| 1 |
/**************************************************************************** |
| 2 |
* F i l e D a t a |
| 3 |
* $Id: CRC.h,v 4.4 2005/05/28 10:44:08 kusanagi Exp $ |
| 4 |
* $Revision: 4.4 $ |
| 5 |
* $Date: 2005/05/28 10:44:08 $ |
| 6 |
* $RCSfile: CRC.h,v $ |
| 7 |
* |
| 8 |
**************************************************************************** |
| 9 |
* S W D e v e l o p m e n t E n v i r o n m e n t |
| 10 |
* |
| 11 |
* $Author: kusanagi $ |
| 12 |
* : |
| 13 |
*****************************************************************************/ |
| 14 |
|
| 15 |
#ifndef CRC_H |
| 16 |
#define CRC_H |
| 17 |
|
| 18 |
#define BYTE unsigned char |
| 19 |
#define UINT32 unsigned int |
| 20 |
#define UINT16 unsigned short |
| 21 |
|
| 22 |
|
| 23 |
/** Example of CAST macro at work. public domain demo by Bob Stout. |
| 24 |
* |
| 25 |
* Example of CAST macro at work |
| 26 |
* |
| 27 |
* union { |
| 28 |
* char ch[4]; |
| 29 |
* int i[2]; |
| 30 |
* } my_union; |
| 31 |
* |
| 32 |
* long longvar; |
| 33 |
* |
| 34 |
* longvar = (long)my_union; Illegal cast |
| 35 |
* longvar = CAST(long, my_union); Legal cast |
| 36 |
* |
| 37 |
*/ |
| 38 |
#define CM_CAST(new_type,old_object) (*((new_type *)&(old_object))) |
| 39 |
|
| 40 |
|
| 41 |
#define CM_HI_UINT16(x) ( (BYTE)( ((x) & 0xff00)>>8 ) ) |
| 42 |
#define CM_LO_UINT16(x) ( (BYTE)( ((x) & 0x00ff) ) ) |
| 43 |
|
| 44 |
#define CM_HI_UINT32(x) ( (UINT16)( ((x) & 0xffff0000)>>16 ) ) |
| 45 |
#define CM_LO_UINT32(x) ( (UINT16)( ((x) & 0x0000ffff) ) ) |
| 46 |
|
| 47 |
|
| 48 |
#define CM_HIHI_UINT32(x) ( (BYTE)( ((x) & 0xff000000)>>24 ) ) |
| 49 |
#define CM_LOHI_UINT32(x) ( (BYTE)( ((x) & 0x00ff0000)>>16 ) ) |
| 50 |
#define CM_HILO_UINT32(x) ( (BYTE)( ((x) & 0x0000ff00)>> 8 ) ) |
| 51 |
#define CM_LOLO_UINT32(x) ( (BYTE)( ((x) & 0x000000ff) ) ) |
| 52 |
|
| 53 |
|
| 54 |
|
| 55 |
/** |
| 56 |
Macro READ_NEXT_BITS_UINT(wordlen,p,offset,n,res) |
| 57 |
|
| 58 |
this mascro scans bits for a 'wordlen'-bit long word. 'wordlen' can be 8,16,32... |
| 59 |
It reads the next 'n' bits starting after the 'offset'-th bit of the 'wordlen'-bit word pointed by p. |
| 60 |
store the result in 'res', and increment properly both 'offset' and 'p' such that they can be reused |
| 61 |
in the text invocation of the macro. |
| 62 |
|
| 63 |
\a p unsigned 'wordlen'-bit pointer (ie. wordlen==16, then unsinged short int * in i386 arch) |
| 64 |
varibale name. |
| 65 |
it points to the word to scan. it is incremented automatically by the macro. |
| 66 |
\a offset unsigned 8 bit variable name (unsigned char?). Must be an l-value. |
| 67 |
it holds the number of bit already read in the most significant part of the |
| 68 |
current pointer (*p). Should be used always the same variable while a scanning |
| 69 |
session. This value must be initialized to zero and should be always less then 'wordlen'. |
| 70 |
\a n the number of bits to read. Can be a r-value. Must be 0 <= n <= 'wordlen'. |
| 71 |
