/[PAMELA software]/yodaUtility/igrf/shellig.for
ViewVC logotype

Annotation of /yodaUtility/igrf/shellig.for

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.1 - (hide annotations) (download)
Sat Jun 10 06:33:31 2006 UTC (18 years, 7 months ago) by kusanagi
Branch: MAIN
CVS Tags: yodaUtility2_0/00, yodaUtility2_2/00, yodaUtility2_1/00, HEAD
Software for geomagnetic field calculation. The validity time interval is 2000-2010.

1 kusanagi 1.1 C SHELLIG.FOR, Version 2.0, January 1992
2     C
3     C 11/01/91-DKB- SHELLG: lowest starting point for B0 search is 2
4     C 1/27/92-DKB- Adopted to IGRF-91 coeffcients model
5     C 2/05/92-DKB- Reduce variable-names: INTER(P)SHC,EXTRA(P)SHC,INITI(ALI)ZE
6     C 8/08/95-DKB- Updated to IGRF-45-95; new coeff. DGRF90, IGRF95, IGRF95S
7     C 5/31/00-DKB- Updated to IGRF-45-00; new coeff.: IGRF00, IGRF00s
8     C 3/24/05-DKB- Updated to IGRF-45-10; new coeff.: IGRF05, IGRF05s
9     C
10     C*********************************************************************
11     C SUBROUTINES FINDB0, SHELLG, STOER, FELDG, FELDCOF, GETSHC, *
12     C INTERSHC, EXTRASHC, INITIZE *
13     C*********************************************************************
14     C*********************************************************************
15     C
16     C
17     SUBROUTINE FINDB0(STPS,BDEL,VALUE,BEQU,RR0)
18     C--------------------------------------------------------------------
19     C FINDS SMALLEST MAGNETIC FIELD STRENGTH ON FIELD LINE
20     C
21     C INPUT: STPS STEP SIZE FOR FIELD LINE TRACING
22     C COMMON/FIDB0/
23     C SP DIPOLE ORIENTED COORDINATES FORM SHELLG; P(1,*),
24     C P(2,*), P(3,*) CLOSEST TO MAGNETIC EQUATOR
25     C BDEL REQUIRED ACCURACY = [ B(LAST) - BEQU ] / BEQU
26     C B(LAST) IS FIELD STRENGTH BEFORE BEQU
27     C
28     C OUTPUT: VALUE =.FALSE., IF BEQU IS NOT MINIMAL VALUE ON FIELD LINE
29     C BEQU MAGNETIC FIELD STRENGTH AT MAGNETIC EQUATOR
30     C RR0 EQUATORIAL RADIUS NORMALIZED TO EARTH RADIUS
31     C BDEL FINAL ACHIEVED ACCURACY
32     C--------------------------------------------------------------------
33     DIMENSION P(8,4),SP(3)
34     LOGICAL VALUE
35     COMMON/FIDB0/ SP
36     C
37     STEP=STPS
38     IRUN=0
39     7777 IRUN=IRUN+1
40     IF(IRUN.GT.5) THEN
41     VALUE=.FALSE.
42     GOTO 8888
43     ENDIF
44     C*********************FIRST THREE POINTS
45     P(1,2)=SP(1)
46     P(2,2)=SP(2)
47     P(3,2)=SP(3)
48     STEP=-SIGN(STEP,P(3,2))
49     CALL STOER(P(1,2),BQ2,R2)
50     P(1,3)=P(1,2)+0.5*STEP*P(4,2)
51     P(2,3)=P(2,2)+0.5*STEP*P(5,2)
52     P(3,3)=P(3,2)+0.5*STEP
53     CALL STOER(P(1,3),BQ3,R3)
54     P(1,1)=P(1,2)-STEP*(2.*P(4,2)-P(4,3))
55     P(2,1)=P(2,2)-STEP*(2.*P(5,2)-P(5,3))
56     P(3,1)=P(3,2)-STEP
57     CALL STOER(P(1,1),BQ1,R1)
58     P(1,3)=P(1,2)+STEP*(20.*P(4,3)-3.*P(4,2)+P(4,1))/18.
59     P(2,3)=P(2,2)+STEP*(20.*P(5,3)-3.*P(5,2)+P(5,1))/18.
60     P(3,3)=P(3,2)+STEP
61     CALL STOER(P(1,3),BQ3,R3)
62     C******************INVERT SENSE IF REQUIRED
63     IF(BQ3.LE.BQ1) GOTO 2
64     STEP=-STEP
65     R3=R1
66     BQ3=BQ1
67     DO 1 I=1,5
68     ZZ=P(I,1)
69     P(I,1)=P(I,3)
70     1 P(I,3)=ZZ
71     C******************INITIALIZATION
72     2 STEP12=STEP/12.
73     VALUE=.TRUE.
74     BMIN=1.E4
75     BOLD=1.E4
76     C******************CORRECTOR (FIELD LINE TRACING)
77     N=0
78     5555 P(1,3)=P(1,2)+STEP12*(5.*P(4,3)+8.*P(4,2)-P(4,1))
79     N=N+1
80     P(2,3)=P(2,2)+STEP12*(5.*P(5,3)+8.*P(5,2)-P(5,1))
81     C******************PREDICTOR (FIELD LINE TRACING)
82     P(1,4)=P(1,3)+STEP12*(23.*P(4,3)-16.*P(4,2)+5.*P(4,1))
83     P(2,4)=P(2,3)+STEP12*(23.*P(5,3)-16.*P(5,2)+5.*P(5,1))
84     P(3,4)=P(3,3)+STEP
85     CALL STOER(P(1,4),BQ3,R3)
86     DO 1111 J=1,3
87     DO 1111 I=1,8
88     1111 P(I,J)=P(I,J+1)
