/[PAMELA software]/yodaUtility/igrf/igrf_sub.for
ViewVC logotype

Contents of /yodaUtility/igrf/igrf_sub.for

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.1 - (show annotations) (download)
Sat Jun 10 06:33:31 2006 UTC (18 years, 7 months ago) by kusanagi
Branch: MAIN
CVS Tags: yodaUtility2_0/00, yodaUtility2_2/00, yodaUtility2_1/00, HEAD
Software for geomagnetic field calculation. The validity time interval is 2000-2010.

1 subroutine igrf_sub(xlat,xlong,year,height,
2 & xl,icode,dip,dec)
3 c----------------------------------------------------------------
4 c INPUT:
5 c xlat geodatic latitude in degrees
6 c xlong geodatic longitude in degrees
7 c year decimal year (year+month/12.0-0.5 or year+day-of-year/365
8 c or 366 if leap year)
9 c height height in km
10 c OUTPUT:
11 c xl L value
12 c icode =1 L is correct; =2 L is not correct;
13 c =3 an approximation is used
14 c dip geomagnetic inclination in degrees
15 c dec geomagnetic declination in degress
16 c----------------------------------------------------------------
17
18 INTEGER EGNR,AGNR,OGNR
19 REAL LATI,LONGI
20 COMMON/GENER/ UMR,ERA,AQUAD,BQUAD
21 C
22 CALL INITIZE
23 ibbb=0
24 ALOG2=ALOG(2.)
25 ISTART=1
26 lati=xlat
27 longi=xlong
28 c
29 C----------------CALCULATE PROFILES-----------------------------------
30 c
31 CALL FELDCOF(YEAR,DIMO)
32 CALL FELDG(LATI,LONGI,HEIGHT,BNORTH,BEAST,BDOWN,BABS)
33 CALL SHELLG(LATI,LONGI,HEIGHT,DIMO,XL,ICODE,BAB1)
34 DIP=ASIN(BDOWN/BABS)/UMR
35 DEC=ASIN(BEAST/SQRT(BEAST*BEAST+BNORTH*BNORTH))/UMR
36 RETURN
37 END
38 c
39 c
40 C SHELLIG.FOR, Version 2.0, January 1992
41 C
42 C 11/01/91-DKB- SHELLG: lowest starting point for B0 search is 2
43 C 1/27/92-DKB- Adopted to IGRF-91 coeffcients model
44 C 2/05/92-DKB- Reduce variable-names: INTER(P)SHC,EXTRA(P)SHC,INITI(ALI)ZE
45 C 8/08/95-DKB- Updated to IGRF-45-95; new coeff. DGRF90, IGRF95, IGRF95S
46 C 5/31/00-DKB- Updated to IGRF-45-00; new coeff.: IGRF00, IGRF00s
47 C 3/24/05-DKB- Updated to IGRF-45-10; new coeff.: IGRF05, IGRF05s
48 C 4/25/05-DKB- CALL FELDI and DO 1111 I=1,7 [Alexey Petrov]
49 C
50 C*********************************************************************
51 C SUBROUTINES FINDB0, SHELLG, STOER, FELDG, FELDCOF, GETSHC, *
52 C INTERSHC, EXTRASHC, INITIZE *
53 C*********************************************************************
54 C*********************************************************************
55 C
56 C
57 SUBROUTINE FINDB0(STPS,BDEL,VALUE,BEQU,RR0)
58 C--------------------------------------------------------------------
59 C FINDS SMALLEST MAGNETIC FIELD STRENGTH ON FIELD LINE
60 C
61 C INPUT: STPS STEP SIZE FOR FIELD LINE TRACING
62 C COMMON/FIDB0/
63 C SP DIPOLE ORIENTED COORDINATES FORM SHELLG; P(1,*),
64 C P(2,*), P(3,*) CLOSEST TO MAGNETIC EQUATOR
65 C BDEL REQUIRED ACCURACY = [ B(LAST) - BEQU ] / BEQU
66 C B(LAST) IS FIELD STRENGTH BEFORE BEQU
67 C
68 C OUTPUT: VALUE =.FALSE., IF BEQU IS NOT MINIMAL VALUE ON FIELD LINE
69 C BEQU MAGNETIC FIELD STRENGTH AT MAGNETIC EQUATOR
70 C RR0 EQUATORIAL RADIUS NORMALIZED TO EARTH RADIUS
71 C BDEL FINAL ACHIEVED ACCURACY
72 C--------------------------------------------------------------------
73 DIMENSION P(8,4),SP(3)
74 LOGICAL VALUE
75 COMMON/FIDB0/ SP
76 C
77 STEP=STPS
78 IRUN=0
79 7777 IRUN=IRUN+1
80 IF(IRUN.GT.5) THEN
81 VALUE=.FALSE.
82 GOTO 8888
83 ENDIF
84 C*********************FIRST THREE POINTS
85 P(1,2)=SP(1)
86 P(2,2)=SP(2)
87 P(3,2)=SP(3)
88 STEP=-SIGN(STEP,P(3,2))
89 CALL STOER(P(1,2),BQ2,R2)
90 P(1,3)=P(1,2)+0.5*STEP*P(4,2)
91 P(2,3)=P(2,2)+0.5*STEP*P(5,2)
92 P(3,3)=P(3,2)+0.5*STEP
93 CALL STOER(P(1,3),BQ3,R3)
94 P(1,1)=P(1,2)-STEP*(2.*P(4,2)-P(4,3))
95 P(2,1)=P(2,2)-STEP*(2.*P(5,2)-P(5,3))
96 P(3,1)=P(3,2)-STEP
97 CALL STOER(P(1,1),BQ1,R1)
98 P(1,3)=P(1,2)+STEP*(20.*P(4,3)-3.*P(4,2)+P(4,1))/18.
99 P(2,3)=P(2,2)+STEP*(20.*P(5,3)-3.*P(5,2)+P(5,1))/18.
100 P(3,3)=P(3,2)+STEP
101 CALL STOER(P(1,3),BQ3,R3)
102 C******************INVERT SENSE IF REQUIRED
103 IF(BQ3.LE.BQ1) GOTO 2
104 STEP=-STEP
105 R3=R1
106 BQ3=BQ1
107 DO 1 I=1,5
108 ZZ=P(I,1)
109 P(I,1)=P(I,3)
110 1 P(I,3)=ZZ
111 C******************INITIALIZATION
112 2 STEP12=STEP/12.
