/[PAMELA software]/tracker/ground/source/analysis/momanhough-subroutines.F
ViewVC logotype

Contents of /tracker/ground/source/analysis/momanhough-subroutines.F

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.2 - (show annotations) (download)
Mon Mar 20 19:43:33 2006 UTC (18 years, 8 months ago) by pam-fi
Branch: MAIN
CVS Tags: HEAD
Changes since 1.1: +508 -143 lines
Some subroutines grouped in different files

1 ************************************************************
2 * The following subroutines
3 * - track_finding >> hough transform
4 * - track_fitting >> bob golden fitting
5 * all the procedures to create LEVEL2 data, starting from LEVEL1 data.
6 *
7 *
8 *
9 * (This subroutine and all the dependent subroutines
10 * will be included in the flight software)
11 ************************************************************
12 subroutine track_finding(iflag)
13
14 include '../common/commontracker.f'
15 include '../common/common_momanhough.f'
16 include '../common/common_mech.f'
17 include '../common/common_xyzPAM.f'
18 include '../common/common_mini_2.f'
19 include '../common/calib.f'
20 include '../common/level1.f'
21 include '../common/level2.f'
22
23 include '../common/momanhough_init.f'
24
25 logical DEBUG
26 common/dbg/DEBUG
27
28 *-------------------------------------------------------------------------------
29 * STEP 1
30 *-------------------------------------------------------------------------------
31 * X-Y cluster association
32 *
33 * Clusters are associated to form COUPLES
34 * Clusters not associated in any couple are called SINGLETS
35 *
36 * Track identification (Hough transform) and fitting is first done on couples.
37 * Hence singlets are possibly added to the track.
38 *
39 * Variables assigned by the routine "cl_to_couples" are those in the
40 * common blocks:
41 * - common/clusters/cl_good
42 * - common/couples/clx,cly,ncp_plane,ncp_tot,cp_useds1,cp_useds2
43 * - common/singlets/ncls,cls,cl_single
44 *-------------------------------------------------------------------------------
45 *-------------------------------------------------------------------------------
46
47 c iflag=0
48 call cl_to_couples(iflag)
49 if(iflag.eq.1)then !bad event
50 goto 880 !fill ntp and go to next event
51 endif
52
53 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
54 * selezione di tracce pulite per diagnostica
55 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
56 c$$$ if(DEBUG)then
57 c$$$ do ip=1,nplanes
58 c$$$ if(ncp_plane(ip).ne.1)good2=.false.
59 c$$$ enddo
60 c$$$c if(good2.eq.0)goto 100!next event
61 c$$$c if(good2.eq.0)goto 880!fill ntp and go to next event
62 c$$$ endif
63
64
65
66 *-----------------------------------------------------
67 *-----------------------------------------------------
68 * HOUGH TRASFORM
69 *-----------------------------------------------------
70 *-----------------------------------------------------
71
72
73 *-------------------------------------------------------------------------------
74 * STEP 2
75 *-------------------------------------------------------------------------------
76 *
77 * Association of couples to form
78 * - DOUBLETS in YZ view
79 * - TRIPLETS in XZ view
80 *
81 * Variables assigned by the routine "cp_to_doubtrip" are those in the
82 * common blocks:
83 * - common/hough_param/
84 * $ alfayz1, !Y0
85 * $ alfayz2, !tg theta-yz
86 * $ alfaxz1, !X0
87 * $ alfaxz2, !tg theta-xz
88 * $ alfaxz3 !1/r
89 * - common/doublets/ndblt,cpyz1,cpyz2
90 * - common/triplets/ntrpt,cpxz1,cpxz2,cpxz3
91 *-------------------------------------------------------------------------------
92 *-------------------------------------------------------------------------------
93
94 c iflag=0
95 call cp_to_doubtrip(iflag)
96 if(iflag.eq.1)then !bad event
97 goto 880 !fill ntp and go to next event
98 endif
99
100
101 *-------------------------------------------------------------------------------
102 * STEP 3
103 *-------------------------------------------------------------------------------
104 *
105 * Classification of doublets and triplets to form CLOUDS,
106 * according to distance in parameter space.
107 *
108 * cloud = cluster of points (doublets/triplets) in parameter space
109 *
110 *
111 *
112 * Variables assigned by the routine "doub_to_YZcloud" are those in the
113 * common blocks:
114 * - common/clouds_yz/
115 * $ nclouds_yz
116 * $ ,alfayz1_av,alfayz2_av
117 * $ ,ptcloud_yz,db_cloud,cpcloud_yz
118 *
119 * Variables assigned by the routine "trip_to_XZcloud" are those in the
120 * common blocks:
121 * common/clouds_xz/
122 * $ nclouds_xz xz2_av,alfaxz3_av
123 * $ ,ptcloud_xz,tr_cloud,cpcloud_xz
124 *-------------------------------------------------------------------------------
125 *-------------------------------------------------------------------------------
126
127 c iflag=0
128 call doub_to_YZcloud(iflag)
129 if(iflag.eq.1)then !bad event
130 goto 880 !fill ntp and go to next event
131 endif
132 c iflag=0
133 call trip_to_XZcloud(iflag)
134 if(iflag.eq.1)then !bad event
135 goto 880 !fill ntp and go to next event
136 endif
137
138 880 return
139 end
140
141 ************************************************************
142
143
144 subroutine track_fitting(iflag)
145
146 include '../common/commontracker.f'
147 include '../common/common_momanhough.f'
148 include '../common/common_mech.f'
149 include '../common/common_xyzPAM.f'
150 include '../common/common_mini_2.f'
151 include '../common/calib.f'
152 include '../common/level1.f'
153 include '../common/level2.f'
154
155 include '../common/momanhough_init.f'
156
157 logical DEBUG
158 common/dbg/DEBUG
159
160 logical FIMAGE !
161
162 *-------------------------------------------------------------------------------
163 * STEP 4 (ITERATED until any other physical track isn't found)
164 *-------------------------------------------------------------------------------
165 *
166 * YZ and XZ clouds are combined in order to obtain the initial guess
167 * of the candidate-track parameters.
168 * A minimum number of matching couples between YZ and XZ clouds is required.
169 *
170 * A TRACK CANDIDATE is defined by
171 * - the couples resulting from the INTERSECTION of the two clouds, and
172 * - the associated track parameters (evaluated by performing a zero-order
173 * track fitting)
174 *
175 * The NTRACKS candidate-track parameters are stored in common block:
176 *
177 * - common/track_candidates/NTRACKS,AL_STORE
178 * $ ,XV_STORE,YV_STORE,ZV_STORE
179 * $ ,XM_STORE,YM_STORE,ZM_STORE
180 * $ ,RESX_STORE,RESY_STORE
181 * $ ,AXV_STORE,AYV_STORE
182 * $ ,XGOOD_STORE,YGOOD_STORE
183 * $ ,CP_STORE,RCHI2_STORE
184 *
185 *-------------------------------------------------------------------------------
186 *-------------------------------------------------------------------------------
187 ntrk=0 !counter of identified physical tracks
188
189 11111 continue !<<<<<<< come here when performing a new search
190
191 c iflag=0
192 call clouds_to_ctrack(iflag)
193 if(iflag.eq.1)then !no candidate tracks found
194 goto 880 !fill ntp and go to next event
195 endif
196
197 FIMAGE=.false. !processing best track (not track image)
198 ibest=0 !best track among candidates
199 iimage=0 !track image
200 * ------------- select the best track -------------
201 rchi2best=1000000000.
202 do i=1,ntracks
203 if(RCHI2_STORE(i).lt.rchi2best.and.
204 $ RCHI2_STORE(i).gt.0)then
205 ibest=i
206 rchi2best=RCHI2_STORE(i)
207 endif
208 enddo
209 if(ibest.eq.0)goto 880 !>> no good candidates
210 *-------------------------------------------------------------------------------
211 * The best track candidate (ibest) is selected and a new fitting is performed.
212 * Previous to this, the track is refined by:
213 * - possibly adding new COUPLES or SINGLETS from the missing planes
214 * - evaluating the coordinates with improved PFAs
215 * ( angle-dependent ETA algorithms )
216 *-------------------------------------------------------------------------------
217
218 1212 continue !<<<<< come here to fit track-image
219
220 if(.not.FIMAGE)then !processing best candidate
221 icand=ibest
222 else !processing image
223 icand=iimage
224 iimage=0
225 endif
226 if(icand.eq.0)then
227 print*,'HAI FATTO UN CASINO!!!!!! icand = ',icand
228 $ ,ibest,iimage
229 return
230 endif
231
232 * *-*-*-*-*-*-*-*-*-*-*-*-*-*-*
233 call refine_track(icand)
234 * *-*-*-*-*-*-*-*-*-*-*-*-*-*-*
235
236 * **********************************************************
237 * ************************** FIT *** FIT *** FIT *** FIT ***
238 * **********************************************************
239 do i=1,5
240 AL(i)=dble(AL_STORE(i,icand))
241 enddo
242 ifail=0 !error flag in chi2 computation
243 jstep=0 !# minimization steps
244
245 call mini_2(jstep,ifail)
246 if(ifail.ne.0) then
247 if(DEBUG)then
248 print *,
249 $ '*** MINIMIZATION FAILURE *** (mini_2) '
250 $ ,iev
251 endif
252 chi2=-chi2
253 endif
254
255 if(DEBUG)then
256 print*,'----------------------------- improved track coord'
257 22222 format(i2,' * ',3f10.4,' --- ',4f10.4,' --- ',2f4.0,2f10.5)
258 do ip=1,6
259 write(*,22222)ip,zm(ip),xm(ip),ym(ip)
260 $ ,xm_A(ip),ym_A(ip),xm_B(ip),ym_B(ip)
261 $ ,xgood(ip),ygood(ip),resx(ip),resy(ip)
262 enddo
263 endif
264
265 c rchi2=chi2/dble(ndof)
266 if(DEBUG)then
267 print*,' '
268 print*,'****** SELECTED TRACK *************'
269 print*,'# R. chi2 RIG'
270 print*,' --- ',chi2,' --- '
271 $ ,1./abs(AL(5))
272 print*,'***********************************'
273 endif
274 * **********************************************************
275 * ************************** FIT *** FIT *** FIT *** FIT ***
276 * **********************************************************
277
278
279 * ------------- search if the track has an IMAGE -------------
280 * ------------- (also this is stored ) -------------
281 if(FIMAGE)goto 122 !>>> jump! (this is already an image)
282 * now search for track-image, by comparing couples IDs
283 do i=1,ntracks
284 iimage=i
285 do ip=1,nplanes
286 if( CP_STORE(nplanes-ip+1,icand).ne.
287 $ -1*CP_STORE(nplanes-ip+1,i) )iimage=0
288 enddo
289 if( iimage.ne.0.and.
290 c $ RCHI2_STORE(i).le.CHI2MAX.and.
