| 1 |
kusanagi |
1.1 |
//
|
| 2 |
|
|
// cEci.cpp
|
| 3 |
|
|
//
|
| 4 |
|
|
// Copyright (c) 2002-2003 Michael F. Henry
|
| 5 |
|
|
//
|
| 6 |
|
|
#include "stdafx.h"
|
| 7 |
|
|
|
| 8 |
|
|
#include "cEci.h"
|
| 9 |
|
|
#include "globals.h"
|
| 10 |
|
|
|
| 11 |
|
|
//////////////////////////////////////////////////////////////////////
|
| 12 |
|
|
// cEci Class
|
| 13 |
|
|
//////////////////////////////////////////////////////////////////////
|
| 14 |
|
|
cEci::cEci(const cVector &pos,
|
| 15 |
|
|
const cVector &vel,
|
| 16 |
|
|
const cJulian &date,
|
| 17 |
|
|
bool IsAeUnits /* = true */)
|
| 18 |
|
|
{
|
| 19 |
|
|
m_pos = pos;
|
| 20 |
|
|
m_vel = vel;
|
| 21 |
|
|
m_date = date;
|
| 22 |
|
|
m_VecUnits = (IsAeUnits ? UNITS_AE : UNITS_NONE);
|
| 23 |
|
|
}
|
| 24 |
|
|
|
| 25 |
|
|
//////////////////////////////////////////////////////////////////////
|
| 26 |
|
|
// cEci(cCoordGeo&, cJulian&)
|
| 27 |
|
|
// Calculate the ECI coordinates of the location "geo" at time "date".
|
| 28 |
|
|
// Assumes geo coordinates are km-based.
|
| 29 |
|
|
// Assumes the earth is an oblate spheroid as defined in WGS '72.
|
| 30 |
|
|
// Reference: The 1992 Astronomical Almanac, page K11
|
| 31 |
|
|
// Reference: www.celestrak.com (Dr. TS Kelso)
|
| 32 |
|
|
cEci::cEci(const cCoordGeo &geo, const cJulian &date)
|
| 33 |
|
|
{
|
| 34 |
|
|
m_VecUnits = UNITS_KM;
|
| 35 |
|
|
|
| 36 |
|
|
double mfactor = TWOPI * (OMEGA_E / SEC_PER_DAY);
|
| 37 |
|
|
double lat = geo.m_Lat;
|
| 38 |
|
|
double lon = geo.m_Lon;
|
| 39 |
|
|
double alt = geo.m_Alt;
|
| 40 |
|
|
|
| 41 |
|
|
// Calculate Local Mean Sidereal Time (theta)
|
| 42 |
|
|
double theta = date.toLMST(lon);
|
| 43 |
|
|
double c = 1.0 / sqrt(1.0 + F * (F - 2.0) * sqr(sin(lat)));
|
| 44 |
|
|
double s = sqr(1.0 - F) * c;
|
| 45 |
|
|
double achcp = (XKMPER_WGS72 * c + alt) * cos(lat);
|
| 46 |
|
|
|
| 47 |
|
|
m_date = date;
|
| 48 |
|
|
|
| 49 |
|
|
m_pos.m_x = achcp * cos(theta); // km
|
| 50 |
|
|
m_pos.m_y = achcp * sin(theta); // km
|
| 51 |
|
|
m_pos.m_z = (XKMPER_WGS72 * s + alt) * sin(lat); // km
|
| 52 |
|
|
m_pos.m_w = sqrt(sqr(m_pos.m_x) +
|
| 53 |
|
|
sqr(m_pos.m_y) +
|
| 54 |
|
|
sqr(m_pos.m_z)); // range, km
|
| 55 |
|
|
|
| 56 |
|
|
m_vel.m_x = -mfactor * m_pos.m_y; // km / sec
|
| 57 |
|
|
m_vel.m_y = mfactor * m_pos.m_x;
|
| 58 |
|
|
m_vel.m_z = 0.0;
|
| 59 |
|
|
m_vel.m_w = sqrt(sqr(m_vel.m_x) + // range rate km/sec^2
|
| 60 |
|
|
sqr(m_vel.m_y));
|
| 61 |
|
|
}
|
| 62 |
|
|
|
| 63 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
| 64 |
|
|
// toGeo()
|
| 65 |
|
|
// Return the corresponding geodetic position (based on the current ECI
|
| 66 |
|
|
// coordinates/Julian date).
|
| 67 |
|
|
// Assumes the earth is an oblate spheroid as defined in WGS '72.
|
| 68 |
|
|
// Side effects: Converts the position and velocity vectors to km-based units.
|
| 69 |
|
|
// Reference: The 1992 Astronomical Almanac, page K12.
|
| 70 |
|
|
// Reference: www.celestrak.com (Dr. TS Kelso)
|
| 71 |
|
|
cCoordGeo cEci::toGeo()
|
| 72 |
|
|
{
|
| 73 |
|
|
ae2km(); // Vectors must be in kilometer-based units
|
| 74 |
|
|
|
| 75 |
|
|
double theta = AcTan(m_pos.m_y, m_pos.m_x);
|
| 76 |
|
|
double lon = fmod(theta - m_date.toGMST(), TWOPI);
|
| 77 |
|
|
|
| 78 |
|
|
if (lon < 0.0)
|
| 79 |
|
|
lon += TWOPI; // "wrap" negative modulo
|
| 80 |
|
|
|
| 81 |
|
|
double r = sqrt(sqr(m_pos.m_x) + sqr(m_pos.m_y));
|
| 82 |
|
|
double e2 = F * (2.0 - F);
|
| 83 |
|
|
double lat = AcTan(m_pos.m_z, r);
|
| 84 |
|
|
|
| 85 |
|
|
const double delta = 1.0e-07;
|
| 86 |
|
|
double phi;
|
| 87 |
|
|
double c;
|
| 88 |
|
|
|
| 89 |
|
|
do
|
| 90 |
|
|
{
|
| 91 |
|
|
phi = lat;
|
| 92 |
|
|
c = 1.0 / sqrt(1.0 - e2 * sqr(sin(phi)));
|
| 93 |
|
|
lat = AcTan(m_pos.m_z + XKMPER_WGS72 * c * e2 * sin(phi), r);
|
| 94 |
|
|
}
|
| 95 |
|
|
while (fabs(lat - phi) > delta);
|
| 96 |
|
|
|
| 97 |
|
|
double alt = r / cos(lat) - XKMPER_WGS72 * c;
|
| 98 |
|
|
|
| 99 |
|
|
return cCoordGeo(lat, lon, alt); // radians, radians, kilometers
|
| 100 |
|
|
}
|
| 101 |
|
|
|
| 102 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
| 103 |
|
|
// ae2km()
|
| 104 |
|
|
// Convert the position and velocity vector units from AE-based units
|
| 105 |
|
|
// to kilometer based units.
|
| 106 |
|
|
void cEci::ae2km()
|
| 107 |
|
|
{
|
| 108 |
|
|
if (UnitsAreAe())
|
| 109 |
|
|
{
|
| 110 |
|
|
MulPos(XKMPER_WGS72 / AE); // km
|
| 111 |
|
|
MulVel((XKMPER_WGS72 / AE) * (MIN_PER_DAY / 86400)); // km/sec
|
| 112 |
|
|
m_VecUnits = UNITS_KM;
|
| 113 |
|
|
}
|
| 114 |
|
|
} |