if n is zero (senseless), both 'p' and 'offset' are unchanged and 0 is returned in 'res'. |
| 72 |
\a res unsigned 'wordlen'-bit variable name (i.e wordlen==16, then unsigned short int? on i386 arch) |
| 73 |
in which to store the requested 'n' bits. |
| 74 |
they are returned in the less significat part of 'res'. If n<'wordlen', then the most |
| 75 |
significant bits of 'res' are padded to zero. |
| 76 |
|
| 77 |
before using he macro the first time you have to: (let's assume 'wordlen' fixed to 16 and an i386 arch.) |
| 78 |
1) choose an unsigned short pointer to pass as 'p', and initialize it to the sequence |
| 79 |
of bits to scan from. |
| 80 |
2) choose an unsigned char variable to pass as 'offset' and initialize it to zero |
| 81 |
(or some other value X<16, if you want to skip the first X bits) |
| 82 |
3) choose an unsigned short to return the result. |
| 83 |
|
| 84 |
*/ |
| 85 |
|
| 86 |
#define CM_READ_NEXT_BITS_UINT(wordlen,p,offset,n,res) \ |
| 87 |
do { \ |
| 88 |
res = (*p << offset); \ |
| 89 |
res >>= (wordlen-(n)); \ |
| 90 |
if(n<=wordlen-offset) { \ |
| 91 |
offset=(offset+(n))%wordlen; \ |
| 92 |
if(offset==0) \ |
| 93 |
p++; \ |
| 94 |
}else{ \ |
| 95 |
p++; \ |
| 96 |
res |= *p>>(wordlen*2-offset-(n)); \ |
| 97 |
offset+=(n)-wordlen; \ |
| 98 |
} \ |
| 99 |
}while(0) |
| 100 |
|
| 101 |
/* Wrapper to 8,16,32,64 bit link wrapper to READ_NEXT_BITS_UINT : */ |
| 102 |
#define CM_READ_NEXT_BITS_UINT8(p,offset,n,res) CM_READ_NEXT_BITS_UINT(8 ,p,offset,n,res) |
| 103 |
#define CM_READ_NEXT_BITS_UINT16(p,offset,n,res) CM_READ_NEXT_BITS_UINT(16,p,offset,n,res) |
| 104 |
#define CM_READ_NEXT_BITS_UINT32(p,offset,n,res) CM_READ_NEXT_BITS_UINT(32,p,offset,n,res) |
| 105 |
#define CM_READ_NEXT_BITS_UINT64(p,offset,n,res) CM_READ_NEXT_BITS_UINT(64,p,offset,n,res) |
| 106 |
|
| 107 |
#define CM_GET_BIT(exp,n) (((exp) >> ((n)-1)) & 0x1) |
| 108 |
|
| 109 |
|
| 110 |
|
| 111 |
|
| 112 |
/* Thees macros write a 16 or 32 bits in BigEndian fascion in a (unsigned char*) avoiding the |
| 113 |
addressing alignement problem and also increment ptr |
| 114 |
- ptr must be a (unsigned char*) pointer (l-value) |
| 115 |
- byte must be a (unsigned char) (r-value) |
| 116 |
- word must be a (unsigned short int) (r-value) |
| 117 |
- dword must be a (unsigned int) (r-value) |
| 118 |
*/ |
| 119 |
#define CM_WRITE_BE_UINT8(ptr,byte) do { *ptr = (unsigned char)(byte); ptr++;} while(0) |
| 120 |
|
| 121 |
#define CM_WRITE_BE_UINT16(ptr,word) do { \ |
| 122 |
CM_WRITE_BE_UINT8(ptr,((word)>>8)); \ |
| 123 |
CM_WRITE_BE_UINT8(ptr,(word)); \ |
| 124 |
} while(0) |
| 125 |
|
| 126 |
#define CM_WRITE_BE_UINT32(ptr,dword) do { \ |
| 127 |
CM_WRITE_BE_UINT8(ptr,(dword)>>24); \ |
| 128 |
CM_WRITE_BE_UINT8(ptr,(dword)>>16); \ |
| 129 |
CM_WRITE_BE_UINT8(ptr,(dword)>>8); \ |
| 130 |
CM_WRITE_BE_UINT8(ptr,(dword)); \ |
| 131 |
} while(0) |
| 132 |
|
| 133 |
/* Thees macros read a 16 or 32 bits in BigEndian fascion from a (unsigned char*) avoiding the |
