| 1 |
kusanagi |
1.1 |
//
|
| 2 |
|
|
// cNoradSGP4.cpp
|
| 3 |
|
|
//
|
| 4 |
|
|
// NORAD SGP4 implementation. See historical note in cNoradBase.cpp
|
| 5 |
|
|
// Copyright (c) 2003 Michael F. Henry
|
| 6 |
|
|
//
|
| 7 |
|
|
// mfh 12/07/2003
|
| 8 |
|
|
//
|
| 9 |
|
|
#include "stdafx.h"
|
| 10 |
|
|
|
| 11 |
|
|
#include "cNoradSGP4.h"
|
| 12 |
|
|
#include "math.h"
|
| 13 |
|
|
#include "cJulian.h"
|
| 14 |
|
|
#include "cOrbit.h"
|
| 15 |
|
|
#include "cVector.h"
|
| 16 |
|
|
#include "coord.h"
|
| 17 |
|
|
|
| 18 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
| 19 |
|
|
cNoradSGP4::cNoradSGP4(const cOrbit &orbit) :
|
| 20 |
|
|
cNoradBase(orbit)
|
| 21 |
|
|
{
|
| 22 |
|
|
m_c5 = 2.0 * m_coef1 * m_aodp * m_betao2 *
|
| 23 |
|
|
(1.0 + 2.75 * (m_etasq + m_eeta) + m_eeta * m_etasq);
|
| 24 |
|
|
m_omgcof = m_Orbit.BStar() * m_c3 * cos(m_Orbit.ArgPerigee());
|
| 25 |
|
|
m_xmcof = -TWOTHRD * m_coef * m_Orbit.BStar() * AE / m_eeta;
|
| 26 |
|
|
m_delmo = pow(1.0 + m_eta * cos(m_Orbit.mnAnomaly()), 3.0);
|
| 27 |
|
|
m_sinmo = sin(m_Orbit.mnAnomaly());
|
| 28 |
|
|
}
|
| 29 |
|
|
|
| 30 |
|
|
cNoradSGP4::~cNoradSGP4(void)
|
| 31 |
|
|
{
|
| 32 |
|
|
}
|
| 33 |
|
|
|
| 34 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
| 35 |
|
|
// getPosition()
|
| 36 |
|
|
// This procedure returns the ECI position and velocity for the satellite
|
| 37 |
|
|
// in the orbit at the given number of minutes since the TLE epoch time
|
| 38 |
|
|
// using the NORAD Simplified General Perturbation 4, near earth orbit
|
| 39 |
|
|
// model.
|
| 40 |
|
|
//
|
| 41 |
|
|
// tsince - Time in minutes since the TLE epoch (GMT).
|
| 42 |
|
|
// eci - ECI object to hold position information.
|
| 43 |
|
|
// To convert the returned ECI position vector to km,
|
| 44 |
|
|
// multiply each component by:
|
| 45 |
|
|
// (XKMPER_WGS72 / AE).
|
| 46 |
|
|
// To convert the returned ECI velocity vector to km/sec,
|
| 47 |
|
|
// multiply each component by:
|
| 48 |
|
|
// (XKMPER_WGS72 / AE) * (MIN_PER_DAY / 86400).
|
| 49 |
|
|
|
| 50 |
|
|
bool cNoradSGP4::getPosition(double tsince, cEci &eci)
|
| 51 |
|
|
{
|
| 52 |
|
|
// For m_perigee less than 220 kilometers, the isimp flag is set and
|
| 53 |
|
|
// the equations are truncated to linear variation in sqrt a and
|
| 54 |
|
|
// quadratic variation in mean anomaly. Also, the m_c3 term, the
|
| 55 |
|
|
// delta omega term, and the delta m term are dropped.