113 VALUE=.TRUE.
114 BMIN=1.E4
115 BOLD=1.E4
116 C******************CORRECTOR (FIELD LINE TRACING)
117 N=0
118 5555 P(1,3)=P(1,2)+STEP12*(5.*P(4,3)+8.*P(4,2)-P(4,1))
119 N=N+1
120 P(2,3)=P(2,2)+STEP12*(5.*P(5,3)+8.*P(5,2)-P(5,1))
121 C******************PREDICTOR (FIELD LINE TRACING)
122 P(1,4)=P(1,3)+STEP12*(23.*P(4,3)-16.*P(4,2)+5.*P(4,1))
123 P(2,4)=P(2,3)+STEP12*(23.*P(5,3)-16.*P(5,2)+5.*P(5,1))
124 P(3,4)=P(3,3)+STEP
125 CALL STOER(P(1,4),BQ3,R3)
126 DO 1111 J=1,3
127 C DO 1111 I=1,8
128 DO 1111 I=1,7
129 1111 P(I,J)=P(I,J+1)
130 B=SQRT(BQ3)
131 IF(B.LT.BMIN) BMIN=B
132 IF(B.LE.BOLD) THEN
133 BOLD=B
134 ROLD=1./R3
135 SP(1)=P(1,4)
136 SP(2)=P(2,4)
137 SP(3)=P(3,4)
138 GOTO 5555
139 ENDIF
140 IF(BOLD.NE.BMIN) THEN
141 VALUE=.FALSE.
142 ENDIF
143 BDELTA=(B-BOLD)/BOLD
144 IF(BDELTA.GT.BDEL) THEN
145 STEP=STEP/10.
146 GOTO 7777
147 ENDIF
148 8888 RR0=ROLD
149 BEQU=BOLD
150 BDEL=BDELTA
151 RETURN
152 END
153 C
154 C
155 SUBROUTINE SHELLG(GLAT,GLON,ALT,DIMO,FL,ICODE,B0)
156 C--------------------------------------------------------------------
157 C CALCULATES L-VALUE FOR SPECIFIED GEODAETIC COORDINATES, ALTITUDE
158 C AND GEMAGNETIC FIELD MODEL.
159 C REF: G. KLUGE, EUROPEAN SPACE OPERATIONS CENTER, INTERNAL NOTE
160 C NO. 67, 1970.
161 C G. KLUGE, COMPUTER PHYSICS COMMUNICATIONS 3, 31-35, 1972
162 C--------------------------------------------------------------------
163 C CHANGES (D. BILITZA, NOV 87):
164 C - USING CORRECT DIPOL MOMENT I.E.,DIFFERENT COMMON/MODEL/
165 C - USING IGRF EARTH MAGNETIC FIELD MODELS FROM 1945 TO 1990
166 C--------------------------------------------------------------------
167 C INPUT: ENTRY POINT SHELLG
168 C GLAT GEODETIC LATITUDE IN DEGREES (NORTH)
169 C GLON GEODETIC LONGITUDE IN DEGREES (EAST)
170 C ALT ALTITUDE IN KM ABOVE SEA LEVEL
171 C
172 C ENTRY POINT SHELLC
173 C V(3) CARTESIAN COORDINATES IN EARTH RADII (6371.2 KM)
174 C X-AXIS POINTING TO EQUATOR AT 0 LONGITUDE
175 C Y-AXIS POINTING TO EQUATOR AT 90 LONG.
176 C Z-AXIS POINTING TO NORTH POLE
177 C
178 C DIMO DIPOL MOMENT IN GAUSS (NORMALIZED TO EARTH RADIUS)
179 C
180 C COMMON
181 C X(3) NOT USED
182 C H(144) FIELD MODEL COEFFICIENTS ADJUSTED FOR SHELLG
183 C-----------------------------------------------------------------------
184 C OUTPUT: FL L-VALUE
185 C ICODE =1 NORMAL COMPLETION
186 C =2 UNPHYSICAL CONJUGATE POINT (FL MEANINGLESS)
187 C =3 SHELL PARAMETER GREATER THAN LIMIT UP TO
188 C WHICH ACCURATE CALCULATION IS REQUIRED;
189 C APPROXIMATION IS USED.
190 C B0 MAGNETIC FIELD STRENGTH IN GAUSS
191 C-----------------------------------------------------------------------
192 DIMENSION V(3),U(3,3),P(8,100),SP(3)
193 COMMON X(3),H(144)
194 COMMON/FIDB0/ SP
195 COMMON/GENER/ UMR,ERA,AQUAD,BQUAD
196 C
197 C-- RMIN, RMAX ARE BOUNDARIES FOR IDENTIFICATION OF ICODE=2 AND 3
198 C-- STEP IS STEP SIZE FOR FIELD LINE TRACING
199 C-- STEQ IS STEP SIZE FOR INTEGRATION
200 C
201 DATA RMIN,RMAX /0.05,1.01/
202 DATA STEP,STEQ /0.20,0.03/
203 BEQU=1.E10
204 C*****ENTRY POINT SHELLG TO BE USED WITH GEODETIC CO-ORDINATES
205 RLAT=GLAT*UMR
206 CT=SIN(RLAT)
207 ST=COS(RLAT)
208 D=SQRT(AQUAD-(AQUAD-BQUAD)*CT*CT)
