/[PAMELA software]/yodaUtility/sgp4/cNoradBase.cpp
ViewVC logotype

Contents of /yodaUtility/sgp4/cNoradBase.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.1.1.1 - (show annotations) (download) (vendor branch)
Sun Apr 30 11:08:15 2006 UTC (18 years, 8 months ago) by kusanagi
Branch: MAIN
CVS Tags: yodaUtility2_0/00, yodaUtility1_0/00, yodaUtility2_2/00, yodaUtility2_1/00, HEAD
Changes since 1.1: +0 -0 lines
Various utilities for the yoda environment and its related softwares.
YFile 	   	- Inheriths from TFile     - Add custom features to a TFile object.
YException 	- Inheriths from exception - YODA specific Exceptions.
YMcmd	   	- Decoder for the Mcmd packets.
YSQLConnection 	- Singletn class for DB connections.
yodaUtility     - Various functions.
sgp4		- C++ NORAD SGP4/SDP4 Implementation - Developed by Michael F. Henry.

1 //
2 // cNoradBase.cpp
3 //
4 // Historical Note:
5 // The equations used here (and in derived classes) to determine satellite
6 // ECI coordinates/velocity come from the December, 1980 NORAD document
7 // "Space Track Report No. 3". The report details 6 orbital models and
8 // provides FORTRAN IV implementations of each. The classes here
9 // implement only two of the orbital models: SGP4 and SDP4. These two models,
10 // one for "near-earth" objects and one for "deep space" objects, are widely
11 // used in satellite tracking software and can produce very accurate results
12 // when used with current NORAD two-line element datum.
13 //
14 // The NORAD FORTRAN IV SGP4/SDP4 implementations were converted to Pascal by
15 // Dr. TS Kelso in 1995. In 1996 these routines were ported in a straight-
16 // forward manner to C++ by Varol Okan. The SGP4/SDP4 classes here were
17 // written by Michael F. Henry in 2002-03 and are a modern C++ re-write of
18 // the work done by Okan. In addition to introducing an object-oriented
19 // architecture, the last residues of the original FORTRAN code (such as
20 // labels and gotos) were eradicated.
21 //
22 // For excellent information on the underlying physics of orbits, visible
23 // satellite observations, current NORAD TLE data, and other related material,
24 // see http://www.celestrak.com which is maintained by Dr. TS Kelso.
25 //
26 // Copyright (c) 2003 Michael F. Henry
27 //
28 // mfh 12/07/2003
29 //
30 #include "stdafx.h"
31 #include "cNoradBase.h"
32 #include "cOrbit.h"
33 #include "coord.h"
34 #include "cEci.h"
35 #include "cVector.h"
36 #include "cJulian.h"
37
38 //////////////////////////////////////////////////////////////////////////////
39 cNoradBase::cNoradBase(const cOrbit &orbit) :
40 m_Orbit(orbit)
41 {
42 Initialize();
43 }
44
45 cNoradBase::~cNoradBase(void)
46 {
47 }
48
49 cNoradBase& cNoradBase::operator=(const cNoradBase &b)
50 {
51 // m_Orbit is a "const" member var, so cast away its
52 // "const-ness" in order to complete the assigment.
53 *(const_cast<cOrbit*>(&m_Orbit)) = b.m_Orbit;
54
55 return *this;
56 }
57
58 //////////////////////////////////////////////////////////////////////////////
59 // Initialize()
60 // Perform the initialization of member variables, specifically the variables
61 // used by derived-class objects to calculate ECI coordinates.
62 void cNoradBase::Initialize()
63 {
64 // Initialize any variables which are time-independent when
65 // calculating the ECI coordinates of the satellite.
66 m_satInc = m_Orbit.Inclination();
67 m_satEcc = m_Orbit.Eccentricity();
68
69 m_cosio = cos(m_satInc);
70 m_theta2 = m_cosio * m_cosio;
71 m_x3thm1 = 3.0 * m_theta2 - 1.0;
72 m_eosq = m_satEcc * m_satEcc;
73 m_betao2 = 1.0 - m_eosq;
74 m_betao = sqrt(m_betao2);
75
76 // The "recovered" semi-minor axis and mean motion.
77 m_aodp = m_Orbit.SemiMinor();
78 m_xnodp = m_Orbit.mnMotionRec();
79
80 // For perigee below 156 km, the values of S and QOMS2T are altered.