89     B=SQRT(BQ3)
90     IF(B.LT.BMIN) BMIN=B
91     IF(B.LE.BOLD) THEN
92     BOLD=B
93     ROLD=1./R3
94     SP(1)=P(1,4)
95     SP(2)=P(2,4)
96     SP(3)=P(3,4)
97     GOTO 5555
98     ENDIF
99     IF(BOLD.NE.BMIN) THEN
100     VALUE=.FALSE.
101     ENDIF
102     BDELTA=(B-BOLD)/BOLD
103     IF(BDELTA.GT.BDEL) THEN
104     STEP=STEP/10.
105     GOTO 7777
106     ENDIF
107     8888 RR0=ROLD
108     BEQU=BOLD
109     BDEL=BDELTA
110     RETURN
111     END
112     C
113     C
114     SUBROUTINE SHELLG(GLAT,GLON,ALT,DIMO,FL,ICODE,B0)
115     C--------------------------------------------------------------------
116     C CALCULATES L-VALUE FOR SPECIFIED GEODAETIC COORDINATES, ALTITUDE
117     C AND GEMAGNETIC FIELD MODEL.
118     C REF: G. KLUGE, EUROPEAN SPACE OPERATIONS CENTER, INTERNAL NOTE
119     C NO. 67, 1970.
120     C G. KLUGE, COMPUTER PHYSICS COMMUNICATIONS 3, 31-35, 1972
121     C--------------------------------------------------------------------
122     C CHANGES (D. BILITZA, NOV 87):
123     C - USING CORRECT DIPOL MOMENT I.E.,DIFFERENT COMMON/MODEL/
124     C - USING IGRF EARTH MAGNETIC FIELD MODELS FROM 1945 TO 1990
125     C--------------------------------------------------------------------
126     C INPUT: ENTRY POINT SHELLG
127     C GLAT GEODETIC LATITUDE IN DEGREES (NORTH)
128     C GLON GEODETIC LONGITUDE IN DEGREES (EAST)
129     C ALT ALTITUDE IN KM ABOVE SEA LEVEL
130     C
131     C ENTRY POINT SHELLC
132     C V(3) CARTESIAN COORDINATES IN EARTH RADII (6371.2 KM)
133     C X-AXIS POINTING TO EQUATOR AT 0 LONGITUDE
134     C Y-AXIS POINTING TO EQUATOR AT 90 LONG.
135     C Z-AXIS POINTING TO NORTH POLE
136     C
137     C DIMO DIPOL MOMENT IN GAUSS (NORMALIZED TO EARTH RADIUS)
138     C
139     C COMMON
140     C X(3) NOT USED
141     C H(144) FIELD MODEL COEFFICIENTS ADJUSTED FOR SHELLG
142     C-----------------------------------------------------------------------
143     C OUTPUT: FL L-VALUE
144     C ICODE =1 NORMAL COMPLETION
145     C =2 UNPHYSICAL CONJUGATE POINT (FL MEANINGLESS)
146     C =3 SHELL PARAMETER GREATER THAN LIMIT UP TO
147     C WHICH ACCURATE CALCULATION IS REQUIRED;
148     C APPROXIMATION IS USED.
149     C B0 MAGNETIC FIELD STRENGTH IN GAUSS
150     C-----------------------------------------------------------------------
151     DIMENSION V(3),U(3,3),P(8,100),SP(3)
152     COMMON X(3),H(144)
153     COMMON/FIDB0/ SP
154     COMMON/GENER/ UMR,ERA,AQUAD,BQUAD
155     C
156     C-- RMIN, RMAX ARE BOUNDARIES FOR IDENTIFICATION OF ICODE=2 AND 3
157     C-- STEP IS STEP SIZE FOR FIELD LINE TRACING
158     C-- STEQ IS STEP SIZE FOR INTEGRATION
159     C
160     DATA RMIN,RMAX /0.05,1.01/
161     DATA STEP,STEQ /0.20,0.03/
162     BEQU=1.E10
163     C
164     C*****ENTRY POINT SHELLG TO BE USED WITH GEODETIC CO-ORDINATES
165     RLAT=GLAT*UMR
166     CT=SIN(RLAT)
167     ST=COS(RLAT)
168     D=SQRT(AQUAD-(AQUAD-BQUAD)*CT*CT)
169     X(1)=(ALT+AQUAD/D)*ST/ERA
170     X(3)=(ALT+BQUAD/D)*CT/ERA
171     RLON=GLON*UMR
172     X(2)=X(1)*SIN(RLON)
173     X(1)=X(1)*COS(RLON)
174     GOTO9
175     C
176     C*****ENTRY POINT SHELLC TO BE USED WITH CARTESIAN CO-ORDINATES
177     ENTRY SHELLC(V,FL,B0)
178     X(1)=V(1)
179     X(2)=V(2)
180     X(3)=V(3)
181     C*****CONVERT TO DIPOL-ORIENTED CO-ORDINATES
182     DATA U/ +0.3511737,-0.9148385,-0.1993679,
183     A +0.9335804,+0.3583680,+0.0000000,
184     B +0.0714471,-0.1861260,+0.9799247/
185     9 RQ=1./(X(1)*X(1)+X(2)*X(2)+X(3)*X(3))