209 X(1)=(ALT+AQUAD/D)*ST/ERA
210 X(3)=(ALT+BQUAD/D)*CT/ERA
211 RLON=GLON*UMR
212 X(2)=X(1)*SIN(RLON)
213 X(1)=X(1)*COS(RLON)
214 GOTO9
215 ENTRY SHELLC(V,FL,B0)
216 C*****ENTRY POINT SHELLC TO BE USED WITH CARTESIAN CO-ORDINATES
217 X(1)=V(1)
218 X(2)=V(2)
219 X(3)=V(3)
220 C*****CONVERT TO DIPOL-ORIENTED CO-ORDINATES
221 DATA U/ +0.3511737,-0.9148385,-0.1993679,
222 A +0.9335804,+0.3583680,+0.0000000,
223 B +0.0714471,-0.1861260,+0.9799247/
224 9 RQ=1./(X(1)*X(1)+X(2)*X(2)+X(3)*X(3))
225 R3H=SQRT(RQ*SQRT(RQ))
226 P(1,2)=(X(1)*U(1,1)+X(2)*U(2,1)+X(3)*U(3,1))*R3H
227 P(2,2)=(X(1)*U(1,2)+X(2)*U(2,2) )*R3H
228 P(3,2)=(X(1)*U(1,3)+X(2)*U(2,3)+X(3)*U(3,3))*RQ
229 C*****FIRST THREE POINTS OF FIELD LINE
230 STEP=-SIGN(STEP,P(3,2))
231 CALL STOER(P(1,2),BQ2,R2)
232 B0=SQRT(BQ2)
233 P(1,3)=P(1,2)+0.5*STEP*P(4,2)
234 P(2,3)=P(2,2)+0.5*STEP*P(5,2)
235 P(3,3)=P(3,2)+0.5*STEP
236 CALL STOER(P(1,3),BQ3,R3)
237 P(1,1)=P(1,2)-STEP*(2.*P(4,2)-P(4,3))
238 P(2,1)=P(2,2)-STEP*(2.*P(5,2)-P(5,3))
239 P(3,1)=P(3,2)-STEP
240 CALL STOER(P(1,1),BQ1,R1)
241 P(1,3)=P(1,2)+STEP*(20.*P(4,3)-3.*P(4,2)+P(4,1))/18.
242 P(2,3)=P(2,2)+STEP*(20.*P(5,3)-3.*P(5,2)+P(5,1))/18.
243 P(3,3)=P(3,2)+STEP
244 CALL STOER(P(1,3),BQ3,R3)
245 C*****INVERT SENSE IF REQUIRED
246 IF(BQ3.LE.BQ1)GOTO2
247 STEP=-STEP
248 R3=R1
249 BQ3=BQ1
250 DO 1 I=1,7
251 ZZ=P(I,1)
252 P(I,1)=P(I,3)
253 1 P(I,3)=ZZ
254 C*****SEARCH FOR LOWEST MAGNETIC FIELD STRENGTH
255 2 IF(BQ1.LT.BEQU) THEN
256 BEQU=BQ1
257 IEQU=1
258 ENDIF
259 IF(BQ2.LT.BEQU) THEN
260 BEQU=BQ2
261 IEQU=2
262 ENDIF
263 IF(BQ3.LT.BEQU) THEN
264 BEQU=BQ3
265 IEQU=3
266 ENDIF
267 C*****INITIALIZATION OF INTEGRATION LOOPS
268 STEP12=STEP/12.
269 STEP2=STEP+STEP
270 STEQ=SIGN(STEQ,STEP)
271 FI=0.
272 ICODE=1
273 ORADIK=0.
274 OTERM=0.
275 STP=R2*STEQ
276 Z=P(3,2)+STP
277 STP=STP/0.75
278 P(8,1)=STEP2*(P(1,1)*P(4,1)+P(2,1)*P(5,1))
279 P(8,2)=STEP2*(P(1,2)*P(4,2)+P(2,2)*P(5,2))
280 C*****MAIN LOOP (FIELD LINE TRACING)
281 DO 3 N=3,3333
282 C*****CORRECTOR (FIELD LINE TRACING)
283 P(1,N)=P(1,N-1)+STEP12*(5.*P(4,N)+8.*P(4,N-1)-P(4,N-2))
284 P(2,N)=P(2,N-1)+STEP12*(5.*P(5,N)+8.*P(5,N-1)-P(5,N-2))
285 C*****PREPARE EXPANSION COEFFICIENTS FOR INTERPOLATION
286 C*****OF SLOWLY VARYING QUANTITIES
287 P(8,N)=STEP2*(P(1,N)*P(4,N)+P(2,N)*P(5,N))
288 C0=P(1,N-1)**2+P(2,N-1)**2
289 C1=P(8,N-1)
290 C2=(P(8,N)-P(8,N-2))*0.25
291 C3=(P(8,N)+P(8,N-2)-C1-C1)/6.0
292 D0=P(6,N-1)
293 D1=(P(6,N)-P(6,N-2))*0.5
294 D2=(P(6,N)+P(6,N-2)-D0-D0)*0.5
295 E0=P(7,N-1)
296 E1=(P(7,N)-P(7,N-2))*0.5
297 E2=(P(7,N)+P(7,N-2)-E0-E0)*0.5
298 C*****INNER LOOP (FOR QUADRATURE)
299 4 T=(Z-P(3,N-1))/STEP
300 IF(T.GT.1.)GOTO5
301 HLI=0.5*(((C3*T+C2)*T+C1)*T+C0)
302 ZQ=Z*Z
303 R=HLI+SQRT(HLI*HLI+ZQ)
304 IF(R.LE.RMIN)GOTO30
305 RQ=R*R
306 FF=SQRT(1.+3.*ZQ/RQ)
307 RADIK=B0-((D2*T+D1)*T+D0)*R*RQ*FF
308 IF(R-RMAX)44,44,45
309 45 ICODE=2
310 RADIK=RADIK-12.*(R-RMAX)**2
311 44 IF(RADIK+RADIK.LE.ORADIK) GOTO 10
312 TERM=SQRT(RADIK)*FF*((E2*T+E1)*T+E0)/(RQ+ZQ)
313 FI=FI+STP*(OTERM+TERM)
314 ORADIK=RADIK
315 OTERM=TERM
316 STP=R*STEQ
317 Z=Z+STP
318 GOTO4
319 C*****PREDICTOR (FIELD LINE TRACING)
320 5 P(1,N+1)=P(1,N)+STEP12*(23.*P(4,N)-16.*P(4,N-1)+5.*P(4,N-2))