291 c $ RCHI2_STORE(i).gt.0.and.
292 $ .true.)then
293 if(DEBUG)print*,'Track candidate ',iimage
294 $ ,' >>> TRACK IMAGE >>> of'
295 $ ,ibest
296 goto 122 !image track found
297 endif
298 enddo
299 122 continue
300
301 * --- and store the results --------------------------------
302 ntrk = ntrk + 1 !counter of found tracks
303 if(.not.FIMAGE
304 $ .and.iimage.eq.0) image(ntrk)= 0
305 if(.not.FIMAGE
306 $ .and.iimage.ne.0)image(ntrk)=ntrk+1 !this is the image of the next
307 if(FIMAGE) image(ntrk)=ntrk-1 !this is the image of the previous
308
309 call fill_level2_tracks(ntrk) !==> good2=.true.
310 c print*,'++++++++++ iimage,fimage,ntrk,image '
311 c $ ,iimage,fimage,ntrk,image(ntrk)
312
313 if(ntrk.eq.NTRKMAX)then
314 if(DEBUG)
315 $ print*,
316 $ '** warning ** number of identified '//
317 $ 'tracks exceeds vector dimension '
318 $ ,'( ',NTRKMAX,' )'
319 cc good2=.false.
320 goto 880 !fill ntp and go to next event
321 endif
322 if(iimage.ne.0)then
323 FIMAGE=.true. !
324 goto 1212 !>>> fit image-track
325 endif
326
327 * --- then remove selected clusters (ibest+iimage) from clouds ----
328 call clean_XYclouds(ibest,iflag)
329 if(iflag.eq.1)then !bad event
330 goto 880 !fill ntp and go to next event
331 endif
332
333 * **********************************************************
334 * condition to start a new search
335 * **********************************************************
336 ixznew=0
337 do ixz=1,nclouds_xz
338 if(ptcloud_xz(ixz).ge.nptxz_min)ixznew=1
339 enddo
340 iyznew=0
341 do iyz=1,nclouds_yz
342 if(ptcloud_yz(iyz).ge.nptyz_min)iyznew=1
343 enddo
344
345 if(ixznew.ne.0.and.
346 $ iyznew.ne.0.and.
347 $ rchi2best.le.CHI2MAX.and.
348 c $ rchi2best.lt.15..and.
349 $ .true.)then
350 if(DEBUG)then
351 print*,'***** NEW SEARCH ****'
352 endif
353 goto 11111 !try new search
354
355 endif
356 * **********************************************
357
358
359
360 880 return
361 end
362
363
364
365
366 c$$$************************************************************
367 c$$$
368 c$$$ subroutine readmipparam
369 c$$$
370 c$$$ include '../common/commontracker.f'
371 c$$$ include '../common/calib.f'
372 c$$$
373 c$$$ character*60 fname_param
374 c$$$ 201 format('trk-LADDER',i1,'-mip.dat')
375 c$$$ do ilad=1,nladders_view
376 c$$$ write(fname_param,201)ilad
377 c$$$ print *,'Opening file: ',fname_param
378 c$$$ open(10,
379 c$$$ $ FILE='./bin-aux/'//fname_param(1:LNBLNK(fname_param))
380 c$$$ $ ,STATUS='UNKNOWN'
381 c$$$ $ ,IOSTAT=iostat
382 c$$$ $ )
383 c$$$ if(iostat.ne.0)then
384 c$$$ print*,'READMIPPARAM: *** Error in opening file ***'
385 c$$$ return
386 c$$$ endif
387 c$$$ do iv=1,nviews
388 c$$$ read(10,*
389 c$$$ $ ,IOSTAT=iostat
390 c$$$ $ )pip,
391 c$$$ $ mip(int(pip),ilad)
392 c$$$c print*,ilad,iv,pip,mip(int(pip),ilad)
393 c$$$ enddo
394 c$$$ close(10)
395 c$$$ enddo
396 c$$$
397 c$$$ return
398 c$$$ end
399 c$$$*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * ***
400 c$$$ subroutine readchargeparam
401 c$$$
402 c$$$
403 c$$$ include '../common/commontracker.f'
404 c$$$ include '../common/calib.f'
405 c$$$
406 c$$$ character*60 fname_param
407 c$$$ 201 format('charge-l',i1,'.dat')
408 c$$$ do ilad=1,nladders_view
409 c$$$ write(fname_param,201)ilad
410 c$$$ print *,'Opening file: ',fname_param
411 c$$$ open(10,
412 c$$$ $ FILE='./bin-aux/'//fname_param(1:LNBLNK(fname_param))
413 c$$$ $ ,STATUS='UNKNOWN'
414 c$$$ $ ,IOSTAT=iostat
415 c$$$ $ )
416 c$$$ if(iostat.ne.0)then
417 c$$$ print*,'READCHARGEPARAM: *** Error in opening file ***'
418 c$$$ return
419 c$$$ endif
420 c$$$ do ip=1,nplanes
421 c$$$ read(10,*
422 c$$$ $ ,IOSTAT=iostat
423 c$$$ $ )pip,
424 c$$$ $ kch(ip,ilad),cch(ip,ilad),sch(ip,ilad)
425 c$$$c print*,ilad,ip,pip,kch(ip,ilad),
426 c$$$c $ cch(ip,ilad),sch(ip,ilad)
427 c$$$ enddo
428 c$$$ close(10)
429 c$$$ enddo
430 c$$$
431 c$$$ return
432 c$$$ end
433 c$$$*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * ***
434 c$$$ subroutine readetaparam
435 c$$$* -----------------------------------------
436 c$$$* read eta2,3,4 calibration parameters
437 c$$$* and fill variables:
438 c$$$*
439 c$$$* eta2(netabin,nladders_view,nviews)
440 c$$$* eta3(2*netabin,nladders_view,nviews)
441 c$$$* eta4(2*netabin,nladders_view,nviews)
442 c$$$*
443 c$$$ include '../common/commontracker.f'
444 c$$$ include '../common/calib.f'
445 c$$$
446 c$$$ character*40 fname_binning
447 c$$$ character*40 fname_param
448 c$$$c character*120 cmd1
449 c$$$c character*120 cmd2
450 c$$$
451 c$$$
452 c$$$******retrieve ANGULAR BINNING info
453 c$$$ fname_binning='binning.dat'
454 c$$$ print *,'Opening file: ',fname_binning
455 c$$$ open(10,
456 c$$$ $ FILE='./bin-aux/'//fname_binning(1:LNBLNK(fname_binning))
457 c$$$ $ ,STATUS='UNKNOWN'
458 c$$$ $ ,IOSTAT=iostat
459 c$$$ $ )
460 c$$$ if(iostat.ne.0)then
461 c$$$ print*,'READETAPARAM: *** Error in opening file ***'
462 c$$$ return
463 c$$$ endif
464 c$$$ print*,'---- ANGULAR BINNING ----'
465 c$$$ print*,'Bin - angL - angR'
466 c$$$ 101 format(i2,' ',f6.2,' ',f6.2)
467 c$$$ do ibin=1,nangmax
468 c$$$ read(10,*
469 c$$$ $ ,IOSTAT=iostat
470 c$$$ $ )xnn,angL(ibin),angR(ibin)
471 c$$$ if(iostat.ne.0)goto 1000
472 c$$$ write(*,101)int(xnn),angL(ibin),angR(ibin)
473 c$$$ enddo
474 c$$$ 1000 nangbin=int(xnn)
475 c$$$ close(10)
476 c$$$ print*,'-------------------------'
477 c$$$
478 c$$$
479 c$$$
480 c$$$ do ieta=2,4 !loop on eta 2,3,4
481 c$$$******retrieve correction parameters
482 c$$$ 200 format(' Opening eta',i1,' files...')
483 c$$$ write(*,200)ieta
484 c$$$
485 c$$$ 201 format('eta',i1,'-bin',i1,'-l',i1,'.dat')
486 c$$$ 202 format('eta',i1,'-bin',i2,'-l',i1,'.dat')
487 c$$$ do iang=1,nangbin
488 c$$$ do ilad=1,nladders_view
489 c$$$ if(iang.lt.10)write(fname_param,201)ieta,iang,ilad
490 c$$$ if(iang.ge.10)write(fname_param,202)ieta,iang,ilad
491 c$$$c print *,'Opening file: ',fname_param
492 c$$$ open(10,
493 c$$$ $ FILE='./bin-aux/'//fname_param(1:LNBLNK(fname_param))
494 c$$$ $ ,STATUS='UNKNOWN'
495 c$$$ $ ,IOSTAT=iostat
496 c$$$ $ )
497 c$$$ if(iostat.ne.0)then
498 c$$$ print*,'READETAPARAM: *** Error in opening file ***'
499 c$$$ return
500 c$$$ endif
501 c$$$ do ival=1,netavalmax
502 c$$$ if(ieta.eq.2)read(10,*
503 c$$$ $ ,IOSTAT=iostat
504 c$$$ $ )
505 c$$$ $ eta2(ival,iang),
506 c$$$ $ (feta2(ival,iv,ilad,iang),iv=1,nviews)
507 c$$$ if(ieta.eq.3)read(10,*
508 c$$$ $ ,IOSTAT=iostat
509 c$$$ $ )
510 c$$$ $ eta3(ival,iang),
511 c$$$ $ (feta3(ival,iv,ilad,iang),iv=1,nviews)
512 c$$$ if(ieta.eq.4)read(10,*
513 c$$$ $ ,IOSTAT=iostat
514 c$$$ $ )
515 c$$$ $ eta4(ival,iang),
516 c$$$ $ (feta4(ival,iv,ilad,iang),iv=1,nviews)
517 c$$$ if(iostat.ne.0)then
518 c$$$ netaval=ival-1
519 c$$$c$$$ if(eta2(1,iang).ne.-eta2(netaval,iang))
520 c$$$c$$$ $ print*,'**** ERROR on parameters !!! ****'
521 c$$$ goto 2000
522 c$$$ endif
523 c$$$ enddo
524 c$$$ 2000 close(10)
525 c$$$* print*,'... done'
526 c$$$ enddo
527 c$$$ enddo
528 c$$$
529 c$$$ enddo !end loop on eta 2,3,4
530 c$$$
531 c$$$
532 c$$$ return
533 c$$$ end
534 c$$$
535
536
537 ************************************************************
538 ************************************************************
539 ************************************************************
540 ************************************************************
541 *
542 * This routine provides the coordinates (in cm) in the PAMELA reference system:
543 * - of the point associated with a COUPLE ---> (xPAM,yPAM,zPAM)
544 * - of the extremes of the segment
545 * associated with a SINGLET ---------------> (xPAM_A,yPAM_A,zPAM_A)
546 * ---> (xPAM_B,yPAM_B,zPAM_B)
547 *
548 * It also assigns the spatial resolution to the evaluated coordinates,
549 * as a function (in principle) of the multiplicity, the angle, the PFA etc...