|
| 56 |
|
|
bool isimp = false;
|
| 57 |
|
|
if ((m_aodp * (1.0 - m_satEcc) / AE) < (220.0 / XKMPER_WGS72 + AE))
|
| 58 |
|
|
{
|
| 59 |
|
|
isimp = true;
|
| 60 |
|
|
}
|
| 61 |
|
|
|
| 62 |
|
|
double d2 = 0.0;
|
| 63 |
|
|
double d3 = 0.0;
|
| 64 |
|
|
double d4 = 0.0;
|
| 65 |
|
|
|
| 66 |
|
|
double t3cof = 0.0;
|
| 67 |
|
|
double t4cof = 0.0;
|
| 68 |
|
|
double t5cof = 0.0;
|
| 69 |
|
|
|
| 70 |
|
|
if (!isimp)
|
| 71 |
|
|
{
|
| 72 |
|
|
double c1sq = m_c1 * m_c1;
|
| 73 |
|
|
|
| 74 |
|
|
d2 = 4.0 * m_aodp * m_tsi * c1sq;
|
| 75 |
|
|
|
| 76 |
|
|
double temp = d2 * m_tsi * m_c1 / 3.0;
|
| 77 |
|
|
|
| 78 |
|
|
d3 = (17.0 * m_aodp + m_s4) * temp;
|
| 79 |
|
|
d4 = 0.5 * temp * m_aodp * m_tsi *
|
| 80 |
|
|
(221.0 * m_aodp + 31.0 * m_s4) * m_c1;
|
| 81 |
|
|
t3cof = d2 + 2.0 * c1sq;
|
| 82 |
|
|
t4cof = 0.25 * (3.0 * d3 + m_c1 * (12.0 * d2 + 10.0 * c1sq));
|
| 83 |
|
|
t5cof = 0.2 * (3.0 * d4 + 12.0 * m_c1 * d3 + 6.0 *
|
| 84 |
|
|
d2 * d2 + 15.0 * c1sq * (2.0 * d2 + c1sq));
|
| 85 |
|
|
}
|
| 86 |
|
|
|
| 87 |
|
|
// Update for secular gravity and atmospheric drag.
|
| 88 |
|
|
double xmdf = m_Orbit.mnAnomaly() + m_xmdot * tsince;
|
| 89 |
|
|
double omgadf = m_Orbit.ArgPerigee() + m_omgdot * tsince;
|
| 90 |
|
|
double xnoddf = m_Orbit.RAAN() + m_xnodot * tsince;
|
| 91 |
|
|
double omega = omgadf;
|
| 92 |
|
|
double xmp = xmdf;
|
| 93 |
|
|
double tsq = tsince * tsince;
|
| 94 |
|
|
double xnode = xnoddf + m_xnodcf * tsq;
|
| 95 |
|
|
double tempa = 1.0 - m_c1 * tsince;
|
| 96 |
|
|
double tempe = m_Orbit.BStar() * m_c4 * tsince;
|
| 97 |
|
|
double templ = m_t2cof * tsq;
|
| 98 |
|
|
|
| 99 |
|
|
if (!isimp)
|
| 100 |
|
|
{
|
| 101 |
|
|
double delomg = m_omgcof * tsince;
|
| 102 |
|
|
double delm = m_xmcof * (pow(1.0 + m_eta * cos(xmdf), 3.0) - m_delmo);
|
| 103 |
|
|
double temp = delomg + delm;
|
| 104 |
|
|
|
| 105 |
|
|
xmp = xmdf + temp;
|
| 106 |
|
|
omega = omgadf - temp;
|
| 107 |
|
|
|
| 108 |
|
|
double tcube = tsq * tsince;
|
| 109 |
|
|
double tfour = tsince * tcube;
|
| 110 |
|
|
|
| 111 |
|
|
tempa = tempa - d2 * tsq - d3 * tcube - d4 * tfour;
|
| 112 |
|
|
tempe = tempe + m_Orbit.BStar() * m_c5 * (sin(xmp) - m_sinmo);
|
| 113 |
|
|
templ = templ + t3cof * tcube + tfour * (t4cof + tsince * t5cof);
|
| 114 |
|
|
}
|
| 115 |
|
|
|
| 116 |
|
|
double a = m_aodp * sqr(tempa);
|
| 117 |
|
|
double e = m_satEcc - tempe;
|
| 118 |
|
|
|
| 119 |
|
|
|
| 120 |
|
|
double xl = xmp + omega + xnode + m_xnodp * templ;
|
| 121 |
|
|
double xn = XKE / pow(a, 1.5);
|
| 122 |
|
|
|
| 123 |
|
|
return FinalPosition(m_satInc, omgadf, e, a, xl, xnode, xn, tsince, eci);
|
| 124 |
|
|
}
|
| 125 |
|
|
|