321 P(2,N+1)=P(2,N)+STEP12*(23.*P(5,N)-16.*P(5,N-1)+5.*P(5,N-2))
322 P(3,N+1)=P(3,N)+STEP
323 CALL STOER(P(1,N+1),BQ3,R3)
324 C*****SEARCH FOR LOWEST MAGNETIC FIELD STRENGTH
325 IF(BQ3.LT.BEQU) THEN
326 IEQU=N+1
327 BEQU=BQ3
328 ENDIF
329 3 CONTINUE
330 10 IF(IEQU.lt.2) IEQU=2
331 SP(1)=P(1,IEQU-1)
332 SP(2)=P(2,IEQU-1)
333 SP(3)=P(3,IEQU-1)
334 IF(ORADIK.LT.1E-15)GOTO11
335 FI=FI+STP/0.75*OTERM*ORADIK/(ORADIK-RADIK)
336 C
337 C-- The minimal allowable value of FI was changed from 1E-15 to 1E-12,
338 C-- because 1E-38 is the minimal allowable arg. for ALOG in our envir.
339 C-- D. Bilitza, Nov 87.
340 C
341 11 FI=0.5*ABS(FI)/SQRT(B0)+1E-12
342 C
343 C*****COMPUTE L FROM B AND I. SAME AS CARMEL IN INVAR.
344 C
345 C-- Correct dipole moment is used here. D. Bilitza, Nov 87.
346 C
347 DIMOB0=DIMO/B0
348 arg1=alog(FI)
349 arg2=alog(DIMOB0)
350 c arg = FI*FI*FI/DIMOB0
351 c if(abs(arg).gt.88.0) arg=88.0
352 XX=3*arg1-arg2
353 IF(XX.GT.23.0) GOTO 776
354 IF(XX.GT.11.7) GOTO 775
355 IF(XX.GT.+3.0) GOTO 774
356 IF(XX.GT.-3.0) GOTO 773
357 IF(XX.GT.-22.) GOTO 772
358 771 GG=3.33338E-1*XX+3.0062102E-1
359 GOTO777
360 772 GG=((((((((-8.1537735E-14*XX+8.3232531E-13)*XX+1.0066362E-9)*XX+
361 18.1048663E-8)*XX+3.2916354E-6)*XX+8.2711096E-5)*XX+1.3714667E-3)*
362 2XX+1.5017245E-2)*XX+4.3432642E-1)*XX+6.2337691E-1
363 GOTO777
364 773 GG=((((((((2.6047023E-10*XX+2.3028767E-9)*XX-2.1997983E-8)*XX-
365 15.3977642E-7)*XX-3.3408822E-6)*XX+3.8379917E-5)*XX+1.1784234E-3)*
366 2XX+1.4492441E-2)*XX+4.3352788E-1)*XX+6.228644E-1
367 GOTO777
368 774 GG=((((((((6.3271665E-10*XX-3.958306E-8)*XX+9.9766148E-07)*XX-
369 11.2531932E-5)*XX+7.9451313E-5)*XX-3.2077032E-4)*XX+2.1680398E-3)*
370 2XX+1.2817956E-2)*XX+4.3510529E-1)*XX+6.222355E-1
371 GOTO777
372 775 GG=(((((2.8212095E-8*XX-3.8049276E-6)*XX+2.170224E-4)*XX-6.7310339
373 1E-3)*XX+1.2038224E-1)*XX-1.8461796E-1)*XX+2.0007187E0
374 GOTO777
375 776 GG=XX-3.0460681E0
376 777 FL=EXP(ALOG((1.+EXP(GG))*DIMOB0)/3.0)