550 *
551 *
552 * To call the routine you must pass the arguments:
553 * icx - ID of cluster x
554 * icy - ID of cluster y
555 * sensor - sensor (1,2)
556 * PFAx - Position Finding Algorithm in x (COG2,ETA2,...)
557 * PFAy - Position Finding Algorithm in y (COG2,ETA2,...)
558 * angx - Projected angle in x
559 * angy - Projected angle in y
560 *
561 * --------- COUPLES -------------------------------------------------------
562 * The couple defines a point in the space.
563 * The coordinates of the point are evaluated as follows:
564 * 1 - the corrected coordinates relative to the sensor are evaluated
565 * according to the chosen PFA --> (xi,yi,0)
566 * 2 - coordinates are rotated and traslated, according to the aligmnet
567 * parameters, and expressed in the reference system of the mechanical
568 * sensor --> (xrt,yrt,zrt)
569 * 3 - coordinates are finally converted to the PAMELA reference system
570 * --> (xPAM,yPAM,zPAM)
571 *
572 * --------- SINGLETS -------------------------------------------------------
573 * Since a coordinate is missing, the singlet defines not a point
574 * in the space but a segment AB (parallel to the strips).
575 * In this case the routine returns the coordinates in the PAMELA reference
576 * system of the two extremes A and B of the segment:
577 * --> (xPAM_A,yPAM_A,zPAM_A)
578 * --> (xPAM_B,yPAM_B,zPAM_B)
579 *
580 * ==========================================================
581 *
582 * The output of the routine is stored in the commons:
583 *
584 * double precision xPAM,yPAM,zPAM
585 * common/coord_xyz_PAM/xPAM,yPAM,zPAM
586 *
587 * double precision xPAM_A,yPAM_A,zPAM_A
588 * double precision xPAM_B,yPAM_B,zPAM_B
589 * common/coord_AB_PAM/xPAM_A,yPAM_A,zPAM_A,xPAM_B,yPAM_B,zPAM_B
590 *
591 * double precision resxPAM,resyPAM
592 * common/resolution_PAM/resxPAM,resyPAM
593 *
594 * (in file ../common/common_xyzPAM.f)
595 *
596 *
597
598 subroutine xyz_PAM(icx,icy,sensor,PFAx,PFAy,angx,angy)
599
600 c*****************************************************
601 c 07/10/2005 modified by elena vannuccini --> (1)
602 c 01/02/2006 modified by elena vannuccini --> (2)
603 c 02/02/2006 modified by Elena Vannuccini --> (3)
604 c (implemented new p.f.a.)
605 c 03/02/2006 modified by Elena Vannuccini --> (4)
606 c (implemented variable resolution)
607 c*****************************************************
608
609 include '../common/commontracker.f'
610 include '../common/calib.f'
611 include '../common/level1.f'
612 include '../common/common_align.f'
613 include '../common/common_mech.f'
614 include '../common/common_xyzPAM.f'
615 include '../common/common_resxy.f'
616
617 logical DEBUG
618 common/dbg/DEBUG
619
620 integer icx,icy !X-Y cluster ID
621 integer sensor
622 integer viewx,viewy
623 character*4 PFAx,PFAy !PFA to be used
624 real angx,angy !X-Y angle
625
626 real stripx,stripy
627
628 double precision xrt,yrt,zrt
629 double precision xrt_A,yrt_A,zrt_A
630 double precision xrt_B,yrt_B,zrt_B
631 c double precision xi,yi,zi
632 c double precision xi_A,yi_A,zi_A
633 c double precision xi_B,yi_B,zi_B
634
635
636 parameter (ndivx=30)
637
638 resxPAM = 0
639 resyPAM = 0
640
641 xPAM = 0.
642 yPAM = 0.
643 zPAM = 0.
644 xPAM_A = 0.
645 yPAM_A = 0.
646 zPAM_A = 0.
647 xPAM_B = 0.
648 yPAM_B = 0.
649 zPAM_B = 0.
650
651 * -----------------
652 * CLUSTER X
653 * -----------------
654
655 if(icx.ne.0)then
656 viewx = VIEW(icx)
657 nldx = nld(MAXS(icx),VIEW(icx))
658 nplx = npl(VIEW(icx))
659 resxPAM = RESXAV !!!!!!!TEMPORANEO!!!!!!!!!!!!!!!!
660
661 stripx = float(MAXS(icx))
662 if(PFAx.eq.'COG1')then !(1)
663 stripx = stripx !(1)
664 resxPAM = resxPAM !(1)
665 elseif(PFAx.eq.'COG2')then
666 stripx = stripx + cog(2,icx)
667 resxPAM = resxPAM*fbad_cog(2,icx)
668 elseif(PFAx.eq.'ETA2')then
669 c cog2 = cog(2,icx)
670 c etacorr = pfa_eta2(cog2,viewx,nldx,angx)
671 c stripx = stripx + etacorr
672 stripx = stripx + pfa_eta2(icx,angx) !(3)
673 resxPAM = risx_eta2(angx) ! (4)
674 if(DEBUG.and.fbad_cog(2,icx).ne.1)
675 $ print*,'BAD icx >>> ',viewx,fbad_cog(2,icx)
676 resxPAM = resxPAM*fbad_cog(2,icx)
677 elseif(PFAx.eq.'ETA3')then !(3)
678 stripx = stripx + pfa_eta3(icx,angx) !(3)
679 resxPAM = risx_eta3(angx) ! (4)
680 if(DEBUG.and.fbad_cog(3,icx).ne.1) !(3)
681 $ print*,'BAD icx >>> ',viewx,fbad_cog(3,icx)!(3)
682 resxPAM = resxPAM*fbad_cog(3,icx) !(3)
683 elseif(PFAx.eq.'ETA4')then !(3)
684 stripx = stripx + pfa_eta4(icx,angx) !(3)
685 resxPAM = risx_eta4(angx) ! (4)
686 if(DEBUG.and.fbad_cog(4,icx).ne.1) !(3)
687 $ print*,'BAD icx >>> ',viewx,fbad_cog(4,icx)!(3)
688 resxPAM = resxPAM*fbad_cog(4,icx) !(3)
689 elseif(PFAx.eq.'ETA')then !(3)
690 stripx = stripx + pfa_eta(icx,angx) !(3)
691 resxPAM = ris_eta(icx,angx) ! (4)
692 if(DEBUG.and.fbad_cog(2,icx).ne.1) !(3)
693 $ print*,'BAD icx >>> ',viewx,fbad_cog(2,icx)!(3)
694 c resxPAM = resxPAM*fbad_cog(2,icx) !(3)TEMPORANEO
695 resxPAM = resxPAM*fbad_eta(icx,angx) !(3)(4)
696 elseif(PFAx.eq.'COG')then !(2)
697 stripx = stripx + cog(0,icx) !(2)
698 resxPAM = risx_cog(angx) ! (4)
699 resxPAM = resxPAM*fbad_cog(0,icx)!(2)
700 else
701 print*,'*** Non valid p.f.a. (x) --> ',PFAx
702 endif
703
704 endif
705
706 * -----------------
707 * CLUSTER Y
708 * -----------------
709
710 if(icy.ne.0)then
711 viewy = VIEW(icy)
712 nldy = nld(MAXS(icy),VIEW(icy))
713 nply = npl(VIEW(icy))
714 resyPAM = RESYAV !!!!!!!TEMPORANEO!!!!!!!!!!!!!!!!
715
716
717 if(icx.ne.0.and.(nply.ne.nplx.or.nldy.ne.nldx))then
718 print*,'xyz_PAM ***ERROR*** invalid cluster couple!!! '
719 $ ,icx,icy
720 goto 100
721 endif
722
723 stripy = float(MAXS(icy))
724 if(PFAy.eq.'COG1')then !(1)
725 stripy = stripy !(1)
726 resyPAM = resyPAM !(1)
727 elseif(PFAy.eq.'COG2')then
728 stripy = stripy + cog(2,icy)
729 resyPAM = resyPAM*fbad_cog(2,icy)
730 elseif(PFAy.eq.'ETA2')then
731 c cog2 = cog(2,icy)
732 c etacorr = pfa_eta2(cog2,viewy,nldy,angy)
733 c stripy = stripy + etacorr
734 stripy = stripy + pfa_eta2(icy,angy) !(3)
735 resyPAM = risy_eta2(angy) ! (4)
736 resyPAM = resyPAM*fbad_cog(2,icy)
737 if(DEBUG.and.fbad_cog(2,icy).ne.1)
738 $ print*,'BAD icy >>> ',viewy,fbad_cog(2,icy)
739 elseif(PFAy.eq.'ETA3')then !(3)
740 stripy = stripy + pfa_eta3(icy,angy) !(3)
741 resyPAM = resyPAM*fbad_cog(3,icy) !(3)
742 if(DEBUG.and.fbad_cog(3,icy).ne.1) !(3)
743 $ print*,'BAD icy >>> ',viewy,fbad_cog(3,icy)!(3)
744 elseif(PFAy.eq.'ETA4')then !(3)
745 stripy = stripy + pfa_eta4(icy,angy) !(3)
746 resyPAM = resyPAM*fbad_cog(4,icy) !(3)
747 if(DEBUG.and.fbad_cog(4,icy).ne.1) !(3)
748 $ print*,'BAD icy >>> ',viewy,fbad_cog(4,icy)!(3)
749 elseif(PFAy.eq.'ETA')then !(3)
750 stripy = stripy + pfa_eta(icy,angy) !(3)
751 resyPAM = ris_eta(icy,angy) ! (4)
752 c resyPAM = resyPAM*fbad_cog(2,icy) !(3)TEMPORANEO
753 resyPAM = resyPAM*fbad_eta(icy,angy) ! (4)
754 if(DEBUG.and.fbad_cog(2,icy).ne.1) !(3)
755 $ print*,'BAD icy >>> ',viewy,fbad_cog(2,icy)!(3)
756 elseif(PFAy.eq.'COG')then
757 stripy = stripy + cog(0,icy)
758 resyPAM = risy_cog(angy) ! (4)
759 c resyPAM = ris_eta(icy,angy) ! (4)
760 resyPAM = resyPAM*fbad_cog(0,icy)
761 else
762 print*,'*** Non valid p.f.a. (x) --> ',PFAx
763 endif
764
765 endif
766
767
768 c===========================================================
769 C COUPLE
770 C===========================================================
771 if(icx.ne.0.and.icy.ne.0)then
772
773 c------------------------------------------------------------------------
774 c (xi,yi,zi) = mechanical coordinates in the silicon sensor frame
775 c------------------------------------------------------------------------
776 xi = acoordsi(stripx,viewx)
777 yi = acoordsi(stripy,viewy)
778 zi = 0.