81 m_perigee = XKMPER_WGS72 * (m_aodp * (1.0 - m_satEcc) - AE);
82
83 m_s4 = S;
84 m_qoms24 = QOMS2T;
85
86 if (m_perigee < 156.0)
87 {
88 m_s4 = m_perigee - 78.0;
89
90 if (m_perigee <= 98.0)
91 {
92 m_s4 = 20.0;
93 }
94
95 m_qoms24 = pow((120.0 - m_s4) * AE / XKMPER_WGS72, 4.0);
96 m_s4 = m_s4 / XKMPER_WGS72 + AE;
97 }
98
99 const double pinvsq = 1.0 / (m_aodp * m_aodp * m_betao2 * m_betao2);
100
101 m_tsi = 1.0 / (m_aodp - m_s4);
102 m_eta = m_aodp * m_satEcc * m_tsi;
103 m_etasq = m_eta * m_eta;
104 m_eeta = m_satEcc * m_eta;
105
106 const double psisq = fabs(1.0 - m_etasq);
107
108 m_coef = m_qoms24 * pow(m_tsi,4.0);
109 m_coef1 = m_coef / pow(psisq,3.5);
110
111 const double c2 = m_coef1 * m_xnodp *
112 (m_aodp * (1.0 + 1.5 * m_etasq + m_eeta * (4.0 + m_etasq)) +
113 0.75 * CK2 * m_tsi / psisq * m_x3thm1 *
114 (8.0 + 3.0 * m_etasq * (8.0 + m_etasq)));
115
116 m_c1 = m_Orbit.BStar() * c2;
117 m_sinio = sin(m_satInc);
118
119 const double a3ovk2 = -XJ3 / CK2 * pow(AE,3.0);
120
121 m_c3 = m_coef * m_tsi * a3ovk2 * m_xnodp * AE * m_sinio / m_satEcc;
122 m_x1mth2 = 1.0 - m_theta2;
123 m_c4 = 2.0 * m_xnodp * m_coef1 * m_aodp * m_betao2 *
124 (m_eta * (2.0 + 0.5 * m_etasq) +
125 m_satEcc * (0.5 + 2.0 * m_etasq) -
126 2.0 * CK2 * m_tsi / (m_aodp * psisq) *
127 (-3.0 * m_x3thm1 * (1.0 - 2.0 * m_eeta + m_etasq * (1.5 - 0.5 * m_eeta)) +
128 0.75 * m_x1mth2 *
129 (2.0 * m_etasq - m_eeta * (1.0 + m_etasq)) *
130 cos(2.0 * m_Orbit.ArgPerigee())));
131
132 const double theta4 = m_theta2 * m_theta2;
133 const double temp1 = 3.0 * CK2 * pinvsq * m_xnodp;
134 const double temp2 = temp1 * CK2 * pinvsq;
135 const double temp3 = 1.25 * CK4 * pinvsq * pinvsq * m_xnodp;
136
137 m_xmdot = m_xnodp + 0.5 * temp1 * m_betao * m_x3thm1 +
138 0.0625 * temp2 * m_betao *
139 (13.0 - 78.0 * m_theta2 + 137.0 * theta4);
140
141 const double x1m5th = 1.0 - 5.0 * m_theta2;
142
143 m_omgdot = -0.5 * temp1 * x1m5th + 0.0625 * temp2 *
144 (7.0 - 114.0 * m_theta2 + 395.0 * theta4) +
145 temp3 * (3.0 - 36.0 * m_theta2 + 49.0 * theta4);
146
147 const double xhdot1 = -temp1 * m_cosio;
148
149 m_xnodot = xhdot1 + (0.5 * temp2 * (4.0 - 19.0 * m_theta2) +
150 2.0 * temp3 * (3.0 - 7.0 * m_theta2)) * m_cosio;
151 m_xnodcf = 3.5 * m_betao2 * xhdot1 * m_c1;
152 m_t2cof = 1.5 * m_c1;
153 m_xlcof = 0.125 * a3ovk2 * m_sinio *
154 (3.0 + 5.0 * m_cosio) / (1.0 + m_cosio);
155 m_aycof = 0.25 * a3ovk2 * m_sinio;
156 m_x7thm1 = 7.0 * m_theta2 - 1.0;
157 }
158
159 //////////////////////////////////////////////////////////////////////////////
160 bool cNoradBase::FinalPosition(double incl, double omega,
161 double e, double a,
162 double xl, double xnode,
163 double xn, double tsince,
164 cEci &eci)
165 {
166 if ((e * e) > 1.0)
167 {
168 // error in satellite data
169 return false;
170 }
171
172 double beta = sqrt(1.0 - e * e);
173
174 // Long period periodics
175 double axn = e * cos(omega);
176 double temp = 1.0 / (a * beta * beta);
177 double xll = temp * m_xlcof * axn;
178 double aynl = temp * m_aycof;
179 double xlt = xl + xll;
180 double ayn = e * sin(omega) + aynl;
181