186     R3H=SQRT(RQ*SQRT(RQ))
187     P(1,2)=(X(1)*U(1,1)+X(2)*U(2,1)+X(3)*U(3,1))*R3H
188     P(2,2)=(X(1)*U(1,2)+X(2)*U(2,2) )*R3H
189     P(3,2)=(X(1)*U(1,3)+X(2)*U(2,3)+X(3)*U(3,3))*RQ
190     C*****FIRST THREE POINTS OF FIELD LINE
191     STEP=-SIGN(STEP,P(3,2))
192     CALL STOER(P(1,2),BQ2,R2)
193     B0=SQRT(BQ2)
194     P(1,3)=P(1,2)+0.5*STEP*P(4,2)
195     P(2,3)=P(2,2)+0.5*STEP*P(5,2)
196     P(3,3)=P(3,2)+0.5*STEP
197     CALL STOER(P(1,3),BQ3,R3)
198     P(1,1)=P(1,2)-STEP*(2.*P(4,2)-P(4,3))
199     P(2,1)=P(2,2)-STEP*(2.*P(5,2)-P(5,3))
200     P(3,1)=P(3,2)-STEP
201     CALL STOER(P(1,1),BQ1,R1)
202     P(1,3)=P(1,2)+STEP*(20.*P(4,3)-3.*P(4,2)+P(4,1))/18.
203     P(2,3)=P(2,2)+STEP*(20.*P(5,3)-3.*P(5,2)+P(5,1))/18.
204     P(3,3)=P(3,2)+STEP
205     CALL STOER(P(1,3),BQ3,R3)
206     C*****INVERT SENSE IF REQUIRED
207     IF(BQ3.LE.BQ1)GOTO2
208     STEP=-STEP
209     R3=R1
210     BQ3=BQ1
211     DO 1 I=1,7
212     ZZ=P(I,1)
213     P(I,1)=P(I,3)
214     1 P(I,3)=ZZ
215     C*****SEARCH FOR LOWEST MAGNETIC FIELD STRENGTH
216     2 IF(BQ1.LT.BEQU) THEN
217     BEQU=BQ1
218     IEQU=1
219     ENDIF
220     IF(BQ2.LT.BEQU) THEN
221     BEQU=BQ2
222     IEQU=2
223     ENDIF
224     IF(BQ3.LT.BEQU) THEN
225     BEQU=BQ3
226     IEQU=3
227     ENDIF
228     C*****INITIALIZATION OF INTEGRATION LOOPS
229     STEP12=STEP/12.
230     STEP2=STEP+STEP
231     STEQ=SIGN(STEQ,STEP)
232     FI=0.
233     ICODE=1
234     ORADIK=0.
235     OTERM=0.
236     STP=R2*STEQ
237     Z=P(3,2)+STP
238     STP=STP/0.75
239     P(8,1)=STEP2*(P(1,1)*P(4,1)+P(2,1)*P(5,1))
240     P(8,2)=STEP2*(P(1,2)*P(4,2)+P(2,2)*P(5,2))
241     C*****MAIN LOOP (FIELD LINE TRACING)
242     DO 3 N=3,3333
243     C*****CORRECTOR (FIELD LINE TRACING)
244     P(1,N)=P(1,N-1)+STEP12*(5.*P(4,N)+8.*P(4,N-1)-P(4,N-2))
245     P(2,N)=P(2,N-1)+STEP12*(5.*P(5,N)+8.*P(5,N-1)-P(5,N-2))
246     C*****PREPARE EXPANSION COEFFICIENTS FOR INTERPOLATION
247     C*****OF SLOWLY VARYING QUANTITIES
248     P(8,N)=STEP2*(P(1,N)*P(4,N)+P(2,N)*P(5,N))
249     C0=P(1,N-1)**2+P(2,N-1)**2
250     C1=P(8,N-1)
251     C2=(P(8,N)-P(8,N-2))*0.25
252     C3=(P(8,N)+P(8,N-2)-C1-C1)/6.0
253     D0=P(6,N-1)
254     D1=(P(6,N)-P(6,N-2))*0.5
255     D2=(P(6,N)+P(6,N-2)-D0-D0)*0.5
256     E0=P(7,N-1)
257     E1=(P(7,N)-P(7,N-2))*0.5
258     E2=(P(7,N)+P(7,N-2)-E0-E0)*0.5
259     C*****INNER LOOP (FOR QUADRATURE)
260     4 T=(Z-P(3,N-1))/STEP
261     IF(T.GT.1.)GOTO5
262     HLI=0.5*(((C3*T+C2)*T+C1)*T+C0)
263     ZQ=Z*Z
264     R=HLI+SQRT(HLI*HLI+ZQ)
265     IF(R.LE.RMIN)GOTO30
266     RQ=R*R
267     FF=SQRT(1.+3.*ZQ/RQ)
268     RADIK=B0-((D2*T+D1)*T+D0)*R*RQ*FF
269     IF(R-RMAX)44,44,45
270     45 ICODE=2
271     RADIK=RADIK-12.*(R-RMAX)**2
272     44 IF(RADIK+RADIK.LE.ORADIK) GOTO 10
273     TERM=SQRT(RADIK)*FF*((E2*T+E1)*T+E0)/(RQ+ZQ)
274     FI=FI+STP*(OTERM+TERM)
275     ORADIK=RADIK
276     OTERM=TERM
277     STP=R*STEQ
278     Z=Z+STP
279     GOTO4
280     C*****PREDICTOR (FIELD LINE TRACING)
281     5 P(1,N+1)=P(1,N)+STEP12*(23.*P(4,N)-16.*P(4,N-1)+5.*P(4,N-2))