779
780
781 c------------------------------------------------------------------------
782 c (xrt,yrt,zrt) = rototranslated coordinates in the silicon sensor frame
783 c------------------------------------------------------------------------
784 c N.B. I convert angles from microradiants to radiants
785
786 xrt = xi
787 $ - omega(nplx,nldx,sensor)*yi
788 $ + gamma(nplx,nldx,sensor)*zi
789 $ + dx(nplx,nldx,sensor)
790
791 yrt = omega(nplx,nldx,sensor)*xi
792 $ + yi
793 $ - beta(nplx,nldx,sensor)*zi
794 $ + dy(nplx,nldx,sensor)
795
796 zrt = -gamma(nplx,nldx,sensor)*xi
797 $ + beta(nplx,nldx,sensor)*yi
798 $ + zi
799 $ + dz(nplx,nldx,sensor)
800
801 c xrt = xi
802 c yrt = yi
803 c zrt = zi
804
805 c------------------------------------------------------------------------
806 c (xPAM,yPAM,zPAM) = measured coordinates (in cm)
807 c in PAMELA reference system
808 c------------------------------------------------------------------------
809
810 xPAM = dcoord(xrt,viewx,nldx,sensor) / 1.d4
811 yPAM = dcoord(yrt,viewy,nldy,sensor) / 1.d4
812 zPAM = ( zrt + z_mech_sensor(nplx,nldx,sensor)*1000. ) / 1.d4
813
814 xPAM_A = 0.
815 yPAM_A = 0.
816 zPAM_A = 0.
817
818 xPAM_B = 0.
819 yPAM_B = 0.
820 zPAM_B = 0.
821
822 elseif(
823 $ (icx.ne.0.and.icy.eq.0).or.
824 $ (icx.eq.0.and.icy.ne.0).or.
825 $ .false.
826 $ )then
827
828 c------------------------------------------------------------------------
829 c (xi,yi,zi) = mechanical coordinates in the silicon sensor frame
830 c------------------------------------------------------------------------
831
832 if(icy.ne.0)then
833 c===========================================================
834 C Y-SINGLET
835 C===========================================================
836 nplx = nply
837 nldx = nldy
838 viewx = viewy + 1
839
840 yi = acoordsi(stripy,viewy)
841
842 xi_A = edgeY_d - SiDimX/2
843 yi_A = yi
844 zi_A = 0.
845
846 xi_B = SiDimX/2 - edgeY_u
847 yi_B = yi
848 zi_B = 0.
849
850 c print*,'Y-cl ',icy,stripy,' --> ',yi
851 c print*,xi_A,' <--> ',xi_B
852
853 elseif(icx.ne.0)then
854 c===========================================================
855 C X-SINGLET
856 C===========================================================
857
858 nply = nplx
859 nldy = nldx
860 viewy = viewx - 1
861
862 xi = acoordsi(stripx,viewx)
863
864 xi_A = xi
865 yi_A = edgeX_d - SiDimY/2
866 zi_A = 0.
867
868 xi_B = xi
869 yi_B = SiDimY/2 - edgeX_u
870 zi_B = 0.
871
872 if(viewy.eq.11)then
873 yi = yi_A
874 yi_A = yi_B
875 yi_B = yi
876 endif
877
878 c print*,'X-cl ',icx,stripx,' --> ',xi
879 c print*,yi_A,' <--> ',yi_B
880
881 else
882
883 print *,'routine xyz_PAM ---> not properly used !!!'
884 print *,'icx = ',icx
885 print *,'icy = ',icy
886 goto 100
887
888 endif
889 c------------------------------------------------------------------------
890 c (xrt,yrt,zrt) = rototranslated coordinates in the silicon sensor frame
891 c------------------------------------------------------------------------
892 c N.B. I convert angles from microradiants to radiants
893
894 xrt_A = xi_A
895 $ - omega(nplx,nldx,sensor)*yi_A
896 $ + gamma(nplx,nldx,sensor)*zi_A
897 $ + dx(nplx,nldx,sensor)
898
899 yrt_A = omega(nplx,nldx,sensor)*xi_A
900 $ + yi_A
901 $ - beta(nplx,nldx,sensor)*zi_A
902 $ + dy(nplx,nldx,sensor)
903
904 zrt_A = -gamma(nplx,nldx,sensor)*xi_A
905 $ + beta(nplx,nldx,sensor)*yi_A
906 $ + zi_A
907 $ + dz(nplx,nldx,sensor)
908
909 xrt_B = xi_B
910 $ - omega(nplx,nldx,sensor)*yi_B
911 $ + gamma(nplx,nldx,sensor)*zi_B
912 $ + dx(nplx,nldx,sensor)
913
914 yrt_B = omega(nplx,nldx,sensor)*xi_B
915 $ + yi_B
916 $ - beta(nplx,nldx,sensor)*zi_B
917 $ + dy(nplx,nldx,sensor)
918
919 zrt_B = -gamma(nplx,nldx,sensor)*xi_B
920 $ + beta(nplx,nldx,sensor)*yi_B
921 $ + zi_B
922 $ + dz(nplx,nldx,sensor)
923
924
925 c xrt = xi
926 c yrt = yi
927 c zrt = zi
928
929 c------------------------------------------------------------------------
930 c (xPAM,yPAM,zPAM) = measured coordinates (in cm)
931 c in PAMELA reference system
932 c------------------------------------------------------------------------
933
934 xPAM = 0.
935 yPAM = 0.
936 zPAM = 0.
937
938 xPAM_A = dcoord(xrt_A,viewx,nldx,sensor) / 1.d4
939 yPAM_A = dcoord(yrt_A,viewy,nldy,sensor) / 1.d4
940 zPAM_A = ( zrt_A + z_mech_sensor(nplx,nldx,sensor)*1000.)/ 1.d4
941
942 xPAM_B = dcoord(xrt_B,viewx,nldx,sensor) / 1.d4
943 yPAM_B = dcoord(yrt_B,viewy,nldy,sensor) / 1.d4
944 zPAM_B = ( zrt_B + z_mech_sensor(nplx,nldx,sensor)*1000.)/ 1.d4
945
946
947 c print*,'A-(',xPAM_A,yPAM_A,') B-(',xPAM_B,yPAM_B,')'
948
949 else
950
951 print *,'routine xyz_PAM ---> not properly used !!!'
952 print *,'icx = ',icx
953 print *,'icy = ',icy
954
955 endif
956
957 100 continue
958 end
959
960
961 ********************************************************************************
962 ********************************************************************************
963 ********************************************************************************
964 *
965 * The function distance_to(XP,YP) should be used after
966 * a call to the xyz_PAM routine and it evaluate the
967 * NORMALIZED distance (PROJECTED on the XY plane) between
968 * the point (XP,YP), argument of the function,
969 * and:
970 *
971 * - the point (xPAM,yPAM,zPAM), in the case of a COUPLE
972 * or
973 * - the segment (xPAM_A,yPAM_A,zPAM_A)-(xPAM_B,yPAM_B,zPAM_B),
974 * in the case of a SINGLET.
975 *
976 * ( The routine xyz_PAM fills the common defined in "common_xyzPAM.f",
977 * which stores the coordinates of the couple/singlet )
978 *
979 ********************************************************************************
980
981 real function distance_to(XPP,YPP)
982
983 include '../common/common_xyzPAM.f'
984
985 * -----------------------------------
986 * it computes the normalized distance
987 * ( i.e. distance/resolution )
988 * -----------------------------------
989
990 double precision distance,RE
991 double precision BETA,ALFA,xmi,ymi
992
993 * ----------------------
994 if (
995 + xPAM.eq.0.and.
996 + yPAM.eq.0.and.
997 + zPAM.eq.0.and.
998 + xPAM_A.ne.0.and.
999 + yPAM_A.ne.0.and.
1000 + zPAM_A.ne.0.and.
1001 + xPAM_B.ne.0.and.
1002 + yPAM_B.ne.0.and.
1003 + zPAM_B.ne.0.and.
1004 + .true.)then
1005 * -----------------------
1006 * DISTANCE TO --- SINGLET
1007 * -----------------------
1008 if(abs(sngl(xPAM_B-xPAM_A)).lt.abs(sngl(yPAM_B-yPAM_A)))then
1009 * |||---------- X CLUSTER
1010
1011 BETA = (xPAM_B-xPAM_A)/(yPAM_B-yPAM_A)
1012 ALFA = xPAM_A - BETA * yPAM_A
1013
1014 ymi = ( YPP + BETA*XPP - BETA*ALFA )/(1+BETA**2)
1015 if(ymi.lt.dmin1(yPAM_A,yPAM_B))ymi=dmin1(yPAM_A,yPAM_B)
1016 if(ymi.gt.dmax1(yPAM_A,yPAM_B))ymi=dmax1(yPAM_A,yPAM_B)
1017 xmi = ALFA + BETA * ymi
1018 RE = resxPAM
1019
1020 else
1021 * |||---------- Y CLUSTER
1022
1023 BETA = (yPAM_B-yPAM_A)/(xPAM_B-xPAM_A)
1024 ALFA = yPAM_A - BETA * xPAM_A
1025
1026 xmi = ( XPP + BETA*YPP - BETA*ALFA )/(1+BETA**2)
1027 if(xmi.lt.dmin1(xPAM_A,xPAM_B))xmi=dmin1(xPAM_A,xPAM_B)
1028 if(xmi.gt.dmax1(xPAM_A,xPAM_B))xmi=dmax1(xPAM_A,xPAM_B)
1029 ymi = ALFA + BETA * xmi
1030 RE = resyPAM
1031
1032 endif
1033
1034 distance=
1035 $ ((xmi-XPP)**2+(ymi-YPP)**2)/RE**2
1036 distance=dsqrt(distance)
1037
1038 c$$$ print*,xPAM_A,yPAM_A,zPAM_A,xPAM_b,yPAM_b,zPAM_b
1039 c$$$ $ ,' --- distance_to --- ',xpp,ypp
1040 c$$$ print*,' resolution ',re
1041
1042
1043 * ----------------------
1044 elseif(
1045 + xPAM.ne.0.and.
1046 + yPAM.ne.0.and.
1047 + zPAM.ne.0.and.
1048 + xPAM_A.eq.0.and.
1049 + yPAM_A.eq.0.and.
1050 + zPAM_A.eq.0.and.
1051 + xPAM_B.eq.0.and.
1052 + yPAM_B.eq.0.and.
1053 + zPAM_B.eq.0.and.
1054 + .true.)then
1055 * ----------------------
1056 * DISTANCE TO --- COUPLE
1057 * ----------------------
1058
1059 distance=
1060 $ ((xPAM-XPP)/resxPAM)**2
1061 $ +
1062 $ ((yPAM-YPP)/resyPAM)**2
1063 distance=dsqrt(distance)
1064
1065 c$$$ print*,xPAM,yPAM,zPAM
1066 c$$$ $ ,' --- distance_to --- ',xpp,ypp
1067 c$$$ print*,' resolution ',resxPAM,resyPAM
1068
1069 else
1070
1071 print*
1072 $ ,' function distance_to ---> wrong usage!!!'