377 RETURN
378 C*****APPROXIMATION FOR HIGH VALUES OF L.
379 30 ICODE=3
380 T=-P(3,N-1)/STEP
381 FL=1./(ABS(((C3*T+C2)*T+C1)*T+C0)+1E-15)
382 RETURN
383 END
384 C
385 C
386 SUBROUTINE STOER(P,BQ,R)
387 C*******************************************************************
388 C* SUBROUTINE USED FOR FIELD LINE TRACING IN SHELLG *
389 C* CALLS ENTRY POINT FELDI IN GEOMAGNETIC FIELD SUBROUTINE FELDG *
390 C*******************************************************************
391 DIMENSION P(7),U(3,3)
392 COMMON XI(3),H(144)
393 C*****XM,YM,ZM ARE GEOMAGNETIC CARTESIAN INVERSE CO-ORDINATES
394 ZM=P(3)
395 FLI=P(1)*P(1)+P(2)*P(2)+1E-15
396 R=0.5*(FLI+SQRT(FLI*FLI+(ZM+ZM)**2))
397 RQ=R*R
398 WR=SQRT(R)
399 XM=P(1)*WR
400 YM=P(2)*WR
401 C*****TRANSFORM TO GEOGRAPHIC CO-ORDINATE SYSTEM
402 DATA U/ +0.3511737,-0.9148385,-0.1993679,
403 A +0.9335804,+0.3583680,+0.0000000,
404 B +0.0714471,-0.1861260,+0.9799247/
405 XI(1)=XM*U(1,1)+YM*U(1,2)+ZM*U(1,3)
406 XI(2)=XM*U(2,1)+YM*U(2,2)+ZM*U(2,3)
407 XI(3)=XM*U(3,1) +ZM*U(3,3)
408 C*****COMPUTE DERIVATIVES
409 C CALL FELDI(XI,H)
410 CALL FELDI
411 Q=H(1)/RQ
412 DX=H(3)+H(3)+Q*XI(1)
413 DY=H(4)+H(4)+Q*XI(2)
414 DZ=H(2)+H(2)+Q*XI(3)
415 C*****TRANSFORM BACK TO GEOMAGNETIC CO-ORDINATE SYSTEM
416 DXM=U(1,1)*DX+U(2,1)*DY+U(3,1)*DZ
417 DYM=U(1,2)*DX+U(2,2)*DY
418 DZM=U(1,3)*DX+U(2,3)*DY+U(3,3)*DZ
419 DR=(XM*DXM+YM*DYM+ZM*DZM)/R
420 C*****FORM SLOWLY VARYING EXPRESSIONS
421 P(4)=(WR*DXM-0.5*P(1)*DR)/(R*DZM)
422 P(5)=(WR*DYM-0.5*P(2)*DR)/(R*DZM)
423 DSQ=RQ*(DXM*DXM+DYM*DYM+DZM*DZM)
424 BQ=DSQ*RQ*RQ
425 P(6)=SQRT(DSQ/(RQ+3.*ZM*ZM))
426 P(7)=P(6)*(RQ+ZM*ZM)/(RQ*DZM)
427 RETURN
428 END
429 C
430 C
431 SUBROUTINE FELDG(GLAT,GLON,ALT,BNORTH,BEAST,BDOWN,BABS)
432 C-------------------------------------------------------------------
433 C CALCULATES EARTH MAGNETIC FIELD FROM SPHERICAL HARMONICS MODEL
434 C REF: G. KLUGE, EUROPEAN SPACE OPERATIONS CENTRE, INTERNAL NOTE 61,
435 C 1970.
436 C--------------------------------------------------------------------
437 C CHANGES (D. BILITZA, NOV 87):
438 C - FIELD COEFFICIENTS IN BINARY DATA FILES INSTEAD OF BLOCK DATA
439 C - CALCULATES DIPOL MOMENT
440 C--------------------------------------------------------------------
441 C INPUT: ENTRY POINT FELDG
442 C GLAT GEODETIC LATITUDE IN DEGREES (NORTH)
443 C GLON GEODETIC LONGITUDE IN DEGREES (EAST)
444 C ALT ALTITUDE IN KM ABOVE SEA LEVEL
445 C
446 C ENTRY POINT FELDC
447 C V(3) CARTESIAN COORDINATES IN EARTH RADII (6371.2 KM)
448 C X-AXIS POINTING TO EQUATOR AT 0 LONGITUDE
449 C Y-AXIS POINTING TO EQUATOR AT 90 LONG.
450 C Z-AXIS POINTING TO NORTH POLE
451 C
452 C COMMON BLANK AND ENTRY POINT FELDI ARE NEEDED WHEN USED
453 C IN CONNECTION WITH L-CALCULATION PROGRAM SHELLG.
454 C
455 C COMMON /MODEL/ AND /GENER/
456 C UMR = ATAN(1.0)*4./180. <DEGREE>*UMR=<RADIANT>
457 C ERA EARTH RADIUS FOR NORMALIZATION OF CARTESIAN
458 C COORDINATES (6371.2 KM)
459 C AQUAD, BQUAD SQUARE OF MAJOR AND MINOR HALF AXIS FOR
460 C EARTH ELLIPSOID AS RECOMMENDED BY INTERNATIONAL
461 C ASTRONOMICAL UNION (6378.160, 6356.775 KM).
462 C NMAX MAXIMUM ORDER OF SPHERICAL HARMONICS
463 C TIME YEAR (DECIMAL: 1973.5) FOR WHICH MAGNETIC
464 C FIELD IS TO BE CALCULATED
465 C G(M) NORMALIZED FIELD COEFFICIENTS (SEE FELDCOF)
466 C M=NMAX*(NMAX+2)
467 C------------------------------------------------------------------------
468 C OUTPUT: BABS MAGNETIC FIELD STRENGTH IN GAUSS
469 C BNORTH, BEAST, BDOWN COMPONENTS OF THE FIELD WITH RESPECT
470 C TO THE LOCAL GEODETIC COORDINATE SYSTEM, WITH AXIS
471 C POINTING IN THE TANGENTIAL PLANE TO THE NORTH, EAST
472 C AND DOWNWARD.
473 C-----------------------------------------------------------------------
474 DIMENSION V(3),B(3)
475 CHARACTER*12 NAME
476 COMMON XI(3),H(144)
477 COMMON/MODEL/ NAME,NMAX,TIME,G(144)
478 COMMON/GENER/ UMR,ERA,AQUAD,BQUAD
479 C
480 C-- IS RECORDS ENTRY POINT
481 C
482 C*****ENTRY POINT FELDG TO BE USED WITH GEODETIC CO-ORDINATES
483 IS=1
484 RLAT=GLAT*UMR
485 CT=SIN(RLAT)
486 ST=COS(RLAT)
487 D=SQRT(AQUAD-(AQUAD-BQUAD)*CT*CT)