282     P(2,N+1)=P(2,N)+STEP12*(23.*P(5,N)-16.*P(5,N-1)+5.*P(5,N-2))
283     P(3,N+1)=P(3,N)+STEP
284     CALL STOER(P(1,N+1),BQ3,R3)
285     C*****SEARCH FOR LOWEST MAGNETIC FIELD STRENGTH
286     IF(BQ3.LT.BEQU) THEN
287     IEQU=N+1
288     BEQU=BQ3
289     ENDIF
290     3 CONTINUE
291     10 IF(IEQU.lt.2) IEQU=2
292     SP(1)=P(1,IEQU-1)
293     SP(2)=P(2,IEQU-1)
294     SP(3)=P(3,IEQU-1)
295     IF(ORADIK.LT.1E-15)GOTO11
296     FI=FI+STP/0.75*OTERM*ORADIK/(ORADIK-RADIK)
297     C
298     C-- The minimal allowable value of FI was changed from 1E-15 to 1E-12,
299     C-- because 1E-38 is the minimal allowable arg. for ALOG in our envir.
300     C-- D. Bilitza, Nov 87.
301     C
302     11 FI=0.5*ABS(FI)/SQRT(B0)+1E-12
303     C*****COMPUTE L FROM B AND I. SAME AS CARMEL IN INVAR.
304     C
305     C-- Correct dipole moment is used here. D. Bilitza, Nov 87.
306     C
307     DIMOB0=DIMO/B0
308     arg1=alog(FI)
309     arg2=alog(DIMOB0)
310     c arg = FI*FI*FI/DIMOB0
311     c if(abs(arg).gt.88.0) arg=88.0
312     XX=3*arg1-arg2
313     IF(XX.GT.23.0) GOTO 776
314     IF(XX.GT.11.7) GOTO 775
315     IF(XX.GT.+3.0) GOTO 774
316     IF(XX.GT.-3.0) GOTO 773
317     IF(XX.GT.-22.) GOTO 772
318     771 GG=3.33338E-1*XX+3.0062102E-1
319     GOTO777
320     772 GG=((((((((-8.1537735E-14*XX+8.3232531E-13)*XX+1.0066362E-9)*XX+
321     18.1048663E-8)*XX+3.2916354E-6)*XX+8.2711096E-5)*XX+1.3714667E-3)*
322     2XX+1.5017245E-2)*XX+4.3432642E-1)*XX+6.2337691E-1
323     GOTO777
324     773 GG=((((((((2.6047023E-10*XX+2.3028767E-9)*XX-2.1997983E-8)*XX-
325     15.3977642E-7)*XX-3.3408822E-6)*XX+3.8379917E-5)*XX+1.1784234E-3)*
326     2XX+1.4492441E-2)*XX+4.3352788E-1)*XX+6.228644E-1
327     GOTO777
328     774 GG=((((((((6.3271665E-10*XX-3.958306E-8)*XX+9.9766148E-07)*XX-
329     11.2531932E-5)*XX+7.9451313E-5)*XX-3.2077032E-4)*XX+2.1680398E-3)*
330     2XX+1.2817956E-2)*XX+4.3510529E-1)*XX+6.222355E-1
331     GOTO777
332     775 GG=(((((2.8212095E-8*XX-3.8049276E-6)*XX+2.170224E-4)*XX-6.7310339
333     1E-3)*XX+1.2038224E-1)*XX-1.8461796E-1)*XX+2.0007187E0
334     GOTO777
335     776 GG=XX-3.0460681E0
336     777 FL=EXP(ALOG((1.+EXP(GG))*DIMOB0)/3.0)
