1 |
************************************************************************* |
2 |
* |
3 |
* Subroutine tricircle.f |
4 |
* |
5 |
* - find the best circle passing through npoints: compute the circle |
6 |
* passing through every combination of 3 of them and average the |
7 |
* resulting centres and radii |
8 |
* |
9 |
* output variables: |
10 |
* - angle(npoints) angle of the tangent in the input points, in degrees, range -90..+90 |
11 |
* - residual(npoints) residuals |
12 |
* - chi sum of squared residuals |
13 |
* - xc,zc,radius circle parameters |
14 |
* - eflag error flag |
15 |
* |
16 |
* to be called inside ./fitxy.f |
17 |
* |
18 |
************************************************************************* |
19 |
|
20 |
|
21 |
subroutine tricircle(npoints,dep,indep,angle,residual,chi |
22 |
$ ,xc,zc,radius,eflag) |
23 |
|
24 |
|
25 |
c------------------------------------------------------------------------ |
26 |
c |
27 |
c local variables |
28 |
c |
29 |
c------------------------------------------------------------------------ |
30 |
|
31 |
integer npoints !fit number of points |
32 |
real dep(npoints),indep(npoints) !dependent and independent variables |
33 |
|
34 |
real angle(npoints) !angle between the tangent line in the input points and |
35 |
! the independent variable axis |
36 |
|
37 |
real residual(npoints) !residuals |
38 |
real chi !sum of squared residuals |
39 |
real xc,zc,radius !circle parameters |
40 |
|
41 |
integer eflag !error flag =1 if the procedure fails |
42 |
|
43 |
c integer nloops !number of combinations of 3 points out of npoints |
44 |
integer index(3) !indexes of the 3 chosen points |
45 |
|
46 |
parameter(scale=1000.) |
47 |
double precision z(3),x(3),unit(3),zzxx(3) !temp variables |
48 |
double precision a(3,3),d(3,3),e(3,3),f(3,3) |
49 |
double precision ir(3) |
50 |
double precision deta,detd,dete,detf !determinants |
51 |
integer ifail !=-1 if singular matrix error, =0 if not singular |
52 |
integer jfail !=0 if determinant can be evaluated, =-1 if determinat is probably too small, =+1 if too large |
53 |
|
54 |
parameter (big=1.e4) !just a number greater than C(npoints,3) |
55 |
double precision xxc(big),zzc(big),rrr(big) !centres and radii to be averaged |
56 |
|
57 |
double precision tmp1,tmp2,tmp(npoints) !temp variables |
58 |
|
59 |
real pigr !3.1415... |
60 |
pigr=ACOS(-1.) |
61 |
|
62 |
eflag = 0 |
63 |
|
64 |
|
65 |
c------------------------------------------------------------------------ |
66 |
c choose 3 points out of npoints |
67 |
c------------------------------------------------------------------------ |
68 |
c nloops = fact(npoints) / (fact(3) * fact(npoints-3)) |
69 |
|
70 |
k=0 |
71 |
do i1=1,npoints-2 |
72 |
index(1)=i1 |
73 |
do i2=i1+1,npoints-1 |
74 |
index(2)=i2 |
75 |
do i3=i2+1,npoints |
76 |
index(3)=i3 |
77 |
|
78 |
k=k+1 !number of combinations |