488 RLON=GLON*UMR
489 CP=COS(RLON)
490 SP=SIN(RLON)
491 ZZZ=(ALT+BQUAD/D)*CT/ERA
492 RHO=(ALT+AQUAD/D)*ST/ERA
493 XXX=RHO*CP
494 YYY=RHO*SP
495 GOTO10
496 ENTRY FELDC(V,B)
497 C*****ENTRY POINT FELDC TO BE USED WITH CARTESIAN CO-ORDINATES
498 IS=2
499 XXX=V(1)
500 YYY=V(2)
501 ZZZ=V(3)
502 10 RQ=1./(XXX*XXX+YYY*YYY+ZZZ*ZZZ)
503 XI(1)=XXX*RQ
504 XI(2)=YYY*RQ
505 XI(3)=ZZZ*RQ
506 GOTO20
507 ENTRY FELDI
508 C*****ENTRY POINT FELDI USED FOR L COMPUTATION
509 IS=3
510 20 IHMAX=NMAX*NMAX+1
511 LAST=IHMAX+NMAX+NMAX
512 IMAX=NMAX+NMAX-1
513 DO 8 I=IHMAX,LAST
514 8 H(I)=G(I)
515 DO 6 K=1,3,2
516 I=IMAX
517 IH=IHMAX
518 1 IL=IH-I
519 F=2./FLOAT(I-K+2)
520 X=XI(1)*F
521 Y=XI(2)*F
522 Z=XI(3)*(F+F)
523 I=I-2
524 IF(I-1)5,4,2
525 2 DO 3 M=3,I,2
526 H(IL+M+1)=G(IL+M+1)+Z*H(IH+M+1)+X*(H(IH+M+3)-H(IH+M-1))
527 A -Y*(H(IH+M+2)+H(IH+M-2))
528 3 H(IL+M)=G(IL+M)+Z*H(IH+M)+X*(H(IH+M+2)-H(IH+M-2))
529 A +Y*(H(IH+M+3)+H(IH+M-1))
530 4 H(IL+2)=G(IL+2)+Z*H(IH+2)+X*H(IH+4)-Y*(H(IH+3)+H(IH))
531 H(IL+1)=G(IL+1)+Z*H(IH+1)+Y*H(IH+4)+X*(H(IH+3)-H(IH))
532 5 H(IL)=G(IL)+Z*H(IH)+2.*(X*H(IH+1)+Y*H(IH+2))
533 IH=IL
534 IF(I.GE.K)GOTO1
535 6 CONTINUE
536 IF(IS.EQ.3)RETURN
537 S=.5*H(1)+2.*(H(2)*XI(3)+H(3)*XI(1)+H(4)*XI(2))
538 T=(RQ+RQ)*SQRT(RQ)
539 BXXX=T*(H(3)-S*XXX)
540 BYYY=T*(H(4)-S*YYY)
541 BZZZ=T*(H(2)-S*ZZZ)
542 IF(IS.EQ.2)GOTO7
543 BABS=SQRT(BXXX*BXXX+BYYY*BYYY+BZZZ*BZZZ)
544 BEAST=BYYY*CP-BXXX*SP
545 BRHO=BYYY*SP+BXXX*CP
546 BNORTH=BZZZ*ST-BRHO*CT
547 BDOWN=-BZZZ*CT-BRHO*ST
548 RETURN
549 7 B(1)=BXXX
550 B(2)=BYYY
551 B(3)=BZZZ
552 RETURN
553 END
554 C
555 C
556 SUBROUTINE FELDCOF(YEAR,DIMO)
557 C------------------------------------------------------------------------
558 C DETERMINES COEFFICIENTS AND DIPOL MOMENT FROM IGRF MODELS
559 C
560 C INPUT: YEAR DECIMAL YEAR FOR WHICH GEOMAGNETIC FIELD IS TO
561 C BE CALCULATED
562 C OUTPUT: DIMO GEOMAGNETIC DIPOL MOMENT IN GAUSS (NORMALIZED
563 C TO EARTH'S RADIUS) AT THE TIME (YEAR)
564 C D. BILITZA, NSSDC, GSFC, CODE 633, GREENBELT, MD 20771,
565 C (301)286-9536 NOV 1987.
566 C ### updated to IGRF-2000 version -dkb- 5/31/2000
567 C ### updated to IGRF-2005 version -dkb- 3/24/2000
568 C-----------------------------------------------------------------------
569 CHARACTER*12 FILMOD, FIL1, FIL2
570 C ### FILMOD, DTEMOD arrays +1
571 c DIMENSION GH1(144),GH2(120),GHA(144),FILMOD(14),DTEMOD(14)
572 DIMENSION GH1(144),GH2(120),GHA(144),FILMOD(3),DTEMOD(3)
573 DOUBLE PRECISION X,F0,F
574 COMMON/MODEL/ FIL1,NMAX,TIME,GH1
575 COMMON/GENER/ UMR,ERAD,AQUAD,BQUAD
576 C ### updated to 2005
577 DATA FILMOD /'dgrf00.dat', 'igrf05.dat',
578 1 'igrf05s.dat'/
579 DATA DTEMOD / 2000., 2005., 2010./
580 c
581 c DATA FILMOD /'dgrf45.dat', 'dgrf50.dat',
582 c 1 'dgrf55.dat', 'dgrf60.dat', 'dgrf65.dat',
583 c 2 'dgrf70.dat', 'dgrf75.dat', 'dgrf80.dat',
584 c 3 'dgrf85.dat', 'dgrf90.dat', 'dgrf95.dat',
585 c 4 'dgrf00.dat','igrf05.dat','igrf05s.dat'/
586 c DATA DTEMOD / 1945., 1950., 1955., 1960., 1965., 1970.,
587 c 1 1975., 1980., 1985., 1990., 1995., 2000.,2005.,2010./
588 C
589 C ### numye = numye + 1 ; is number of years represented by IGRF
590 C
591 c NUMYE=13
592 NUMYE=2
593
594 C
595 C IS=0 FOR SCHMIDT NORMALIZATION IS=1 GAUSS NORMALIZATION
596 C IU IS INPUT UNIT NUMBER FOR IGRF COEFFICIENT SETS
597 C
598 IU = 10
599 IS = 0
600 C-- DETERMINE IGRF-YEARS FOR INPUT-YEAR
601 TIME = YEAR
602 IYEA = INT(YEAR/5.)*5
603 c L = (IYEA - 1945)/5 + 1
604 L = (IYEA - 2000)/5 + 1
605 IF(L.LT.1) L=1
606 IF(L.GT.NUMYE) L=NUMYE
607 DTE1 = DTEMOD(L)
608 FIL1 = FILMOD(L)
609 DTE2 = DTEMOD(L+1)
610 FIL2 = FILMOD(L+1)
611 C-- GET IGRF COEFFICIENTS FOR THE BOUNDARY YEARS
612 CALL GETSHC (IU, FIL1, NMAX1, ERAD, GH1, IER)
613 IF (IER .NE. 0) STOP
614 CALL GETSHC (IU, FIL2, NMAX2, ERAD, GH2, IER)
615 IF (IER .NE. 0) STOP
616 C-- DETERMINE IGRF COEFFICIENTS FOR YEAR
617 IF (L .LE. NUMYE-1) THEN
618 CALL INTERSHC (YEAR, DTE1, NMAX1, GH1, DTE2,
619 1 NMAX2, GH2, NMAX, GHA)
620 ELSE
621 CALL EXTRASHC (YEAR, DTE1, NMAX1, GH1, NMAX2,
622 1 GH2, NMAX, GHA)