1073 print*,' xPAM,yPAM,zPAM ',xPAM,yPAM,zPAM
1074 print*,' xPAM_A,yPAM_A,zPAM_A,xPAM_b,yPAM_b,zPAM_b '
1075 $ ,xPAM_A,yPAM_A,zPAM_A,xPAM_b,yPAM_b,zPAM_b
1076 endif
1077
1078 distance_to = sngl(distance)
1079
1080 return
1081 end
1082
1083 ********************************************************************************
1084 ********************************************************************************
1085 ********************************************************************************
1086 ********************************************************************************
1087
1088 subroutine whichsensor(nplPAM,xPAM,yPAM,ladder,sensor)
1089 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
1090 * Given the plane (1-6 from BOTTOM to TOP!!) and the (xPAM,yPAM)
1091 * coordinates (in the PAMELA reference system), it returns
1092 * the ladder and the sensor which the point belongs to.
1093 *
1094 * The method to assign a point to a sensor consists in
1095 * - calculating the sum of the distances between the point
1096 * and the sensor edges
1097 * - requiring that it is less-equal than (SiDimX+SiDimY)
1098 *
1099 * NB -- SiDimX and SiDimY are not the dimentions of the SENSITIVE volume
1100 * but of the whole silicon sensor
1101 *
1102 * CONVENTION:
1103 * - sensor 1 is the one closest to the hybrid
1104 * - ladder 1 is the first to be read out (strips from 1 to 1024)
1105 *
1106 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
1107 include '../common/commontracker.f'
1108 include '../common/common_align.f'
1109
1110 integer ladder,sensor,viewx,viewy
1111 real c1(4),c2(4),c3(4)
1112 data c1/1.,0.,0.,1./
1113 data c2/1.,-1.,-1.,1./
1114 data c3/1.,1.,0.,0./
1115 real*8 yvvv,xvvv
1116 double precision xi,yi,zi
1117 double precision xrt,yrt,zrt
1118 real AA,BB
1119 real yvv(4),xvv(4)
1120
1121 * tollerance to consider the track inside the sensitive area
1122 real ptoll
1123 data ptoll/150./ !um
1124
1125 external nviewx,nviewy,acoordsi,dcoord
1126
1127 nplpt = nplPAM !plane
1128 viewx = nviewx(nplpt)
1129 viewy = nviewy(nplpt)
1130
1131 do il=1,nladders_view
1132 do is=1,2
1133
1134 do iv=1,4 !loop on sensor vertexes
1135 stripx = (il-c1(iv))*1024 + c1(iv) + c2(iv)*3
1136 stripy = (il-c3(iv))*1024 + c3(iv)
1137 c------------------------------------------------------------------------
1138 c (xi,yi,zi) = mechanical coordinates in the silicon sensor frame
1139 c------------------------------------------------------------------------
1140 xi = acoordsi(stripx,viewx)
1141 yi = acoordsi(stripy,viewy)
1142 zi = 0.
1143 c------------------------------------------------------------------------
1144 c (xrt,yrt,zrt) = rototranslated coordinates in the silicon sensor frame
1145 c------------------------------------------------------------------------
1146 c N.B. I convert angles from microradiants to radiants
1147 xrt = xi
1148 $ - omega(nplpt,il,is)*yi
1149 $ + gamma(nplpt,il,is)*zi
1150 $ + dx(nplpt,il,is)
1151 yrt = omega(nplpt,il,is)*xi
1152 $ + yi
1153 $ - beta(nplpt,il,is)*zi
1154 $ + dy(nplpt,il,is)
1155 zrt = -gamma(nplpt,il,is)*xi
1156 $ + beta(nplpt,il,is)*yi
1157 $ + zi
1158 $ + dz(nplpt,il,is)
1159 c------------------------------------------------------------------------
1160 c measured coordinates (in cm) in PAMELA reference system
1161 c------------------------------------------------------------------------
1162 yvvv = dcoord(yrt,viewy,il,is) / 1.d4
1163 xvvv = dcoord(xrt,viewx,il,is) / 1.d4
1164
1165 yvv(iv)=sngl(yvvv)
1166 xvv(iv)=sngl(xvvv)
1167 c print*,'LADDER ',il,' SENSOR ',is,' vertexes >> '
1168 c $ ,iv,xvv(iv),yvv(iv)
1169 enddo !end loop on sensor vertexes
1170
1171 dtot=0.
1172 do iside=1,4,2 !loop on sensor edges X
1173 iv1=iside
1174 iv2=mod(iside,4)+1
1175 * straight line passing trhough two consecutive vertexes
1176 AA = (yvv(iv1)-yvv(iv2))/(xvv(iv1)-xvv(iv2))
1177 BB = yvv(iv1) - AA*xvv(iv1)
1178 * point along the straight line closer to the track
1179 xoo = (xPAM+AA*yPAM-AA*BB)/(1+AA**2)
1180 yoo = AA*xoo + BB
1181 * sum of the distances
1182 dtot = dtot +
1183 $ sqrt((xPAM-xoo)**2+(yPAM-yoo)**2)
1184 enddo !end loop on sensor edges
1185 do iside=2,4,2 !loop on sensor edges Y
1186 iv1=iside
1187 iv2=mod(iside,4)+1
1188 * straight line passing trhough two consecutive vertexes
1189 AA = (xvv(iv1)-xvv(iv2))/(yvv(iv1)-yvv(iv2))
1190 BB = xvv(iv1) - AA*yvv(iv1)
1191 * point along the straight line closer to the track
1192 yoo = (yPAM+AA*xPAM-AA*BB)/(1+AA**2)
1193 xoo = AA*yoo + BB
1194 * sum of the distances
1195 dtot = dtot +
1196 $ sqrt((xPAM-xoo)**2+(yPAM-yoo)**2)
1197 enddo !end loop on sensor edges
1198
1199
1200 * half-perimeter of sensitive area
1201 Perim =
1202 $ SiDimX - edgeX_l - edgeX_r
1203 $ +SiDimY - edgeY_l - edgeY_r
1204 Perim = (Perim + ptoll)/1.e4
1205 if(dtot.le.Perim)goto 100
1206
1207
1208 enddo
1209 enddo
1210
1211 ladder = 0
1212 sensor = 0
1213 goto 200
1214
1215 100 continue
1216 ladder = il
1217 sensor = is
1218
1219
1220 200 return
1221 end
1222
1223
1224
1225 *************************************************************************
1226
1227 subroutine reverse(v,n,temp) !invert the order of the components of v(n) vector
1228
1229 implicit double precision (A-H,O-Z)
1230
1231 dimension v(*)
1232 dimension temp(*)
1233 integer i,n
1234
1235 do i=1,n
1236 temp(i)=v(n+1-i)
1237 enddo
1238
1239 do i=1,n
1240 v(i)=temp(i)
1241 enddo
1242
1243 return
1244 end
1245
1246 *************************************************************************
1247 *************************************************************************
1248 *************************************************************************
1249 *************************************************************************
1250 *************************************************************************
1251 *************************************************************************
1252 *************************************************************************
1253 *************************************************************************
1254 *************************************************************************
1255 *************************************************************************
1256 *************************************************************************
1257 *************************************************************************
1258 *************************************************************************
1259 *************************************************************************
1260 *************************************************************************
1261 integer function ip_cp(id)
1262 *
1263 * given the couple id,
1264 * it returns the plane number
1265 *
1266 include '../common/commontracker.f'
1267 c include '../common/common_analysis.f'
1268 include '../common/common_momanhough.f'
1269
1270 ip_cp=0
1271 ncpp=0
1272 do ip=1,nplanes
1273 ncpp=ncpp+ncp_plane(ip)
1274 if(ncpp.ge.abs(id))then
1275 ip_cp=ip
1276 goto 100
1277 endif
1278 enddo
1279 100 continue
1280 return
1281 end
1282
1283
1284 integer function is_cp(id)
1285 *
1286 * given the couple id,
1287 * it returns the sensor number
1288 *
1289 is_cp=0
1290 if(id.lt.0)is_cp=1
1291 if(id.gt.0)is_cp=2
1292 if(id.eq.0)print*,'IS_CP ===> wrong couple id !!!'
1293
1294 return
1295 end
1296
1297
1298 integer function icp_cp(id)
1299 *
1300 * given the couple id,
1301 * it returns the id number ON THE PLANE
1302 *
1303 include '../common/commontracker.f'
1304 c include '../common/common_analysis.f'
1305 include '../common/common_momanhough.f'
1306
1307 icp_cp=0
1308
1309 ncpp=0
1310 do ip=1,nplanes
1311 ncppold=ncpp
1312 ncpp=ncpp+ncp_plane(ip)
1313 if(ncpp.ge.abs(id))then
1314 icp_cp=abs(id)-ncppold
1315 goto 100
1316 endif
1317 enddo
1318 100 continue
1319 return
1320 end
1321
1322
1323
1324 integer function id_cp(ip,icp,is)
1325 *
1326 * given a plane, a couple and the sensor
1327 * it returns the absolute couple id
1328 * negative if sensor =1
1329 * positive if sensor =2
1330 *
1331 include '../common/commontracker.f'
1332 c include '../common/calib.f'
1333 c include '../common/level1.f'
1334 c include '../common/common_analysis.f'
1335 include '../common/common_momanhough.f'
1336
1337 id_cp=0
1338
1339 if(ip.gt.1)then
1340 do i=1,ip-1
1341 id_cp = id_cp + ncp_plane(i)
1342 enddo
1343 endif
1344
1345 id_cp = id_cp + icp
1346
1347 if(is.eq.1) id_cp = -id_cp
1348
1349 return
1350 end
1351
1352
1353
1354
1355 *************************************************************************
1356 *************************************************************************
1357 *************************************************************************
1358 *************************************************************************
1359 *************************************************************************
1360 *************************************************************************
1361 subroutine book_debug
1362
1363 include '../common/commontracker.f'
1364 include '../common/common_momanhough.f'
1365 include '../common/common_level2debug.f'
1366
1367 character*35 block1,block2,block3!,block4
1368 $ ,block5!,block6
1369
1370 * * * * * * * * * * * * * * * * * * * * * * * *
1371 * HOUGH TRANSFORM PARAMETERS
1372
1373 call HBOOK2(1003
1374 $ ,'y vs tg thyz'
1375 $ ,300,-1.,1. !x
1376 $ ,3000,-70.,70.,0.) !y
1377
1378 call HBOOK1(1004
1379 $ ,'Dy'
1380 $ ,100,0.,2.,0.)
1381
1382 call HBOOK1(1005
1383 $ ,'D thyz'
1384 $ ,100,0.,.05,0.)