79 |
c$$$ print*,' ' !??? |
80 |
c$$$ print*,'k =',k,' index =',index |
81 |
|
82 |
c------------------------------------------------------------------------ |
83 |
c build temp vectors |
84 |
c------------------------------------------------------------------------ |
85 |
do i=1,3 |
86 |
z(i)=indep(index(i))/scale !to avoid too big numbers in matrix computation |
87 |
x(i)=dep(index(i))/scale |
88 |
unit(i)=1. |
89 |
zzxx(i)=z(i)**2.+x(i)**2. |
90 |
enddo |
91 |
c$$$ print*,'z =',z,' x =',x !??? |
92 |
c$$$ print*,'unit =',unit,' zzxx =',zzxx |
93 |
|
94 |
c------------------------------------------------------------------------ |
95 |
c build the matrixes |
96 |
c------------------------------------------------------------------------ |
97 |
do i=1,3 |
98 |
a(i,1)=z(i) !A has (z x 1) as columns |
99 |
a(i,2)=x(i) |
100 |
a(i,3)=unit(i) |
101 |
d(i,1)=zzxx(i) !D has (zzxx x 1) as columns |
102 |
d(i,2)=x(i) |
103 |
d(i,3)=unit(i) |
104 |
e(i,1)=zzxx(i) !E has (zzxx z 1) as columns |
105 |
e(i,2)=z(i) |
106 |
e(i,3)=unit(i) |
107 |
f(i,1)=zzxx(i) !F has (zzxx z x) as columns |
108 |
f(i,2)=z(i) |
109 |
f(i,3)=x(i) |
110 |
enddo |
111 |
|
112 |
c$$$ print*,'matrix A:' !??? |
113 |
c$$$ do i=1,3 |
114 |
c$$$ print*,(a(i,j),j=1,3) |
115 |
c$$$ enddo |
116 |
c$$$ print*,'matrix D:' !??? |
117 |
c$$$ do i=1,3 |
118 |
c$$$ print*,(d(i,j),j=1,3) |
119 |
c$$$ enddo |
120 |
c$$$ print*,'matrix E:' !??? |
121 |
c$$$ do i=1,3 |
122 |
c$$$ print*,(e(i,j),j=1,3) |
123 |
c$$$ enddo |
124 |
c$$$ print*,'matrix F:' !??? |
125 |
c$$$ do i=1,3 |
126 |
c$$$ print*,(f(i,j),j=1,3) |
127 |
c$$$ enddo |
128 |
|
129 |
c------------------------------------------------------------------------ |
130 |
c compute the determinants of A, D, E and F matrixes |
131 |
c using DFACT (http://wwwasdoc.web.cern.ch/wwwasdoc/shortwrupsdir/f011/top.html) |
132 |
c------------------------------------------------------------------------ |
133 |
|
134 |
ifail=0 |
135 |
jfail=0 |
136 |
call DFACT(3,a,3,ir,ifail,deta,jfail) |
137 |
if(ifail.eq.-1) then |
138 |
print*,'tricircle: ERROR: singular matrix A:' |
139 |
do i=1,3 |
140 |
print*,(a(i,j),j=1,3) |
141 |
enddo |
142 |
eflag=1 |
143 |
endif |
144 |
if(jfail.eq.-1) then |
145 |
print* |
146 |
$ ,'tricircle: ERROR: matrix A: determinant too small?' |
147 |
do i=1,3 |
148 |
print*,(d(i,j),j=1,3) |
149 |
enddo |
150 |
eflag=1 |
151 |
elseif(jfail.eq.1) then |
152 |
print* |
153 |
$ ,'tricircle: ERROR: matrix A: determinant too large?' |
154 |
do i=1,3 |
155 |
print*,(d(i,j),j=1,3) |
156 |
enddo |
157 |
eflag=1 |
158 |
endif |
159 |
|
160 |
ifail=0 |
161 |
jfail=0 |
162 |
call DFACT(3,d,3,ir,ifail,detd,jfail) |
163 |
if(ifail.eq.-1) then |
164 |
print*,'tricircle: ERROR: singular matrix D:' |
165 |
do i=1,3 |
166 |
print*,(d(i,j),j=1,3) |
167 |
enddo |
168 |
eflag=1 |
169 |
endif |
170 |
if(jfail.eq.-1) then |