623 ENDIF
624 C-- DETERMINE MAGNETIC DIPOL MOMENT AND COEFFIECIENTS G
625 F0=0.D0
626 DO 1234 J=1,3
627 F = GHA(J) * 1.D-5
628 F0 = F0 + F * F
629 1234 CONTINUE
630 DIMO = DSQRT(F0)
631
632 GH1(1) = 0.0
633 I=2
634 F0=1.D-5
635 IF(IS.EQ.0) F0=-F0
636 SQRT2=SQRT(2.)
637
638 DO 9 N=1,NMAX
639 X = N
640 F0 = F0 * X * X / (4.D0 * X - 2.D0)
641 IF(IS.EQ.0) F0 = F0 * (2.D0 * X - 1.D0) / X
642 F = F0 * 0.5D0
643 IF(IS.EQ.0) F = F * SQRT2
644 GH1(I) = GHA(I-1) * F0
645 I = I+1
646 DO 9 M=1,N
647 F = F * (X + M) / (X - M + 1.D0)
648 IF(IS.EQ.0) F = F * DSQRT((X - M + 1.D0) / (X + M))
649 GH1(I) = GHA(I-1) * F
650 GH1(I+1) = GHA(I) * F
651 I=I+2
652 9 CONTINUE
653 RETURN
654 END
655 C
656 C
657 SUBROUTINE GETSHC (IU, FSPEC, NMAX, ERAD, GH, IER)
658
659 C ===============================================================
660 C
661 C Version 1.01
662 C
663 C Reads spherical harmonic coefficients from the specified
664 C file into an array.
665 C
666 C Input:
667 C IU - Logical unit number
668 C FSPEC - File specification
669 C
670 C Output:
671 C NMAX - Maximum degree and order of model
672 C ERAD - Earth's radius associated with the spherical
673 C harmonic coefficients, in the same units as
674 C elevation
675 C GH - Schmidt quasi-normal internal spherical
676 C harmonic coefficients
677 C IER - Error number: = 0, no error
678 C = -2, records out of order
679 C = FORTRAN run-time error number
680 C
681 C A. Zunde
682 C USGS, MS 964, Box 25046 Federal Center, Denver, CO 80225
683 C
684 C ===============================================================
685
686 CHARACTER FSPEC*(*), FOUT*55
687 DIMENSION GH(*)
688 C ---------------------------------------------------------------
689 C Open coefficient file. Read past first header record.
690 C Read degree and order of model and Earth's radius.
691 C ---------------------------------------------------------------
692 WRITE(FOUT,667) FSPEC
693 c 667 FORMAT('/usr/local/etc/httpd/cgi-bin/natasha/IRI/',A12)
694 667 FORMAT(A12)
695 OPEN (IU, FILE=FOUT, STATUS='OLD', IOSTAT=IER, ERR=999)
696 READ (IU, *, IOSTAT=IER, ERR=999)
697 READ (IU, *, IOSTAT=IER, ERR=999) NMAX, ERAD
698 C ---------------------------------------------------------------
699 C Read the coefficient file, arranged as follows:
700 C
701 C N M G H
702 C ----------------------
703 C / 1 0 GH(1) -
704 C / 1 1 GH(2) GH(3)
705 C / 2 0 GH(4) -
706 C / 2 1 GH(5) GH(6)
707 C NMAX*(NMAX+3)/2 / 2 2 GH(7) GH(8)
708 C records \ 3 0 GH(9) -
709 C \ . . . .
710 C \ . . . .
711 C NMAX*(NMAX+2) \ . . . .
712 C elements in GH \ NMAX NMAX . .
713 C
714 C N and M are, respectively, the degree and order of the
715 C coefficient.
716 C ---------------------------------------------------------------
717
718 I = 0
719 DO 2211 NN = 1, NMAX
720 DO 2233 MM = 0, NN
721 READ (IU, *, IOSTAT=IER, ERR=999) N, M, G, H
722 IF (NN .NE. N .OR. MM .NE. M) THEN
723 IER = -2
724 GOTO 999
725 ENDIF
726 I = I + 1
727 GH(I) = G
728 IF (M .NE. 0) THEN
729 I = I + 1
730 GH(I) = H
731 ENDIF
732 2233 CONTINUE
733 2211 CONTINUE
734
735 999 CLOSE (IU)
736
737
738 RETURN
739 END
740 C
741 C
742 SUBROUTINE INTERSHC (DATE, DTE1, NMAX1, GH1, DTE2,
743 1 NMAX2, GH2, NMAX, GH)