337     RETURN
338     C*****APPROXIMATION FOR HIGH VALUES OF L.
339     30 ICODE=3
340     T=-P(3,N-1)/STEP
341     FL=1./(ABS(((C3*T+C2)*T+C1)*T+C0)+1E-15)
342     RETURN
343     END
344     C
345     C
346     SUBROUTINE STOER(P,BQ,R)
347     C*******************************************************************
348     C* SUBROUTINE USED FOR FIELD LINE TRACING IN SHELLG *
349     C* CALLS ENTRY POINT FELDI IN GEOMAGNETIC FIELD SUBROUTINE FELDG *
350     C*******************************************************************
351     DIMENSION P(7),U(3,3)
352     COMMON XI(3),H(144)
353     C*****XM,YM,ZM ARE GEOMAGNETIC CARTESIAN INVERSE CO-ORDINATES
354     ZM=P(3)
355     FLI=P(1)*P(1)+P(2)*P(2)+1E-15
356     R=0.5*(FLI+SQRT(FLI*FLI+(ZM+ZM)**2))
357     RQ=R*R
358     WR=SQRT(R)
359     XM=P(1)*WR
360     YM=P(2)*WR
361     C*****TRANSFORM TO GEOGRAPHIC CO-ORDINATE SYSTEM
362     DATA U/ +0.3511737,-0.9148385,-0.1993679,
363     A +0.9335804,+0.3583680,+0.0000000,
364     B +0.0714471,-0.1861260,+0.9799247/
365     XI(1)=XM*U(1,1)+YM*U(1,2)+ZM*U(1,3)
366     XI(2)=XM*U(2,1)+YM*U(2,2)+ZM*U(2,3)
367     XI(3)=XM*U(3,1) +ZM*U(3,3)
368     C*****COMPUTE DERIVATIVES
369     c Changed from CALL FELDI(XI,H); XI, H are in COMMON block; results
370     c are the same; dkb Feb 1998
371     CALL FELDI
372     Q=H(1)/RQ
373     DX=H(3)+H(3)+Q*XI(1)
374     DY=H(4)+H(4)+Q*XI(2)
375     DZ=H(2)+H(2)+Q*XI(3)
376     C*****TRANSFORM BACK TO GEOMAGNETIC CO-ORDINATE SYSTEM
377     DXM=U(1,1)*DX+U(2,1)*DY+U(3,1)*DZ
378     DYM=U(1,2)*DX+U(2,2)*DY
379     DZM=U(1,3)*DX+U(2,3)*DY+U(3,3)*DZ
380     DR=(XM*DXM+YM*DYM+ZM*DZM)/R
381     C*****FORM SLOWLY VARYING EXPRESSIONS
382     P(4)=(WR*DXM-0.5*P(1)*DR)/(R*DZM)
383     P(5)=(WR*DYM-0.5*P(2)*DR)/(R*DZM)
384     DSQ=RQ*(DXM*DXM+DYM*DYM+DZM*DZM)
385     BQ=DSQ*RQ*RQ
386     P(6)=SQRT(DSQ/(RQ+3.*ZM*ZM))
387     P(7)=P(6)*(RQ+ZM*ZM)/(RQ*DZM)
388     RETURN
389     END
390     C
391     C
392     SUBROUTINE FELDG(GLAT,GLON,ALT,BNORTH,BEAST,BDOWN,BABS)
393     C-------------------------------------------------------------------
394     C CALCULATES EARTH MAGNETIC FIELD FROM SPHERICAL HARMONICS MODEL
395     C REF: G. KLUGE, EUROPEAN SPACE OPERATIONS CENTRE, INTERNAL NOTE 61,
396     C 1970.
397     C--------------------------------------------------------------------
398     C CHANGES (D. BILITZA, NOV 87):
399     C - FIELD COEFFICIENTS IN BINARY DATA FILES INSTEAD OF BLOCK DATA
400     C - CALCULATES DIPOL MOMENT
401     C--------------------------------------------------------------------
402     C INPUT: ENTRY POINT FELDG
403     C GLAT GEODETIC LATITUDE IN DEGREES (NORTH)
404     C GLON GEODETIC LONGITUDE IN DEGREES (EAST)
405     C ALT ALTITUDE IN KM ABOVE SEA LEVEL
406     C
407     C ENTRY POINT FELDC
408     C V(3) CARTESIAN COORDINATES IN EARTH RADII (6371.2 KM)
409     C X-AXIS POINTING TO EQUATOR AT 0 LONGITUDE
410     C Y-AXIS POINTING TO EQUATOR AT 90 LONG.
411     C Z-AXIS POINTING TO NORTH POLE
412     C
413     C COMMON BLANK AND ENTRY POINT FELDI ARE NEEDED WHEN USED
414     C IN CONNECTION WITH L-CALCULATION PROGRAM SHELLG.
415     C
416     C COMMON /MODEL/ AND /GENER/
417     C UMR = ATAN(1.0)*4./180. <DEGREE>*UMR=<RADIANT>
418     C ERA EARTH RADIUS FOR NORMALIZATION OF CARTESIAN
419     C COORDINATES (6371.2 KM)
420     C AQUAD, BQUAD SQUARE OF MAJOR AND MINOR HALF AXIS FOR
421     C EARTH ELLIPSOID AS RECOMMENDED BY INTERNATIONAL
422     C ASTRONOMICAL UNION (6378.160, 6356.775 KM).
423     C NMAX MAXIMUM ORDER OF SPHERICAL HARMONICS
424     C TIME YEAR (DECIMAL: 1973.5) FOR WHICH MAGNETIC
425     C FIELD IS TO BE CALCULATED
426     C G(M) NORMALIZED FIELD COEFFICIENTS (SEE FELDCOF)
427     C M=NMAX*(NMAX+2)
428     C------------------------------------------------------------------------
429     C OUTPUT: BABS MAGNETIC FIELD STRENGTH IN GAUSS
430     C BNORTH, BEAST, BDOWN COMPONENTS OF THE FIELD WITH RESPECT
431     C TO THE LOCAL GEODETIC COORDINATE SYSTEM, WITH AXIS
432     C POINTING IN THE TANGENTIAL PLANE TO THE NORTH, EAST
433     C AND DOWNWARD.
434     C-----------------------------------------------------------------------
435     DIMENSION V(3),B(3)
436     CHARACTER*12 NAME
437     COMMON XI(3),H(144)
438     COMMON/MODEL/ NAME,NMAX,TIME,G(144)
439     COMMON/GENER/ UMR,ERA,AQUAD,BQUAD
440     C
441     C-- IS RECORDS ENTRY POINT
442     C
443     C*****ENTRY POINT FELDG TO BE USED WITH GEODETIC CO-ORDINATES
444     IS=1
445     RLAT=GLAT*UMR
446     CT=SIN(RLAT)