171 |
print* |
172 |
$ ,'tricircle: ERROR: matrix D: determinant too small?' |
173 |
do i=1,3 |
174 |
print*,(d(i,j),j=1,3) |
175 |
enddo |
176 |
eflag=1 |
177 |
elseif(jfail.eq.1) then |
178 |
print* |
179 |
$ ,'tricircle: ERROR: matrix D: determinant too large?' |
180 |
do i=1,3 |
181 |
print*,(d(i,j),j=1,3) |
182 |
enddo |
183 |
eflag=1 |
184 |
endif |
185 |
|
186 |
ifail=0 |
187 |
jfail=0 |
188 |
call DFACT(3,e,3,ir,ifail,dete,jfail) |
189 |
if(ifail.eq.-1) then |
190 |
print*,'tricircle: ERROR: singular matrix E:' |
191 |
do i=1,3 |
192 |
print*,(e(i,j),j=1,3) |
193 |
enddo |
194 |
eflag=1 |
195 |
endif |
196 |
if(jfail.eq.-1) then |
197 |
print* |
198 |
$ ,'tricircle: ERROR: matrix E: determinant too small?' |
199 |
do i=1,3 |
200 |
print*,(e(i,j),j=1,3) |
201 |
enddo |
202 |
eflag=1 |
203 |
elseif(jfail.eq.1) then |
204 |
print* |
205 |
$ ,'tricircle: ERROR: matrix E: determinant too large?' |
206 |
do i=1,3 |
207 |
print*,(e(i,j),j=1,3) |
208 |
enddo |
209 |
eflag=1 |
210 |
endif |
211 |
|
212 |
ifail=0 |
213 |
jfail=0 |
214 |
call DFACT(3,f,3,ir,ifail,detf,jfail) |
215 |
c ifail=-1 !??? |
216 |
if(ifail.eq.-1) then |
217 |
print*,'tricircle: ERROR: singular matrix F:' |
218 |
do i=1,3 |
219 |
print*,(f(i,j),j=1,3) |
220 |
enddo |
221 |
eflag=1 |
222 |
endif |
223 |
if(jfail.eq.-1) then |
224 |
print* |
225 |
$ ,'tricircle: ERROR: matrix F: determinant too small?' |
226 |
do i=1,3 |
227 |
print*,(f(i,j),j=1,3) |
228 |
enddo |
229 |
eflag=1 |
230 |
elseif(jfail.eq.1) then |
231 |
print* |
232 |
$ ,'tricircle: ERROR: matrix F: determinant too large?' |
233 |
do i=1,3 |
234 |
print*,(f(i,j),j=1,3) |
235 |
enddo |
236 |
eflag=1 |
237 |
endif |
238 |
|
239 |
c------------------------------------------------------------------------ |
240 |
c compute the centre and radius |
241 |
c------------------------------------------------------------------------ |
242 |
detd=-detd |
243 |
detf=-detf |
244 |
|
245 |
c xxc(k)=-detd/(2.*deta) |
246 |
c zzc(k)=-dete/(2.*deta) |
247 |
xxc(k)=-dete/(2.*deta) |
248 |
zzc(k)=-detd/(2.*deta) |
249 |
rrr(k)=SQRT((detd**2+dete**2)/(4.*deta**2.)-detf/deta) |
250 |
|
251 |
c$$$ write(30,*) xxc(k)*scale !??? |
252 |
c$$$ write(31,*) zzc(k)*scale !??? |
253 |
c$$$ write(32,*) rrr(k)*scale !??? |
254 |
c$$$ print*,'xxc =',xxc(k)*scale,' zzc =',zzc(k)*scale |
255 |
c$$$ $ ,' rrr =',rrr(k)*scale !??? |
256 |
|
257 |
enddo !index loops |
258 |
enddo |
259 |
enddo |
260 |
|
261 |
|
262 |
c------------------------------------------------------------------------ |
263 |
c averages the centres and the radii |
264 |
c------------------------------------------------------------------------ |
265 |
xc=0. |
266 |
zc=0. |
267 |
radius=0. |
268 |
do i=1,k |
269 |
xc=xc+xxc(i) |
270 |
zc=zc+zzc(i) |
271 |
radius=radius+rrr(i) |
272 |
enddo |
273 |
xc=xc/k * scale !back to micrometers |