1385
1386
1387
1388 * DEBUG ntuple:
1389 call HBNT(ntp_level2+1,'LEVEL2',' ')
1390
1391 call HBNAME(ntp_level2+1,'EVENT',good2_nt,
1392 $ 'GOOD2:L,NEV2:I')
1393
1394 411 format('NDBLT:I::[0,',I5,']')
1395 write(block1,411) ndblt_max_nt
1396 call HBNAME(ntp_level2+1,'HOUGH YZ',ndblt_nt,
1397 $ block1//'
1398 $ ,ALFAYZ1(NDBLT):R
1399 $ ,ALFAYZ2(NDBLT):R
1400 $ ,DB_CLOUD(NDBLT):I
1401 $ ')
1402
1403 412 format('NTRPT:I::[0,',I5,']')
1404 write(block2,412) ntrpt_max_nt
1405 call HBNAME(ntp_level2+1,'HOUGH XZ',NTRPT_nt,
1406 $ block2//'
1407 $ ,ALFAXZ1(NTRPT):R
1408 $ ,ALFAXZ2(NTRPT):R
1409 $ ,ALFAXZ3(NTRPT):R
1410 $ ,TR_CLOUD(NTRPT):I
1411 $ ')
1412
1413
1414 413 format('NCLOUDS_YZ:I::[0,',I4,']')
1415 c$$$ 414 format('DB_CLOUD(',I4,'):I')
1416 write(block3,413) ncloyz_max
1417 c$$$ write(block4,414) ndblt_max_nt
1418 call HBNAME(ntp_level2+1,'CLOUD YZ',NCLOUDS_YZ,
1419 $ block3//'
1420 $ ,ALFAYZ1_AV(NCLOUDS_YZ):R
1421 $ ,ALFAYZ2_AV(NCLOUDS_YZ):R
1422 $ ,PTCLOUD_YZ(NCLOUDS_YZ):I'
1423 c$$$ $ ,'//block4
1424 $ )
1425
1426 415 format('NCLOUDS_XZ:I::[0,',I4,']')
1427 c$$$ 416 format('TR_CLOUD(',I5,'):I')
1428 write(block5,415) ncloxz_max
1429 c$$$ write(block6,416) ntrpt_max_nt
1430 call HBNAME(ntp_level2+1,'CLOUD XZ',NCLOUDS_XZ,
1431 $ block5//'
1432 $ ,ALFAXZ1_AV(NCLOUDS_XZ):R
1433 $ ,ALFAXZ2_AV(NCLOUDS_XZ):R
1434 $ ,ALFAXZ3_AV(NCLOUDS_XZ):R
1435 $ ,PTCLOUD_XZ(NCLOUDS_XZ):I'
1436 c$$$ $ ,'//block6
1437 $ )
1438
1439
1440 return
1441 end
1442 ***...***...***...***...***...***...***...***...***...***...***...***...***...***...***...***
1443 *
1444 *
1445 *
1446 *
1447 *
1448 *
1449 *
1450 *
1451 *
1452 ***...***...***...***...***...***...***...***...***...***...***...***...***...***...***...***
1453 subroutine book_level2
1454 c*****************************************************
1455 cccccc 11/9/2005 modified by david fedele
1456 cccccc 07/10/2005 modified by elena vannuccini --> (2)
1457 c*****************************************************
1458
1459 include '../common/commontracker.f'
1460 include '../common/common_momanhough.f'
1461 include '../common/level2.f'
1462
1463 character*35 block1,block2
1464
1465 c print*,'__________ booking LEVEL2 n-tuple __________'
1466
1467 * LEVEL1 ntuple:
1468 call HBNT(ntp_level2,'LEVEL2',' ')
1469
1470 c*****************************************************
1471 cccccc 11/9/2005 modified by david fedele
1472 c call HBNAME(ntp_level2,'EVENT',good2,'GOOD2:L,NEV2:I')
1473 cccccc 06/10/2005 modified by elena vannuccini
1474 c call HBNAME(ntp_level2,'GENERAL',good2,'GOOD2:L,NEV2:I
1475 c $ ,WHIC_CALIB:I,SWCODE:I')
1476 call HBNAME(ntp_level2,'GENERAL',good2,'GOOD2:L,NEV2:I
1477 $ ,WHICH_CALIB:I,SWCODE:I,CRC(12):L')
1478 c*********************************************************
1479
1480
1481 # ifndef TEST2003
1482
1483 call HBNAME(ntp_level2,'CPU',pkt_type
1484 $ ,'PKT_TYPE:I::[0,50]
1485 $ ,PKT_NUM:I
1486 $ ,OBT:I'//
1487 c********************************************************
1488 cccccc 11/9/2005 modified by david fedele
1489 c $ ,WHICH_CALIB:I::[0,50]')
1490 $ ',CPU_CRC:L')
1491 c********************************************************
1492
1493 # endif
1494
1495 417 format('NTRK:I::[0,',I4,']')
1496 418 format(',IMAGE(NTRK):I::[0,',I4,']')
1497 write(block1,417)NTRKMAX
1498 write(block2,418)NTRKMAX
1499 call HBNAME(ntp_level2,'TRACKS',NTRK,
1500 $ block1//
1501 $ block2//'
1502 $ ,XM(6,NTRK):R
1503 $ ,YM(6,NTRK):R
1504 $ ,ZM(6,NTRK):R
1505 $ ,RESX(6,NTRK):R
1506 $ ,RESY(6,NTRK):R
1507 $ ,AL(5,NTRK):R
1508 $ ,COVAL(5,5,NTRK):R
1509 $ ,CHI2(NTRK):R
1510 $ ,XGOOD(6,NTRK):I::[0,1]
1511 $ ,YGOOD(6,NTRK):I::[0,1]
1512 $ ,XV(6,NTRK):R
1513 $ ,YV(6,NTRK):R
1514 $ ,ZV(6,NTRK):R
1515 $ ,AXV(6,NTRK):R
1516 $ ,AYV(6,NTRK):R'//
1517 c*****************************************************
1518 cccccc 11/9/2005 modified by david fedele
1519 c $ ,DEDXP(6,NTRK):R'//
1520 c $ ')
1521 $ ',DEDX_X(6,NTRK):R
1522 $ ,DEDX_Y(6,NTRK):R'//
1523 c****************************************************
1524 cccccc 06/10/2005 modified by elena vannuccini
1525 c $ ,CRC(12):L
1526 $ ',BdL(NTRK):R'
1527 $ )
1528 c****************************************************
1529
1530
1531 call HBNAME(ntp_level2,'SINGLETX',nclsx,
1532 c*****************************************************
1533 cccccc 11/9/2005 modified by david fedele
1534 c $ 'NCLSX(6):I,NCLSY(6):I')
1535 $ 'NCLSX:I::[0,500],PLANEX(NCLSX):I
1536 $ ,XS(2,NCLSX):R,SGNLXS(NCLSX):R') !(2)
1537 c $ ,XS(NCLSX):R,SGNLXS(NCLSX):R') !(2)
1538 call HBNAME(ntp_level2,'SINGLETY',nclsy,
1539 $ 'NCLSY:I::[0,500],PLANEY(NCLSY):I
1540 $ ,YS(2,NCLSY):R,SGNLYS(NCLSY):R') !(2)
1541 c $ ,YS(NCLSY):R,SGNLYS(NCLSY):R') !(2)
1542 return
1543 end
1544
1545 * ****************************************************
1546
1547 subroutine init_level2
1548
1549 c*****************************************************
1550 c 07/10/2005 modified by elena vannuccini --> (1)
1551 c*****************************************************
1552
1553 include '../common/commontracker.f'
1554 include '../common/common_momanhough.f'
1555 include '../common/level2.f'
1556 include '../common/level1.f'
1557
1558
1559
1560 good2 = .false.
1561 nev2 = nev1
1562
1563 # ifndef TEST2003
1564 c*****************************************************
1565 cccccc 11/9/2005 modified by david fedele
1566 c pkt_type = pkt_type1
1567 c pkt_num = pkt_num1
1568 c obt = obt1
1569 c which_calib = which_calib1
1570 swcode = 302
1571
1572 which_calib = which_calib1
1573 pkt_type = pkt_type1
1574 pkt_num = pkt_num1
1575 obt = obt1
1576 cpu_crc = cpu_crc1
1577 do iv=1,12
1578 crc(iv)=crc1(iv)
1579 enddo
1580 # endif
1581 c*****************************************************
1582
1583 NTRK = 0
1584 do it=1,NTRKMAX!NTRACKSMAX
1585 IMAGE(IT)=0
1586 CHI2_NT(IT) = -100000.
1587 BdL(IT) = 0.
1588 do ip=1,nplanes
1589 XM_nt(IP,IT) = 0
1590 YM_nt(IP,IT) = 0
1591 ZM_nt(IP,IT) = 0
1592 RESX_nt(IP,IT) = 0
1593 RESY_nt(IP,IT) = 0
1594 XGOOD_nt(IP,IT) = 0
1595 YGOOD_nt(IP,IT) = 0
1596 c*****************************************************
1597 cccccc 11/9/2005 modified by david fedele
1598 DEDX_X(IP,IT) = 0
1599 DEDX_Y(IP,IT) = 0
1600 c******************************************************
1601 enddo
1602 do ipa=1,5
1603 AL_nt(IPA,IT) = 0
1604 do ipaa=1,5
1605 coval(ipa,ipaa,IT)=0
1606 enddo
1607 enddo
1608 enddo
1609
1610
1611 c*****************************************************
1612 cccccc 11/9/2005 modified by david fedele
1613 nclsx=0
1614 nclsy=0
1615 do ip=1,NSINGMAX
1616 planex(ip)=0
1617 c xs(ip)=0
1618 xs(1,ip)=0
1619 xs(2,ip)=0
1620 sgnlxs(ip)=0
1621 planey(ip)=0
1622 c ys(ip)=0
1623 ys(1,ip)=0
1624 ys(2,ip)=0
1625 sgnlys(ip)=0
1626 enddo
1627 c*******************************************************
1628 end
1629
1630
1631
1632 subroutine init_level2_debug
1633
1634 c*****************************************************
1635 c 01/12/2005 createded by elena vannuccini
1636 c*****************************************************
1637
1638 include '../common/commontracker.f'
1639 include '../common/common_momanhough.f'
1640 include '../common/common_level2debug.f'
1641 include '../common/level2.f'
1642 c include '../common/level1.f'
1643
1644
1645 good2_nt = .false.