447     ST=COS(RLAT)
448     D=SQRT(AQUAD-(AQUAD-BQUAD)*CT*CT)
449     RLON=GLON*UMR
450     CP=COS(RLON)
451     SP=SIN(RLON)
452     ZZZ=(ALT+BQUAD/D)*CT/ERA
453     RHO=(ALT+AQUAD/D)*ST/ERA
454     XXX=RHO*CP
455     YYY=RHO*SP
456     GOTO10
457     C
458     C*****ENTRY POINT FELDC TO BE USED WITH CARTESIAN CO-ORDINATES
459     ENTRY FELDC(V,B)
460     IS=2
461     XXX=V(1)
462     YYY=V(2)
463     ZZZ=V(3)
464     10 RQ=1./(XXX*XXX+YYY*YYY+ZZZ*ZZZ)
465     XI(1)=XXX*RQ
466     XI(2)=YYY*RQ
467     XI(3)=ZZZ*RQ
468     GOTO20
469     C
470     C*****ENTRY POINT FELDI USED FOR L COMPUTATION
471     ENTRY FELDI
472     IS=3
473     20 IHMAX=NMAX*NMAX+1
474     LAST=IHMAX+NMAX+NMAX
475     IMAX=NMAX+NMAX-1
476     DO 8 I=IHMAX,LAST
477     8 H(I)=G(I)
478     DO 6 K=1,3,2
479     I=IMAX
480     IH=IHMAX
481     1 IL=IH-I
482     F=2./FLOAT(I-K+2)
483     X=XI(1)*F
484     Y=XI(2)*F
485     Z=XI(3)*(F+F)
486     I=I-2
487     IF(I-1)5,4,2
488     2 DO 3 M=3,I,2
489     H(IL+M+1)=G(IL+M+1)+Z*H(IH+M+1)+X*(H(IH+M+3)-H(IH+M-1))
490     A -Y*(H(IH+M+2)+H(IH+M-2))
491     3 H(IL+M)=G(IL+M)+Z*H(IH+M)+X*(H(IH+M+2)-H(IH+M-2))
492     A +Y*(H(IH+M+3)+H(IH+M-1))
493     4 H(IL+2)=G(IL+2)+Z*H(IH+2)+X*H(IH+4)-Y*(H(IH+3)+H(IH))
494     H(IL+1)=G(IL+1)+Z*H(IH+1)+Y*H(IH+4)+X*(H(IH+3)-H(IH))
495     5 H(IL)=G(IL)+Z*H(IH)+2.*(X*H(IH+1)+Y*H(IH+2))
496     IH=IL
497     IF(I.GE.K)GOTO1
498     6 CONTINUE
499     IF(IS.EQ.3)RETURN
500     S=.5*H(1)+2.*(H(2)*XI(3)+H(3)*XI(1)+H(4)*XI(2))
501     T=(RQ+RQ)*SQRT(RQ)
502     BXXX=T*(H(3)-S*XXX)
503     BYYY=T*(H(4)-S*YYY)
504     BZZZ=T*(H(2)-S*ZZZ)
505     IF(IS.EQ.2)GOTO7
506     BABS=SQRT(BXXX*BXXX+BYYY*BYYY+BZZZ*BZZZ)
507     BEAST=BYYY*CP-BXXX*SP
508     BRHO=BYYY*SP+BXXX*CP
509     BNORTH=BZZZ*ST-BRHO*CT
510     BDOWN=-BZZZ*CT-BRHO*ST
511     RETURN
512     7 B(1)=BXXX
513     B(2)=BYYY
514     B(3)=BZZZ
515     RETURN
516     END
517     C
518     C
519     SUBROUTINE FELDCOF(YEAR,DIMO)
520     C------------------------------------------------------------------------
521     C DETERMINES COEFFICIENTS AND DIPOL MOMENT FROM IGRF MODELS
522     C
523     C INPUT: YEAR DECIMAL YEAR FOR WHICH GEOMAGNETIC FIELD IS TO
524     C BE CALCULATED (e.g.:1995.5 for day 185 of 1995)
525     C OUTPUT: DIMO GEOMAGNETIC DIPOL MOMENT IN GAUSS (NORMALIZED
526     C TO EARTH'S RADIUS) AT THE TIME (YEAR)
527     C D. BILITZA, NSSDC, GSFC, CODE 633, GREENBELT, MD 20771,
528     C (301)286-9536 NOV 1987.
529     C -corrected for 2000 update - dkb- 5/31/2000
530     C ### updated to IGRF-2000 version -dkb- 5/31/2000
531     C ### updated to IGRF-2005 version -dkb- 3/24/2000
532     C-----------------------------------------------------------------------
533     CHARACTER*12 FILMOD, FIL1, FIL2
534     C ### FILMOD, DTEMOD arrays +1
535     DIMENSION GH1(144),GH2(120),GHA(144),FILMOD(14),DTEMOD(14)
536     DOUBLE PRECISION X,F0,F
537     COMMON/MODEL/ FIL1,NMAX,TIME,GH1
538     COMMON/GENER/ UMR,ERAD,AQUAD,BQUAD
539     C ### changed to conform with IGRF 45-95, also FILMOD, DTEMOD arrays +1
540     DATA FILMOD /'dgrf45.dat', 'dgrf50.dat',
541     1 'dgrf55.dat', 'dgrf60.dat', 'dgrf65.dat',
542     2 'dgrf70.dat', 'dgrf75.dat', 'dgrf80.dat',
543     3 'dgrf85.dat', 'dgrf90.dat', 'dgrf95.dat',
544     4 'dgrf00.dat','igrf05.dat','igrf05s.dat'/
545     DATA DTEMOD / 1945., 1950., 1955., 1960., 1965., 1970.,
546     1 1975., 1980., 1985., 1990., 1995., 2000.,2005.,2010./
547     C
548     C ### numye is number of 5-year priods represented by IGRF
549     C
550     NUMYE=13
551     C
552     C IS=0 FOR SCHMIDT NORMALIZATION IS=1 GAUSS NORMALIZATION
553     C IU IS INPUT UNIT NUMBER FOR IGRF COEFFICIENT SETS
554     C
555     IU = 10
556     IS = 0
557     C-- DETERMINE IGRF-YEARS FOR INPUT-YEAR
558     TIME = YEAR
559     IYEA = INT(YEAR/5.)*5
560     L = (IYEA - 1945)/5 + 1
561     IF(L.LT.1) L=1
562     IF(L.GT.NUMYE) L=NUMYE
563     DTE1 = DTEMOD(L)
564     FIL1 = FILMOD(L)
565     DTE2 = DTEMOD(L+1)
566     FIL2 = FILMOD(L+1)
567     C-- GET IGRF COEFFICIENTS FOR THE BOUNDARY YEARS
568     CALL GETSHC (IU, FIL1, NMAX1, ERAD, GH1, IER)
569     IF (IER .NE. 0) STOP
570     CALL GETSHC (IU, FIL2, NMAX2, ERAD, GH2, IER)
571     IF (IER .NE. 0) STOP
572     C-- DETERMINE IGRF COEFFICIENTS FOR YEAR
573     IF (L .LE. NUMYE-1) THEN
574     CALL INTERSHC (YEAR, DTE1, NMAX1, GH1, DTE2,
575     1 NMAX2, GH2, NMAX, GHA)
576     ELSE
577     CALL EXTRASHC (YEAR, DTE1, NMAX1, GH1, NMAX2,
578     1 GH2, NMAX, GHA)