274 |
zc=zc/k * scale |
275 |
radius=radius/k * scale |
276 |
|
277 |
c$$$ c------------------------------------------------------------------------ |
278 |
c$$$ c check for small radius...!??? |
279 |
c$$$ c------------------------------------------------------------------------ |
280 |
c$$$ num=200 |
281 |
c$$$ height=ABS(indep(1)-indep(6)) |
282 |
c$$$ if(radius.lt.(num*height)) then |
283 |
c$$$ xc=0. |
284 |
c$$$ zc=0. |
285 |
c$$$ radius=0. |
286 |
c$$$ print*,'tricircle: ERROR: bad circle' |
287 |
c$$$ print*,'radius' ,radius,' < ', num,' x',height |
288 |
c$$$ c$$$ print*,dep !??? |
289 |
c$$$ c$$$ print*,indep !??? |
290 |
c$$$ eflag=1 |
291 |
c$$$ endif |
292 |
|
293 |
|
294 |
c------------------------------------------------------------------------ |
295 |
c computes residuals and chi-squared |
296 |
c------------------------------------------------------------------------ |
297 |
chi=0. |
298 |
|
299 |
c print*,xc,zc,radius !??? |
300 |
do i=1,npoints |
301 |
tmp1 = SQRT(radius**2.-(indep(i)-zc)**2.) |
302 |
tmp2 = dep(i)-xc |
303 |
if(ABS(tmp2-tmp1).le.ABS(tmp2+tmp1)) then !it chooses the right sign |
304 |
tmp(i)=tmp1 !according to residuals |
305 |
else |
306 |
tmp(i)=-tmp1 |
307 |
endif |
308 |
residual(i)=tmp2 - tmp(i) |
309 |
chi=chi + residual(i)**2. |
310 |
c print*,dep(i) !??? |
311 |
c print*,indep(i) !??? |
312 |
c print*,tmp1,tmp2,tmp(i),residual(i) !??? |
313 |
enddo |
314 |
|
315 |
c------------------------------------------------------------------------ |
316 |
c it computes the angle between the tangent to the circumference and the |
317 |
c independent variable axis |
318 |
c------------------------------------------------------------------------ |
319 |
do i=1,npoints |
320 |
angle(i)=(zc-indep(i)) / tmp(i) |
321 |
angle(i)=ATAN(angle(i)) !-pi/2 <= angle <= pi/2 |
322 |
angle(i)=angle(i)/pigr*180. |
323 |
enddo |
324 |
|
325 |
return |
326 |
end |
327 |
|
328 |
|
329 |
|
330 |
|
331 |
|
332 |
|
333 |
|
334 |
|
335 |
|
336 |
|
337 |
c------------------------------------------------------------------------ |
338 |
c------------------------------------------------------------------------ |
339 |
c------------------------------------------------------------------------ |
340 |
|
341 |
|
342 |
c$$$c------------------------------------------------------------------------ |
343 |
c$$$c Function to find the factorial value |
344 |
c$$$c------------------------------------------------------------------------ |
345 |
c$$$ |
346 |
c$$$c from http://www.digitalcoding.com/programming/fortran/tutorial/ftute10.htm |
347 |
c$$$ |
348 |
c$$$ |
349 |
c$$$ FUNCTION FACT(N) |
350 |
c$$$ FACT=1 |
351 |
c$$$ DO 10 J=2,N |
352 |
c$$$ FACT=FACT*J |
353 |
c$$$10 CONTINUE |
354 |
c$$$ RETURN |
355 |
c$$$ END |
356 |
c$$$ |
357 |
c$$$c------------------------------------------------------------------------ |