744
745 C ===============================================================
746 C
747 C Version 1.01
748 C
749 C Interpolates linearly, in time, between two spherical
750 C harmonic models.
751 C
752 C Input:
753 C DATE - Date of resulting model (in decimal year)
754 C DTE1 - Date of earlier model
755 C NMAX1 - Maximum degree and order of earlier model
756 C GH1 - Schmidt quasi-normal internal spherical
757 C harmonic coefficients of earlier model
758 C DTE2 - Date of later model
759 C NMAX2 - Maximum degree and order of later model
760 C GH2 - Schmidt quasi-normal internal spherical
761 C harmonic coefficients of later model
762 C
763 C Output:
764 C GH - Coefficients of resulting model
765 C NMAX - Maximum degree and order of resulting model
766 C
767 C A. Zunde
768 C USGS, MS 964, Box 25046 Federal Center, Denver, CO 80225
769 C
770 C ===============================================================
771
772 DIMENSION GH1(*), GH2(*), GH(*)
773
774 C ---------------------------------------------------------------
775 C The coefficients (GH) of the resulting model, at date
776 C DATE, are computed by linearly interpolating between the
777 C coefficients of the earlier model (GH1), at date DTE1,
778 C and those of the later model (GH2), at date DTE2. If one
779 C model is smaller than the other, the interpolation is
780 C performed with the missing coefficients assumed to be 0.
781 C ---------------------------------------------------------------
782
783 FACTOR = (DATE - DTE1) / (DTE2 - DTE1)
784
785 IF (NMAX1 .EQ. NMAX2) THEN
786 K = NMAX1 * (NMAX1 + 2)
787 NMAX = NMAX1
788 ELSE IF (NMAX1 .GT. NMAX2) THEN
789 K = NMAX2 * (NMAX2 + 2)
790 L = NMAX1 * (NMAX1 + 2)
791 DO 1122 I = K + 1, L
792 1122 GH(I) = GH1(I) + FACTOR * (-GH1(I))
793 NMAX = NMAX1
794 ELSE
795 K = NMAX1 * (NMAX1 + 2)
796 L = NMAX2 * (NMAX2 + 2)
797 DO 1133 I = K + 1, L
798 1133 GH(I) = FACTOR * GH2(I)
799 NMAX = NMAX2
800 ENDIF
801
802 DO 1144 I = 1, K
803 1144 GH(I) = GH1(I) + FACTOR * (GH2(I) - GH1(I))
804
805 RETURN
806 END
807 C
808 C
809 SUBROUTINE EXTRASHC (DATE, DTE1, NMAX1, GH1, NMAX2,
810 1 GH2, NMAX, GH)
811
812 C ===============================================================
813 C
814 C Version 1.01
815 C
816 C Extrapolates linearly a spherical harmonic model with a
817 C rate-of-change model.
818 C
819 C Input:
820 C DATE - Date of resulting model (in decimal year)
821 C DTE1 - Date of base model
822 C NMAX1 - Maximum degree and order of base model
823 C GH1 - Schmidt quasi-normal internal spherical
824 C harmonic coefficients of base model
825 C NMAX2 - Maximum degree and order of rate-of-change
826 C model
827 C GH2 - Schmidt quasi-normal internal spherical
828 C harmonic coefficients of rate-of-change model
829 C
830 C Output:
831 C GH - Coefficients of resulting model
832 C NMAX - Maximum degree and order of resulting model
833 C
834 C A. Zunde
835 C USGS, MS 964, Box 25046 Federal Center, Denver, CO 80225
836 C
837 C ===============================================================
838
839 DIMENSION GH1(*), GH2(*), GH(*)
840
841 C ---------------------------------------------------------------
842 C The coefficients (GH) of the resulting model, at date
843 C DATE, are computed by linearly extrapolating the coef-
844 C ficients of the base model (GH1), at date DTE1, using
845 C those of the rate-of-change model (GH2), at date DTE2. If
846 C one model is smaller than the other, the extrapolation is
847 C performed with the missing coefficients assumed to be 0.
848 C ---------------------------------------------------------------
849
850 FACTOR = (DATE - DTE1)
851
852 IF (NMAX1 .EQ. NMAX2) THEN
853 K = NMAX1 * (NMAX1 + 2)
854 NMAX = NMAX1
855 ELSE IF (NMAX1 .GT. NMAX2) THEN
856 K = NMAX2 * (NMAX2 + 2)
857 L = NMAX1 * (NMAX1 + 2)
858 DO 1155 I = K + 1, L
859 1155 GH(I) = GH1(I)
860 NMAX = NMAX1
861 ELSE
862 K = NMAX1 * (NMAX1 + 2)
863 L = NMAX2 * (NMAX2 + 2)
864 DO 1166 I = K + 1, L
865 1166 GH(I) = FACTOR * GH2(I)
866 NMAX = NMAX2
867 ENDIF
868
869 DO 1177 I = 1, K
870 1177 GH(I) = GH1(I) + FACTOR * GH2(I)
871
872 RETURN
873 END
874 C
875 C
876 SUBROUTINE INITIZE
877 C----------------------------------------------------------------
878 C Initializes the parameters in COMMON/GENER/
879 C
880 C UMR = ATAN(1.0)*4./180. <DEGREE>*UMR=<RADIANT>
881 C ERA EARTH RADIUS FOR NORMALIZATION OF CARTESIAN
882 C COORDINATES (6371.2 KM)
883 C EREQU MAJOR HALF AXIS FOR EARTH ELLIPSOID (6378.160 KM)
884 C ERPOL MINOR HALF AXIS FOR EARTH ELLIPSOID (6356.775 KM)
885 C AQUAD SQUARE OF MAJOR HALF AXIS FOR EARTH ELLIPSOID
886 C BQUAD SQUARE OF MINOR HALF AXIS FOR EARTH ELLIPSOID
887 C
888 C ERA, EREQU and ERPOL as recommended by the INTERNATIONAL
889 C ASTRONOMICAL UNION .
890 C-----------------------------------------------------------------
891 COMMON/GENER/ UMR,ERA,AQUAD,BQUAD
892 ERA=6371.2
893 EREQU=6378.16
894 ERPOL=6356.775
895 AQUAD=EREQU*EREQU
896 BQUAD=ERPOL*ERPOL
897 UMR=ATAN(1.0)*4./180.
898 RETURN
899 END

  ViewVC Help
Powered by ViewVC 1.1.23