579     ENDIF
580     C-- DETERMINE MAGNETIC DIPOL MOMENT AND COEFFIECIENTS G
581     F0=0.D0
582     DO 1234 J=1,3
583     F = GHA(J) * 1.D-5
584     F0 = F0 + F * F
585     1234 CONTINUE
586     DIMO = DSQRT(F0)
587    
588     GH1(1) = 0.0
589     I=2
590     F0=1.D-5
591     IF(IS.EQ.0) F0=-F0
592     SQRT2=SQRT(2.)
593    
594     DO 9 N=1,NMAX
595     X = N
596     F0 = F0 * X * X / (4.D0 * X - 2.D0)
597     IF(IS.EQ.0) F0 = F0 * (2.D0 * X - 1.D0) / X
598     F = F0 * 0.5D0
599     IF(IS.EQ.0) F = F * SQRT2
600     GH1(I) = GHA(I-1) * F0
601     I = I+1
602     DO 9 M=1,N
603     F = F * (X + M) / (X - M + 1.D0)
604     IF(IS.EQ.0) F = F * DSQRT((X - M + 1.D0) / (X + M))
605     GH1(I) = GHA(I-1) * F
606     GH1(I+1) = GHA(I) * F
607     I=I+2
608     9 CONTINUE
609     RETURN
610     END
611     C
612     C
613     SUBROUTINE GETSHC (IU, FSPEC, NMAX, ERAD, GH, IER)
614    
615     C ===============================================================
616     C
617     C Version 1.01
618     C
619     C Reads spherical harmonic coefficients from the specified
620     C file into an array.
621     C
622     C Input:
623     C IU - Logical unit number
624     C FSPEC - File specification
625     C
626     C Output:
627     C NMAX - Maximum degree and order of model
628     C ERAD - Earth's radius associated with the spherical
629     C harmonic coefficients, in the same units as
630     C elevation
631     C GH - Schmidt quasi-normal internal spherical
632     C harmonic coefficients
633     C IER - Error number: = 0, no error
634     C = -2, records out of order
635     C = FORTRAN run-time error number
636     C
637     C A. Zunde
638     C USGS, MS 964, Box 25046 Federal Center, Denver, CO 80225
639     C
640     C ===============================================================
641    
642     CHARACTER FSPEC*(*)
643     DIMENSION GH(*)
644    
645     C ---------------------------------------------------------------
646     C Open coefficient file. Read past first header record.
647     C Read degree and order of model and Earth's radius.
648     C ---------------------------------------------------------------
649     OPEN (IU, FILE=FSPEC, STATUS='OLD', IOSTAT=IER, ERR=999)
650     READ (IU, *, IOSTAT=IER, ERR=999)
651     READ (IU, *, IOSTAT=IER, ERR=999) NMAX, ERAD
652     C ---------------------------------------------------------------
653     C Read the coefficient file, arranged as follows:
654     C
655     C N M G H
656     C ----------------------
657     C / 1 0 GH(1) -
658     C / 1 1 GH(2) GH(3)
659     C / 2 0 GH(4) -
660     C / 2 1 GH(5) GH(6)
661     C NMAX*(NMAX+3)/2 / 2 2 GH(7) GH(8)
662     C records \ 3 0 GH(9) -
663     C \ . . . .
664     C \ . . . .
665     C NMAX*(NMAX+2) \ . . . .
666     C elements in GH \ NMAX NMAX . .
667     C
668     C N and M are, respectively, the degree and order of the
669     C coefficient.
670     C ---------------------------------------------------------------
671    
672     I = 0
673     DO 2211 NN = 1, NMAX
674     DO 2233 MM = 0, NN
675     READ (IU, *, IOSTAT=IER, ERR=999) N, M, G, H
676     IF (NN .NE. N .OR. MM .NE. M) THEN
677     IER = -2
678     GOTO 999
679     ENDIF
680     I = I + 1
681     GH(I) = G
682     IF (M .NE. 0) THEN
683     I = I + 1
684     GH(I) = H
685     ENDIF
686     2233 CONTINUE
687     2211 CONTINUE
688    
689     999 CLOSE (IU)
690    
691     RETURN
692     END
693     C
694     C
695     SUBROUTINE INTERSHC (DATE, DTE1, NMAX1, GH1, DTE2,
696     1 NMAX2, GH2, NMAX, GH)
