqr(cos(i)) - 1.0) / | 
| 48 | pow(1.0 - e * e, 1.5)); | 
| 49 | double delta1 = temp / (a1 * a1); | 
| 50 | double a0     = a1 * | 
| 51 | (1.0 - delta1 * | 
| 52 | ((1.0 / 3.0) + delta1 * | 
| 53 | (1.0 + 134.0 / 81.0 * delta1))); | 
| 54 |  | 
| 55 | double delta0 = temp / (a0 * a0); | 
| 56 |  | 
| 57 | m_mnMotionRec        = rpmin / (1.0 + delta0); | 
| 58 | m_aeAxisSemiMinorRec = a0 / (1.0 - delta0); | 
| 59 | m_aeAxisSemiMajorRec = m_aeAxisSemiMinorRec / sqrt(1.0 - (e * e)); | 
| 60 | m_kmPerigeeRec       = XKMPER_WGS72 * (m_aeAxisSemiMajorRec * (1.0 - e) - AE); | 
| 61 | m_kmApogeeRec        = XKMPER_WGS72 * (m_aeAxisSemiMajorRec * (1.0 + e) - AE); | 
| 62 |  | 
| 63 | if (2.0 * PI / m_mnMotionRec >= 225.0) | 
| 64 | { | 
| 65 | // SDP4 - period >= 225 minutes. | 
| 66 | m_pNoradModel = new cNoradSDP4(*this); | 
| 67 | } | 
| 68 | else | 
| 69 | { | 
| 70 | // SGP4 - period < 225 minutes | 
| 71 | m_pNoradModel = new cNoradSGP4(*this); | 
| 72 | } | 
| 73 | } | 
| 74 |  | 
| 75 | ///////////////////////////////////////////////////////////////////////////// | 
| 76 | cOrbit::~cOrbit() | 
| 77 | { | 
| 78 | delete m_pNoradModel; | 
| 79 | } | 
| 80 |  | 
| 81 | ////////////////////////////////////////////////////////////////////////////// | 
| 82 | // Return the period in seconds | 
| 83 | double cOrbit::Period() const | 
| 84 | { | 
| 85 | if (m_secPeriod < 0.0) | 
| 86 | { | 
| 87 | // Calculate the period using the recovered mean motion. | 
| 88 | if (m_mnMotionRec == 0) | 
| 89 | m_secPeriod = 0.0; | 
| 90 | else | 
| 91 | m_secPeriod = (2 * PI) / m_mnMotionRec * 60.0; | 
| 92 | } | 
| 93 |  | 
| 94 | return m_secPeriod; | 
| 95 | } | 
| 96 |  | 
| 97 | ////////////////////////////////////////////////////////////////////////////// | 
| 98 | // Returns elapsed number of seconds from epoch to given time. | 
| 99 | // Note: "Predicted" TLEs can have epochs in the future. | 
| 100 | double cOrbit::TPlusEpoch(const cJulian &gmt) const | 
| 101 | { | 
| 102 | return gmt.spanSec(Epoch()); | 
| 103 | } | 
| 104 |  | 
| 105 | ////////////////////////////////////////////////////////////////////////////// | 
| 106 | // Returns the mean anomaly in radians at given GMT. | 
| 107 | // At epoch, the mean anomaly is given by the elements data. | 
| 108 | double cOrbit::mnAnomaly(cJulian gmt) const | 
| 109 | { | 
| 110 | double span = TPlusEpoch(gmt); | 
| 111 | double P    = Period(); | 
| 112 |  | 
| 113 | assert(P != 0.0); | 
| 114 |  | 
| 115 | return fmod(mnAnomaly() + (TWOPI * (span / P)), TWOPI); | 
| 116 | } | 
| 117 |  | 
| 118 | ////////////////////////////////////////////////////////////////////////////// | 
| 119 | // getPosition() | 
| 120 | // This procedure returns the ECI position and velocity for the satellite | 
| 121 | // at "tsince" minutes from the (GMT) TLE epoch. The vectors returned in | 
| 122 | // the ECI object are kilometer-based. | 
| 123 | // tsince  - Time in minutes since the TLE epoch (GMT). | 
| 124 | bool cOrbit::getPosition(double tsince, cEci *pEci) const | 
| 125 | { | 
| 126 | bool rc; | 
| 127 |  | 
| 128 | rc = m_pNoradModel->getPosition(tsince, *pEci); | 
| 129 |  | 
| 130 | pEci->ae2km(); | 
| 131 |  | 
| 132 | return rc; | 
| 133 | } | 
| 134 |  | 
| 135 | ////////////////////////////////////////////////////////////////////////////// | 
| 136 | // SatName() | 
| 137 | // Return the name of the satellite. If requested, the NORAD number is | 
| 138 | // appended to the end of the name, i.e., "ISS (ZARYA) #25544". | 
| 139 | // The name of the satellite with the NORAD number appended is important | 
| 140 | // because many satellites, especially debris, have the same name and | 
| 141 | // would otherwise appear to be the same satellite in ouput data. | 
| 142 | string cOrbit::SatName(bool fAppendId /* = false */) const | 
| 143 | { | 
| 144 | string str = m_tle.getName(); | 
| 145 |  | 
| 146 | if (fAppendId) | 
| 147 | { | 
| 148 | string strId; | 
| 149 |  | 
| 150 | m_tle.getField(cTle::FLD_NORADNUM, cTle::U_NATIVE, &strId); | 
| 151 | str = str + " #" + strId; | 
| 152 | } | 
| 153 |  | 
| 154 | return str; | 
| 155 | } | 
| 156 |  |