1646 nev2_nt = nev2
1647 ntrpt_nt=0
1648 ndblt_nt=0
1649 NCLOUDS_XZ_nt=0
1650 NCLOUDS_YZ_nt=0
1651 do idb=1,ndblt_max_nt
1652 db_cloud_nt(idb)=0
1653 enddo
1654 do itr=1,ntrpl_max_nt
1655 tr_cloud_nt(itr)=0
1656 enddo
1657 end
1658
1659 ************************************************************
1660 *
1661 *
1662 *
1663 *
1664 *
1665 *
1666 *
1667 ************************************************************
1668
1669
1670 subroutine fill_level2_tracks(ntr)
1671
1672 * -------------------------------------------------------
1673 * This routine fills the ntr-th element of the variables
1674 * inside the level2_tracks common, which correspond
1675 * to the ntr-th track info.
1676 * -------------------------------------------------------
1677 c*****************************************************
1678 cccccc 27/09/2005 modified by david fedele ---> (1)
1679 c to normalize al(3) and al(4)
1680 cccccc 07/10/2005 modified by elena vannuccini ---> (2)
1681 c to fill the new variables
1682 cccccc 12/10/2005 modified by elena vannuccini ---> (3)
1683 c to fill the BdL variable
1684 cccccc 20/10/2005 modified by elena vannuccini ---> (4)
1685 c bug in angular track-parameters
1686 c (tracking is wrong)
1687 c*****************************************************
1688
1689
1690 include '../common/commontracker.f'
1691 include '../common/level2.f'
1692 include '../common/common_mini_2.f'
1693 c real gamma,delta !(1)
1694 real sinth,phi,pig !(4)
1695 pig=acos(-1.)
1696
1697 good2=.true.
1698 chi2_nt(ntr) = sngl(chi2)
1699 c print*,chi2_nt(ntr)
1700 c*****************************************************
1701 cccccc (4)
1702 c*****************************************************
1703 c$$$ delta=al(4) !(1)
1704 c$$$ gamma=al(3) !(1)
1705 c$$$ if (cos(delta).gt.0) then !(1)
1706 c$$$ do idiv=1,100 !(1)
1707 c$$$ if (delta.gt.(PIGR/2)) then !(1)
1708 c$$$ delta=mod(al(4),(idiv*2*PIGR)) !(1)
1709 c$$$ endif !(1)
1710 c$$$ if((delta.lt.(PIGR/2)).and.(delta.gt.-(PIGR/2))) then !(1)
1711 c$$$ al(4)=delta !(1)
1712 c$$$ goto 42 !(1)
1713 c$$$ endif !(1)
1714 c$$$ enddo !(1)
1715 c$$$ elseif(cos(delta).lt.0) then !(1)
1716 c$$$ al(3)=-gamma !(1)
1717 c$$$ do idiv=1,100 !(1)
1718 c$$$ if (delta.gt.(PIGR/2)) then !(1)
1719 c$$$ delta=mod(al(4),(idiv*3*PIGR)) !(1)
1720 c$$$ endif !(1)
1721 c$$$ if((delta.lt.(3*PIGR/2)).and.(delta.gt.(PIGR/2)))then !(1)
1722 c$$$ al(4)=delta !(1)
1723 c$$$ goto 42 !(1)
1724 c$$$ endif !(1)
1725 c$$$ enddo !(1)
1726 c$$$ endif !(1)
1727 c$$$
1728 c$$$ 42 continue !(1)
1729 *****************************************************
1730 phi = al(4) !(4)
1731 sinth = al(3) !(4)
1732 if(sinth.lt.0)then !(4)
1733 sinth = -sinth !(4)
1734 phi = phi + pig !(4)
1735 endif !(4)
1736 npig = aint(phi/(2*pig)) !(4)
1737 phi = phi - npig*2*pig !(4)
1738 if(phi.lt.0) !(4)
1739 $ phi = phi + 2*pig !(4)
1740 al(4) = phi !(4)
1741 al(3) = sinth !(4)
1742 *****************************************************
1743 do i=1,5
1744 al_nt(i,ntr) = sngl(al(i))
1745 do j=1,5
1746 coval(i,j,ntr) = sngl(cov(i,j))
1747 enddo
1748 c print*,al_nt(i,ntr)
1749 enddo
1750
1751 do ip=1,nplanes ! loop on planes
1752 xgood_nt(ip,ntr) = int(xgood(ip))
1753 ygood_nt(ip,ntr) = int(ygood(ip))
1754 xm_nt(ip,ntr) = sngl(xm(ip))
1755 ym_nt(ip,ntr) = sngl(ym(ip))
1756 zm_nt(ip,ntr) = sngl(zm(ip))
1757 RESX_nt(IP,ntr) = sngl(resx(ip))
1758 RESY_nt(IP,ntr) = sngl(resy(ip))
1759 xv_nt(ip,ntr) = sngl(xv(ip))
1760 yv_nt(ip,ntr) = sngl(yv(ip))
1761 zv_nt(ip,ntr) = sngl(zv(ip))
1762 axv_nt(ip,ntr) = sngl(axv(ip))
1763 ayv_nt(ip,ntr) = sngl(ayv(ip))
1764 c dedxp(ip,ntr) = sngl(dedxtrk(ip)) !(1)
1765 dedx_x(ip,ntr) = sngl(dedxtrk_x(ip)) !(2)
1766 dedx_y(ip,ntr) = sngl(dedxtrk_y(ip)) !(2)
1767 enddo
1768 call CalcBdL(100,xxxx,IFAIL)
1769 if(ifps(xxxx).eq.1)BdL(ntr) = xxxx
1770
1771 end
1772
1773 subroutine fill_level2_siglets
1774 c*****************************************************
1775 c 07/10/2005 created by elena vannuccini
1776 c 31/01/2006 modified by elena vannuccini
1777 * to convert adc to mip --> (2)
1778 c*****************************************************
1779
1780 * -------------------------------------------------------
1781 * This routine fills the elements of the variables
1782 * inside the level2_singletsx and level2_singletsy commons,
1783 * which store info on clusters outside the tracks
1784 * -------------------------------------------------------
1785
1786 include '../common/commontracker.f'
1787 include '../common/level1.f'
1788 include '../common/level2.f'
1789 include '../common/calib.f'
1790 include '../common/common_momanhough.f'
1791 include '../common/common_xyzPAM.f'
1792
1793 * count #cluster per plane not associated to any track
1794 good2=.true.
1795 nclsx = 0
1796 nclsy = 0
1797 do icl=1,nclstr1
1798 if(cl_used(icl).eq.0)then !cluster not included in any track
1799 ip=nplanes-npl(VIEW(icl))+1
1800 if(mod(VIEW(icl),2).eq.0)then !=== X views
1801 nclsx = nclsx + 1
1802 planex(nclsx) = ip
1803 sgnlxs(nclsx) = dedx(icl)/mip(VIEW(icl),LADDER(icl))!(2)
1804 do is=1,2
1805 c call xyz_PAM(icl,0,is,'COG1',' ',0.,0.)
1806 call xyz_PAM(icl,0,is,PFAdef,' ',0.,0.)
1807 xs(is,nclsx) = (xPAM_A+xPAM_B)/2
1808 enddo
1809 else !=== Y views
1810 nclsy = nclsy + 1
1811 planey(nclsy) = ip
1812 sgnlys(nclsy) = dedx(icl)/mip(VIEW(icl),LADDER(icl))!(2)
1813 do is=1,2
1814 c call xyz_PAM(0,icl,is,' ','COG1',0.,0.)
1815 call xyz_PAM(0,icl,is,' ',PFAdef,0.,0.)
1816 ys(is,nclsy) = (yPAM_A+yPAM_B)/2
1817 enddo
1818 endif
1819 endif
1820 c print*,icl,cl_used(icl),cl_good(icl),ip,VIEW(icl)!nclsx(ip),nclsy(ip)
1821 enddo
1822 end
1823
1824 subroutine fill_level2_clouds
1825 c*****************************************************
1826 c 29/11/2005 created by elena vannuccini
1827 c*****************************************************
1828
1829 * -------------------------------------------------------
1830 * This routine fills the variables related to the hough
1831 * transform, for the debig n-tuple
1832 * -------------------------------------------------------
1833
1834 include '../common/commontracker.f'
1835 include '../common/common_momanhough.f'
1836 include '../common/common_level2debug.f'
1837 include '../common/level2.f'
1838
1839 good2_nt=.true.!good2
1840 c nev2_nt=nev2
1841
1842 if(.false.
1843 $ .or.ntrpt.gt.ntrpt_max_nt
1844 $ .or.ndblt.gt.ndblt_max_nt
1845 $ .or.NCLOUDS_XZ.gt.ncloxz_max
1846 $ .or.NCLOUDS_yZ.gt.ncloyz_max
1847 $ )then
1848 good2_nt=.false.