697    
698     C ===============================================================
699     C
700     C Version 1.01
701     C
702     C Interpolates linearly, in time, between two spherical
703     C harmonic models.
704     C
705     C Input:
706     C DATE - Date of resulting model (in decimal year)
707     C DTE1 - Date of earlier model
708     C NMAX1 - Maximum degree and order of earlier model
709     C GH1 - Schmidt quasi-normal internal spherical
710     C harmonic coefficients of earlier model
711     C DTE2 - Date of later model
712     C NMAX2 - Maximum degree and order of later model
713     C GH2 - Schmidt quasi-normal internal spherical
714     C harmonic coefficients of later model
715     C
716     C Output:
717     C GH - Coefficients of resulting model
718     C NMAX - Maximum degree and order of resulting model
719     C
720     C A. Zunde
721     C USGS, MS 964, Box 25046 Federal Center, Denver, CO 80225
722     C
723     C ===============================================================
724    
725     DIMENSION GH1(*), GH2(*), GH(*)
726    
727     C ---------------------------------------------------------------
728     C The coefficients (GH) of the resulting model, at date
729     C DATE, are computed by linearly interpolating between the
730     C coefficients of the earlier model (GH1), at date DTE1,
731     C and those of the later model (GH2), at date DTE2. If one
732     C model is smaller than the other, the interpolation is
733     C performed with the missing coefficients assumed to be 0.
734     C ---------------------------------------------------------------
735    
736     FACTOR = (DATE - DTE1) / (DTE2 - DTE1)
737    
738     IF (NMAX1 .EQ. NMAX2) THEN
739     K = NMAX1 * (NMAX1 + 2)
740     NMAX = NMAX1
741     ELSE IF (NMAX1 .GT. NMAX2) THEN
742     K = NMAX2 * (NMAX2 + 2)
743     L = NMAX1 * (NMAX1 + 2)
744     DO 1122 I = K + 1, L
745     1122 GH(I) = GH1(I) + FACTOR * (-GH1(I))
746     NMAX = NMAX1
747     ELSE
748     K = NMAX1 * (NMAX1 + 2)
749     L = NMAX2 * (NMAX2 + 2)
750     DO 1133 I = K + 1, L
751     1133 GH(I) = FACTOR * GH2(I)
752     NMAX = NMAX2
753     ENDIF
754    
755     DO 1144 I = 1, K
756     1144 GH(I) = GH1(I) + FACTOR * (GH2(I) - GH1(I))
757    
758     RETURN
759     END
760     C
761     C
762     SUBROUTINE EXTRASHC (DATE, DTE1, NMAX1, GH1, NMAX2,
763     1 GH2, NMAX, GH)
764    
765     C ===============================================================
766     C
767     C Version 1.01
768     C
769     C Extrapolates linearly a spherical harmonic model with a
770     C rate-of-change model.
771     C
772     C Input:
773     C DATE - Date of resulting model (in decimal year)
774     C DTE1 - Date of base model
775     C NMAX1 - Maximum degree and order of base model
776     C GH1 - Schmidt quasi-normal internal spherical
777     C harmonic coefficients of base model
778     C NMAX2 - Maximum degree and order of rate-of-change
779     C model
780     C GH2 - Schmidt quasi-normal internal spherical
781     C harmonic coefficients of rate-of-change model
782     C
783     C Output:
784     C GH - Coefficients of resulting model
785     C NMAX - Maximum degree and order of resulting model
786     C
787     C A. Zunde
788     C USGS, MS 964, Box 25046 Federal Center, Denver, CO 80225
789     C
790     C ===============================================================
791    
792     DIMENSION GH1(*), GH2(*), GH(*)
793    
794     C ---------------------------------------------------------------
795     C The coefficients (GH) of the resulting model, at date
796     C DATE, are computed by linearly extrapolating the coef-
797     C ficients of the base model (GH1), at date DTE1, using
798     C those of the rate-of-change model (GH2), at date DTE2. If
799     C one model is smaller than the other, the extrapolation is
800     C performed with the missing coefficients assumed to be 0.
801     C ---------------------------------------------------------------
802    
803     FACTOR = (DATE - DTE1)
804    
805     IF (NMAX1 .EQ. NMAX2) THEN
806     K = NMAX1 * (NMAX1 + 2)
807     NMAX = NMAX1
808     ELSE IF (NMAX1 .GT. NMAX2) THEN
809     K = NMAX2 * (NMAX2 + 2)
810     L = NMAX1 * (NMAX1 + 2)
811     DO 1155 I = K + 1, L
812     1155 GH(I) = GH1(I)
813     NMAX = NMAX1
814     ELSE
815     K = NMAX1 * (NMAX1 + 2)
816     L = NMAX2 * (NMAX2 + 2)
817     DO 1166 I = K + 1, L
818     1166 GH(I) = FACTOR * GH2(I)
819     NMAX = NMAX2
820     ENDIF
821    
822     DO 1177 I = 1, K
823     1177 GH(I) = GH1(I) + FACTOR * GH2(I)
824    
825     RETURN
826     END
827     C
828     C
829     SUBROUTINE INITIZE
830     C----------------------------------------------------------------
831     C Initializes the parameters in COMMON/GENER/
832     C
833     C UMR = ATAN(1.0)*4./180. <DEGREE>*UMR=<RADIANT>
834     C ERA EARTH RADIUS FOR NORMALIZATION OF CARTESIAN
835     C COORDINATES (6371.2 KM)
836     C EREQU MAJOR HALF AXIS FOR EARTH ELLIPSOID (6378.160 KM)
837     C ERPOL MINOR HALF AXIS FOR EARTH ELLIPSOID (6356.775 KM)
838     C AQUAD SQUARE OF MAJOR HALF AXIS FOR EARTH ELLIPSOID
839     C BQUAD SQUARE OF MINOR HALF AXIS FOR EARTH ELLIPSOID
840     C
841     C ERA, EREQU and ERPOL as recommended by the INTERNATIONAL
842     C ASTRONOMICAL UNION .
843     C-----------------------------------------------------------------
844     COMMON/GENER/ UMR,ERA,AQUAD,BQUAD
845     ERA=6371.2
846     EREQU=6378.16
847     ERPOL=6356.775
848     AQUAD=EREQU*EREQU
849     BQUAD=ERPOL*ERPOL
850     UMR=ATAN(1.0)*4./180.
851     RETURN
852     END

  ViewVC Help
Powered by ViewVC 1.1.23