| 134 |
addressing alignement problem and also increment ptr |
| 135 |
- ptr must be a (unsigned char*) pointer (l-value) |
| 136 |
- byte and temp must be a (unsigned char) (l-value) |
| 137 |
- word must be a (unsigned short int) (l-value) |
| 138 |
- dword must be a (unsigned int) (l-value) |
| 139 |
*/ |
| 140 |
#define CM_READ_BE_UINT8(ptr,byte) do { byte = *(ptr); (ptr)++; } while(0) |
| 141 |
|
| 142 |
#define CM_READ_BE_UINT16(ptr,word,temp) do { \ |
| 143 |
CM_READ_BE_UINT8(ptr,temp); \ |
| 144 |
word = ((unsigned short int)temp) << 8; \ |
| 145 |
CM_READ_BE_UINT8(ptr,temp); \ |
| 146 |
word |= temp; \ |
| 147 |
} while(0) |
| 148 |
|
| 149 |
#define CM_READ_BE_UINT32(ptr,word,temp) do { \ |
| 150 |
CM_READ_BE_UINT8(ptr,temp); \ |
| 151 |
word = ((unsigned int)temp) << 24; \ |
| 152 |
CM_READ_BE_UINT8(ptr,temp); \ |
| 153 |
word |= ((unsigned int)temp) << 16; \ |
| 154 |
CM_READ_BE_UINT8(ptr,temp); \ |
| 155 |
word |= ((unsigned int)temp) << 8; \ |
| 156 |
CM_READ_BE_UINT8(ptr,temp); \ |
| 157 |
word |= ((unsigned int)temp); \ |
| 158 |
} while(0) |
| 159 |
|
| 160 |
|
| 161 |
/** Univeral BIT converter to 2 registers set with different resolution. |
| 162 |
Used in Microsecond to register converte for data time out and event time |
| 163 |
out and other same-style register. |
| 164 |
|
| 165 |
\a v is the value in some unit |
| 166 |
\a unit_h is the resolution of the MSD-part. must be in same unit of v. |
| 167 |
\a no_bit_h is the number of bits of the MSD-part. |
| 168 |
\a unit_l is the resolution of the LSD-part. must be in same unit of v. |
| 169 |
\a no_bit_l is the number of bits of the LSD-part. |
| 170 |
|
| 171 |
\example (case of ETO) |
| 172 |
Suppose to have 2 8-bit registers ETO1 (8 bit,LSB) and ETO2 (8 bit,HSB): |
| 173 |
ETO2 have a resoluion of 65 microsec; |
| 174 |
ETOHSB have a resolution of 16 millisec; |
| 175 |
|
| 176 |
This will format a value of 1 millisecond (unit is in microsecond) |
| 177 |
the usage is: CM_TIME2REG(1000,16*1000,8,65,8) |
| 178 |
|
| 179 |
*/ |
| 180 |
|
| 181 |
//#define CM_TIME2REG(v,unit_h,no_bit_h,unit_l,no_bit_l) ((((v)/(unit_h))<<(no_bit_l) ) | ((((v)%(unit_h))/(unit_l)) & ~((0xffffffff)<<((no_bit_l)+(no_bit_h))))) |
| 182 |
|
| 183 |
//#define CM_INT_UNUSED 0 |
| 184 |
|
| 185 |
|
| 186 |
/** |
| 187 |
Compute a 8 bit CRC based on a \a data, whith a \a old pre-computed crc. |
| 188 |
*/ |
| 189 |
/** old ---> the old pre-computed crc */ |
| 190 |
/** data ---> the data to compute crc for */ |
| 191 |
BYTE CM_crc8_8(BYTE old, BYTE data); |
| 192 |
|
| 193 |
UINT32 CM_Compute_CRC8_8(UINT32 oldcrc |
| 194 |
,BYTE *buffer |
| 195 |
,UINT32 length |
| 196 |
); |
| 197 |
|
| 198 |
|
| 199 |
UINT16 CM_CRC16(BYTE* adrs, UINT16 Crc); |
| 200 |
UINT16 CM_Compute_CRC16(UINT16 oldcrc,BYTE *buffer,UINT32 length); |
| 201 |
|
| 202 |
BYTE* charToUnsignedChar(char buffer[], UINT32 length); |
| 203 |
|
| 204 |
#endif /* CRC_H */ |
| 205 |
|
| 206 |
|
| 207 |
|