// // cEci.cpp // // Copyright (c) 2002-2003 Michael F. Henry // #include "stdafx.h" #include "cEci.h" #include "globals.h" ////////////////////////////////////////////////////////////////////// // cEci Class ////////////////////////////////////////////////////////////////////// cEci::cEci(const cVector &pos, const cVector &vel, const cJulian &date, bool IsAeUnits /* = true */) { m_pos = pos; m_vel = vel; m_date = date; m_VecUnits = (IsAeUnits ? UNITS_AE : UNITS_NONE); } ////////////////////////////////////////////////////////////////////// // cEci(cCoordGeo&, cJulian&) // Calculate the ECI coordinates of the location "geo" at time "date". // Assumes geo coordinates are km-based. // Assumes the earth is an oblate spheroid as defined in WGS '72. // Reference: The 1992 Astronomical Almanac, page K11 // Reference: www.celestrak.com (Dr. TS Kelso) cEci::cEci(const cCoordGeo &geo, const cJulian &date) { m_VecUnits = UNITS_KM; double mfactor = TWOPI * (OMEGA_E / SEC_PER_DAY); double lat = geo.m_Lat; double lon = geo.m_Lon; double alt = geo.m_Alt; // Calculate Local Mean Sidereal Time (theta) double theta = date.toLMST(lon); double c = 1.0 / sqrt(1.0 + F * (F - 2.0) * sqr(sin(lat))); double s = sqr(1.0 - F) * c; double achcp = (XKMPER_WGS72 * c + alt) * cos(lat); m_date = date; m_pos.m_x = achcp * cos(theta); // km m_pos.m_y = achcp * sin(theta); // km m_pos.m_z = (XKMPER_WGS72 * s + alt) * sin(lat); // km m_pos.m_w = sqrt(sqr(m_pos.m_x) + sqr(m_pos.m_y) + sqr(m_pos.m_z)); // range, km m_vel.m_x = -mfactor * m_pos.m_y; // km / sec m_vel.m_y = mfactor * m_pos.m_x; m_vel.m_z = 0.0; m_vel.m_w = sqrt(sqr(m_vel.m_x) + // range rate km/sec^2 sqr(m_vel.m_y)); } ////////////////////////////////////////////////////////////////////////////// // toGeo() // Return the corresponding geodetic position (based on the current ECI // coordinates/Julian date). // Assumes the earth is an oblate spheroid as defined in WGS '72. // Side effects: Converts the position and velocity vectors to km-based units. // Reference: The 1992 Astronomical Almanac, page K12. // Reference: www.celestrak.com (Dr. TS Kelso) cCoordGeo cEci::toGeo() { ae2km(); // Vectors must be in kilometer-based units double theta = AcTan(m_pos.m_y, m_pos.m_x); double lon = fmod(theta - m_date.toGMST(), TWOPI); if (lon < 0.0) lon += TWOPI; // "wrap" negative modulo double r = sqrt(sqr(m_pos.m_x) + sqr(m_pos.m_y)); double e2 = F * (2.0 - F); double lat = AcTan(m_pos.m_z, r); const double delta = 1.0e-07; double phi; double c; do { phi = lat; c = 1.0 / sqrt(1.0 - e2 * sqr(sin(phi))); lat = AcTan(m_pos.m_z + XKMPER_WGS72 * c * e2 * sin(phi), r); } while (fabs(lat - phi) > delta); double alt = r / cos(lat) - XKMPER_WGS72 * c; return cCoordGeo(lat, lon, alt); // radians, radians, kilometers } ////////////////////////////////////////////////////////////////////////////// // ae2km() // Convert the position and velocity vector units from AE-based units // to kilometer based units. void cEci::ae2km() { if (UnitsAreAe()) { MulPos(XKMPER_WGS72 / AE); // km MulVel((XKMPER_WGS72 / AE) * (MIN_PER_DAY / 86400)); // km/sec m_VecUnits = UNITS_KM; } }