1 |
//
|
2 |
// cNoradSGP4.cpp
|
3 |
//
|
4 |
// NORAD SGP4 implementation. See historical note in cNoradBase.cpp
|
5 |
// Copyright (c) 2003 Michael F. Henry
|
6 |
//
|
7 |
// mfh 12/07/2003
|
8 |
//
|
9 |
#include "stdafx.h"
|
10 |
|
11 |
#include "cNoradSGP4.h"
|
12 |
#include "math.h"
|
13 |
#include "cJulian.h"
|
14 |
#include "cOrbit.h"
|
15 |
#include "cVector.h"
|
16 |
#include "coord.h"
|
17 |
|
18 |
//////////////////////////////////////////////////////////////////////////////
|
19 |
cNoradSGP4::cNoradSGP4(const cOrbit &orbit) :
|
20 |
cNoradBase(orbit)
|
21 |
{
|
22 |
m_c5 = 2.0 * m_coef1 * m_aodp * m_betao2 *
|
23 |
(1.0 + 2.75 * (m_etasq + m_eeta) + m_eeta * m_etasq);
|
24 |
m_omgcof = m_Orbit.BStar() * m_c3 * cos(m_Orbit.ArgPerigee());
|
25 |
m_xmcof = -TWOTHRD * m_coef * m_Orbit.BStar() * AE / m_eeta;
|
26 |
m_delmo = pow(1.0 + m_eta * cos(m_Orbit.mnAnomaly()), 3.0);
|
27 |
m_sinmo = sin(m_Orbit.mnAnomaly());
|
28 |
}
|
29 |
|
30 |
cNoradSGP4::~cNoradSGP4(void)
|
31 |
{
|
32 |
}
|
33 |
|
34 |
//////////////////////////////////////////////////////////////////////////////
|
35 |
// getPosition()
|
36 |
// This procedure returns the ECI position and velocity for the satellite
|
37 |
// in the orbit at the given number of minutes since the TLE epoch time
|
38 |
// using the NORAD Simplified General Perturbation 4, near earth orbit
|
39 |
// model.
|
40 |
//
|
41 |
// tsince - Time in minutes since the TLE epoch (GMT).
|
42 |
// eci - ECI object to hold position information.
|
43 |
// To convert the returned ECI position vector to km,
|
44 |
// multiply each component by:
|
45 |
// (XKMPER_WGS72 / AE).
|
46 |
// To convert the returned ECI velocity vector to km/sec,
|
47 |
// multiply each component by:
|
48 |
// (XKMPER_WGS72 / AE) * (MIN_PER_DAY / 86400).
|
49 |
|
50 |
bool cNoradSGP4::getPosition(double tsince, cEci &eci)
|
51 |
{
|
52 |
// For m_perigee less than 220 kilometers, the isimp flag is set and
|
53 |
// the equations are truncated to linear variation in sqrt a and
|
54 |
// quadratic variation in mean anomaly. Also, the m_c3 term, the
|
55 |
// delta omega term, and the delta m term are dropped.
|
56 |
bool isimp = false;
|
57 |
if ((m_aodp * (1.0 - m_satEcc) / AE) < (220.0 / XKMPER_WGS72 + AE))
|
58 |
{
|
59 |
isimp = true;
|
60 |
}
|
61 |
|
62 |
double d2 = 0.0;
|
63 |
double d3 = 0.0;
|
64 |
double d4 = 0.0;
|
65 |
|
66 |
double t3cof = 0.0;
|
67 |
double t4cof = 0.0;
|
68 |
double t5cof = 0.0;
|
69 |
|
70 |
if (!isimp)
|
71 |
{
|
72 |
double c1sq = m_c1 * m_c1;
|
73 |
|
74 |
d2 = 4.0 * m_aodp * m_tsi * c1sq;
|
75 |
|
76 |
double temp = d2 * m_tsi * m_c1 / 3.0;
|
77 |
|
78 |
d3 = (17.0 * m_aodp + m_s4) * temp;
|
79 |
d4 = 0.5 * temp * m_aodp * m_tsi *
|
80 |
(221.0 * m_aodp + 31.0 * m_s4) * m_c1;
|
81 |
t3cof = d2 + 2.0 * c1sq;
|
82 |
t4cof = 0.25 * (3.0 * d3 + m_c1 * (12.0 * d2 + 10.0 * c1sq));
|
83 |
t5cof = 0.2 * (3.0 * d4 + 12.0 * m_c1 * d3 + 6.0 *
|
84 |
d2 * d2 + 15.0 * c1sq * (2.0 * d2 + c1sq));
|
85 |
}
|
86 |
|
87 |
// Update for secular gravity and atmospheric drag.
|
88 |
double xmdf = m_Orbit.mnAnomaly() + m_xmdot * tsince;
|
89 |
double omgadf = m_Orbit.ArgPerigee() + m_omgdot * tsince;
|
90 |
double xnoddf = m_Orbit.RAAN() + m_xnodot * tsince;
|
91 |
double omega = omgadf;
|
92 |
double xmp = xmdf;
|
93 |
double tsq = tsince * tsince;
|
94 |
double xnode = xnoddf + m_xnodcf * tsq;
|
95 |
double tempa = 1.0 - m_c1 * tsince;
|
96 |
double tempe = m_Orbit.BStar() * m_c4 * tsince;
|
97 |
double templ = m_t2cof * tsq;
|
98 |
|
99 |
if (!isimp)
|
100 |
{
|
101 |
double delomg = m_omgcof * tsince;
|
102 |
double delm = m_xmcof * (pow(1.0 + m_eta * cos(xmdf), 3.0) - m_delmo);
|
103 |
double temp = delomg + delm;
|
104 |
|
105 |
xmp = xmdf + temp;
|
106 |
omega = omgadf - temp;
|
107 |
|
108 |
double tcube = tsq * tsince;
|
109 |
double tfour = tsince * tcube;
|
110 |
|
111 |
tempa = tempa - d2 * tsq - d3 * tcube - d4 * tfour;
|
112 |
tempe = tempe + m_Orbit.BStar() * m_c5 * (sin(xmp) - m_sinmo);
|
113 |
templ = templ + t3cof * tcube + tfour * (t4cof + tsince * t5cof);
|
114 |
}
|
115 |
|
116 |
double a = m_aodp * sqr(tempa);
|
117 |
double e = m_satEcc - tempe;
|
118 |
|
119 |
|
120 |
double xl = xmp + omega + xnode + m_xnodp * templ;
|
121 |
double xn = XKE / pow(a, 1.5);
|
122 |
|
123 |
return FinalPosition(m_satInc, omgadf, e, a, xl, xnode, xn, tsince, eci);
|
124 |
}
|
125 |
|