182 // Solve Kepler's Equation
183
184 double capu = Fmod2p(xlt - xnode);
185 double temp2 = capu;
186 double temp3 = 0.0;
187 double temp4 = 0.0;
188 double temp5 = 0.0;
189 double temp6 = 0.0;
190 double sinepw = 0.0;
191 double cosepw = 0.0;
192 bool fDone = false;
193
194 for (int i = 1; (i <= 10) && !fDone; i++)
195 {
196 sinepw = sin(temp2);
197 cosepw = cos(temp2);
198 temp3 = axn * sinepw;
199 temp4 = ayn * cosepw;
200 temp5 = axn * cosepw;
201 temp6 = ayn * sinepw;
202
203 double epw = (capu - temp4 + temp3 - temp2) /
204 (1.0 - temp5 - temp6) + temp2;
205
206 if (fabs(epw - temp2) <= E6A)
207 fDone = true;
208 else
209 temp2 = epw;
210 }
211
212 // Short period preliminary quantities
213 double ecose = temp5 + temp6;
214 double esine = temp3 - temp4;
215 double elsq = axn * axn + ayn * ayn;
216 temp = 1.0 - elsq;
217 double pl = a * temp;
218 double r = a * (1.0 - ecose);
219 double temp1 = 1.0 / r;
220 double rdot = XKE * sqrt(a) * esine * temp1;
221 double rfdot = XKE * sqrt(pl) * temp1;
222 temp2 = a * temp1;
223 double betal = sqrt(temp);
224 temp3 = 1.0 / (1.0 + betal);
225 double cosu = temp2 * (cosepw - axn + ayn * esine * temp3);
226 double sinu = temp2 * (sinepw - ayn - axn * esine * temp3);
227 double u = AcTan(sinu, cosu);
228 double sin2u = 2.0 * sinu * cosu;
229 double cos2u = 2.0 * cosu * cosu - 1.0;
230
231 temp = 1.0 / pl;
232 temp1 = CK2 * temp;
233 temp2 = temp1 * temp;
234
235 // Update for short periodics
236 double rk = r * (1.0 - 1.5 * temp2 * betal * m_x3thm1) +
237 0.5 * temp1 * m_x1mth2 * cos2u;
238 double uk = u - 0.25 * temp2 * m_x7thm1 * sin2u;
239 double xnodek = xnode + 1.5 * temp2 * m_cosio * sin2u;
240 double xinck = incl + 1.5 * temp2 * m_cosio * m_sinio * cos2u;
241 double rdotk = rdot - xn * temp1 * m_x1mth2 * sin2u;
242 double rfdotk = rfdot + xn * temp1 * (m_x1mth2 * cos2u + 1.5 * m_x3thm1);
243
244 // Orientation vectors
245 double sinuk = sin(uk);
246 double cosuk = cos(uk);
247 double sinik = sin(xinck);
248 double cosik = cos(xinck);
249 double sinnok = sin(xnodek);
250 double cosnok = cos(xnodek);
251 double xmx = -sinnok * cosik;
252 double xmy = cosnok * cosik;
253 double ux = xmx * sinuk + cosnok * cosuk;
254 double uy = xmy * sinuk + sinnok * cosuk;
255 double uz = sinik * sinuk;
256 double vx = xmx * cosuk - cosnok * sinuk;
257 double vy = xmy * cosuk - sinnok * sinuk;
258 double vz = sinik * cosuk;
259
260 // Position
261 double x = rk * ux;
262 double y = rk * uy;
263 double z = rk * uz;
264
265 cVector vecPos(x, y, z);
266
267 // Validate on altitude
268 double altKm = (vecPos.Magnitude() * (XKMPER_WGS72 / AE));
269
270 if ((altKm < XKMPER_WGS72) || (altKm > (2 * GEOSYNC_ALT)))
271 return false;
272
273 // Velocity
274 double xdot = rdotk * ux + rfdotk * vx;
275 double ydot = rdotk * uy + rfdotk * vy;
276 double zdot = rdotk * uz + rfdotk * vz;
277
278 cVector vecVel(xdot, ydot, zdot);
279
280 cJulian gmt = m_Orbit.Epoch();
281 gmt.addMin(tsince);
282
283 eci = cEci(vecPos, vecVel, gmt);
284
285 return true;
286 }
287
288
289

  ViewVC Help
Powered by ViewVC 1.1.23