1849 ntrpt_nt=0
1850 ndblt_nt=0
1851 NCLOUDS_XZ_nt=0
1852 NCLOUDS_YZ_nt=0
1853 else
1854 ndblt_nt=ndblt
1855 ntrpt_nt=ntrpt
1856 if(ndblt.ne.0)then
1857 do id=1,ndblt
1858 alfayz1_nt(id)=alfayz1(id) !Y0
1859 alfayz2_nt(id)=alfayz2(id) !tg theta-yz
1860 c db_cloud_nt(id)=db_cloud(id)
1861 enddo
1862 endif
1863 if(ndblt.ne.0)then
1864 do it=1,ntrpt
1865 alfaxz1_nt(it)=alfaxz1(it) !X0
1866 alfaxz2_nt(it)=alfaxz2(it) !tg theta-xz
1867 alfaxz3_nt(it)=alfaxz3(it) !1/r
1868 c tr_cloud_nt(it)=tr_cloud(it)
1869 enddo
1870 endif
1871 nclouds_yz_nt=nclouds_yz
1872 nclouds_xz_nt=nclouds_xz
1873 if(nclouds_yz.ne.0)then
1874 nnn=0
1875 do iyz=1,nclouds_yz
1876 ptcloud_yz_nt(iyz)=ptcloud_yz(iyz)
1877 alfayz1_av_nt(iyz)=alfayz1_av(iyz)
1878 alfayz2_av_nt(iyz)=alfayz2_av(iyz)
1879 nnn=nnn+ptcloud_yz(iyz)
1880 enddo
1881 do ipt=1,nnn
1882 db_cloud_nt(ipt)=db_cloud(ipt)
1883 enddo
1884 c print*,'#### ntupla #### ptcloud_yz '
1885 c $ ,(ptcloud_yz(i),i=1,nclouds_yz)
1886 c print*,'#### ntupla #### db_cloud '
1887 c $ ,(db_cloud(i),i=1,nnn)
1888 endif
1889 if(nclouds_xz.ne.0)then
1890 nnn=0
1891 do ixz=1,nclouds_xz
1892 ptcloud_xz_nt(ixz)=ptcloud_xz(ixz)
1893 alfaxz1_av_nt(ixz)=alfaxz1_av(ixz)
1894 alfaxz2_av_nt(ixz)=alfaxz2_av(ixz)
1895 alfaxz3_av_nt(ixz)=alfaxz3_av(ixz)
1896 nnn=nnn+ptcloud_xz(ixz)
1897 enddo
1898 do ipt=1,nnn
1899 tr_cloud_nt(ipt)=tr_cloud(ipt)
1900 enddo
1901 c print*,'#### ntupla #### ptcloud_xz '
1902 c $ ,(ptcloud_xz(i),i=1,nclouds_xz)
1903 c print*,'#### ntupla #### tr_cloud '
1904 c $ ,(tr_cloud(i),i=1,nnn)
1905 endif
1906 endif
1907 end
1908
1909
1910 ***************************************************
1911 * *
1912 * *
1913 * *
1914 * *
1915 * *
1916 * *
1917 **************************************************
1918
1919 subroutine cl_to_couples(iflag)
1920
1921 include '../common/commontracker.f'
1922 include '../common/common_momanhough.f'
1923 include '../common/momanhough_init.f'
1924 include '../common/calib.f'
1925 include '../common/level1.f'
1926
1927 logical DEBUG
1928 common/dbg/DEBUG
1929
1930 * output flag
1931 * --------------
1932 * 0 = good event
1933 * 1 = bad event
1934 * --------------
1935 integer iflag
1936
1937 integer badseed,badcl
1938
1939 * init variables
1940 ncp_tot=0
1941 do ip=1,nplanes
1942 do ico=1,ncouplemax
1943 clx(ip,ico)=0
1944 cly(ip,ico)=0
1945 enddo
1946 ncp_plane(ip)=0
1947 do icl=1,nclstrmax_level2
1948 cls(ip,icl)=1
1949 enddo
1950 ncls(ip)=0
1951 enddo
1952 do icl=1,nclstrmax_level2
1953 cl_single(icl)=1
1954 cl_good(icl)=0
1955 enddo
1956
1957 * start association
1958 ncouples=0
1959 do icx=1,nclstr1 !loop on cluster (X)
1960 if(mod(VIEW(icx),2).eq.1)goto 10
1961
1962 * ----------------------------------------------------
1963 * cut on charge (X VIEW)
1964 if(dedx(icx).lt.dedx_x_min)then
1965 cl_single(icx)=0
1966 goto 10
1967 endif
1968 * cut BAD (X VIEW)
1969 badseed=BAD(VIEW(icx),nvk(MAXS(icx)),nst(MAXS(icx)))
1970 ifirst=INDSTART(icx)
1971 if(icx.ne.nclstr1) then
1972 ilast=INDSTART(icx+1)-1
1973 else
1974 ilast=TOTCLLENGTH
1975 endif
1976 badcl=badseed
1977 do igood=-ngoodstr,ngoodstr
1978 ibad=1
1979 if((INDMAX(icx)+igood).gt.ifirst.and.
1980 $ (INDMAX(icx)+igood).lt.ilast.and.
1981 $ .true.)then
1982 ibad=BAD(VIEW(icx),
1983 $ nvk(MAXS(icx)+igood),
1984 $ nst(MAXS(icx)+igood))
1985 endif
1986 badcl=badcl*ibad
1987 enddo
1988 c if(badcl.eq.0)then
1989 c cl_single(icx)=0
1990 c goto 10
1991 c endif
1992 * ----------------------------------------------------
1993
1994 cl_good(icx)=1
1995 nplx=npl(VIEW(icx))
1996 nldx=nld(MAXS(icx),VIEW(icx))
1997
1998 do icy=1,nclstr1 !loop on cluster (Y)
1999 if(mod(VIEW(icy),2).eq.0)goto 20
2000
2001 * ----------------------------------------------------
2002 * cut on charge (Y VIEW)
2003 if(dedx(icy).lt.dedx_y_min)then
2004 cl_single(icy)=0
2005 goto 20
2006 endif
2007 * cut BAD (Y VIEW)
2008 badseed=BAD(VIEW(icy),nvk(MAXS(icy)),nst(MAXS(icy)))
2009 ifirst=INDSTART(icy)
2010 if(icy.ne.nclstr1) then
2011 ilast=INDSTART(icy+1)-1
2012 else
2013 ilast=TOTCLLENGTH
2014 endif
2015 badcl=badseed
2016 do igood=-ngoodstr,ngoodstr
2017 ibad=1
2018 if((INDMAX(icy)+igood).gt.ifirst.and.
2019 $ (INDMAX(icy)+igood).lt.ilast.and.
2020 $ .true.)
2021 $ ibad=BAD(VIEW(icy),
2022 $ nvk(MAXS(icy)+igood),
2023 $ nst(MAXS(icy)+igood))
2024 badcl=badcl*ibad
2025 enddo
2026 c if(badcl.eq.0)then
2027 c cl_single(icy)=0
2028 c goto 20
2029 c endif
2030 * ----------------------------------------------------
2031
2032
2033 cl_good(icy)=1
2034 nply=npl(VIEW(icy))
2035 nldy=nld(MAXS(icy),VIEW(icy))
2036
2037 * ----------------------------------------------
2038 * CONDITION TO FORM A COUPLE
2039 * ----------------------------------------------
2040 * geometrical consistency (same plane and ladder)
2041 if(nply.eq.nplx.and.nldy.eq.nldx)then
2042 * charge correlation
2043 ddd=(dedx(icy)
2044 $ -kch(nplx,nldx)*dedx(icx)-cch(nplx,nldx))
2045 ddd=ddd/sqrt(kch(nplx,nldx)**2+1)
2046 cut=chcut*sch(nplx,nldx)
2047 if(abs(ddd).gt.cut)goto 20 !charge not consistent
2048
2049
2050 * ------------------> COUPLE <------------------
2051 * check to do not overflow vector dimentions
2052 if(ncp_plane(nplx).gt.ncouplemax)then
2053 if(DEBUG)print*,
2054 $ ' ** warning ** number of identified'//
2055 $ ' couples on plane ',nplx,
2056 $ ' exceeds vector dimention'//
2057 $ ' ( ',ncouplemax,' )'
2058 c good2=.false.
2059 c goto 880 !fill ntp and go to next event
2060 iflag=1
2061 return
2062 endif
2063
2064 if(ncp_plane(nplx).eq.ncouplemax)then
2065 if(DEBUG)print*,
2066 $ '** warning ** number of identified '//
2067 $ 'couples on plane ',nplx,
2068 $ 'exceeds vector dimention '
2069 $ ,'( ',ncouplemax,' )'
2070 c good2=.false.
2071 c goto 880 !fill ntp and go to next event
2072 iflag=1
2073 return
2074 endif
2075
2076 ncp_plane(nplx) = ncp_plane(nplx) + 1
2077 clx(nplx,ncp_plane(nplx))=icx
2078 cly(nply,ncp_plane(nplx))=icy
2079 cl_single(icx)=0
2080 cl_single(icy)=0
2081 endif
2082 * ----------------------------------------------
2083
2084 20 continue
2085 enddo !end loop on clusters(Y)
2086
2087 10 continue
2088 enddo !end loop on clusters(X)
2089
2090
2091 do icl=1,nclstr1
2092 if(cl_single(icl).eq.1)then
2093 ip=npl(VIEW(icl))
2094 ncls(ip)=ncls(ip)+1
2095 cls(ip,ncls(ip))=icl
2096 endif
2097 enddo
2098
2099
2100 if(DEBUG)then
2101 print*,'clusters ',nclstr1
2102 print*,'good ',(cl_good(i),i=1,nclstr1)
2103 print*,'singles ',(cl_single(i),i=1,nclstr1)
2104 print*,'couples per plane: ',(ncp_plane(ip),ip=1,nplanes)
2105 endif
2106
2107 do ip=1,6
2108 ncp_tot=ncp_tot+ncp_plane(ip)
2109 enddo
2110 c if(ncp_tot.gt.ncp_max)goto 100!next event (TEMPORANEO!!!)
2111
2112 if(ncp_tot.gt.ncp_max)then
2113 if(DEBUG)print*,
2114 $ '** warning ** number of identified '//
2115 $ 'couples exceeds upper limit for Hough tr. '
2116 $ ,'( ',ncp_max,' )'
2117 c good2=.false.
2118 c goto 880 !fill ntp and go to next event
2119 iflag=1
2120 return
2121 endif
2122
2123 return
2124 end
2125
2126 ***************************************************
2127 * *
2128 * *
2129 * *
2130 * *
2131 * *
2132 * *
2133 **************************************************
2134 subroutine cl_to_couples_nocharge(iflag)
2135
2136 include '../common/commontracker.f'
2137 include '../common/common_momanhough.f'
2138 include '../common/momanhough_init.f'
2139 include '../common/calib.f'
2140 include '../common/level1.f'
2141
2142 logical DEBUG
2143 common/dbg/DEBUG
2144
2145 * output flag
2146 * --------------
2147 * 0 = good event
2148 * 1 = bad event
2149 * --------------
2150 integer iflag
2151
2152 integer badseed,badcl
2153
2154 * init variables
2155 ncp_tot=0
2156 do ip=1,nplanes
2157 do ico=1,ncouplemax
2158 clx(ip,ico)=0
2159 cly(ip,ico)=0
2160 enddo
2161 ncp_plane(ip)=0
2162 do icl=1,nclstrmax_level2
2163 cls(ip,icl)=1
2164 enddo
2165 ncls(ip)=0
2166 enddo
2167 do icl=1,nclstrmax_level2
2168 cl_single(icl)=1
2169 cl_good(icl)=0
2170 enddo
2171
2172 * start association
2173 ncouples=0
2174 do icx=1,nclstr1 !loop on cluster (X)
2175 if(mod(VIEW(icx),2).eq.1)goto 10
2176
2177 * ----------------------------------------------------
2178 * cut on charge (X VIEW)
2179 if(dedx(icx).lt.dedx_x_min)then
2180 cl_single(icx)=0
2181 goto 10
2182 endif
2183 * cut BAD (X VIEW)
2184 badseed=BAD(VIEW(icx),nvk(MAXS(icx)),nst(MAXS(icx)))
2185 ifirst=INDSTART(icx)
2186 if(icx.ne.nclstr1) then
2187 ilast=INDSTART(icx+1)-1
2188 else
2189 ilast=TOTCLLENGTH
2190 endif
2191 badcl=badseed
2192 do igood=-ngoodstr,ngoodstr
2193 ibad=1
2194 if((INDMAX(icx)+igood).gt.ifirst.and.
2195 $ (INDMAX(icx)+igood).lt.ilast.and.
2196 $ .true.)then
2197 ibad=BAD(VIEW(icx),
2198 $ nvk(MAXS(icx)+igood),
2199 $ nst(MAXS(icx)+igood))
2200 endif
2201 badcl=badcl*ibad
2202 enddo
2203 if(badcl.eq.0)then !<<<<<<<<<<<<<< BAD cut
2204 cl_single(icx)=0 !<<<<<<<<<<<<<< BAD cut
2205 goto 10 !<<<<<<<<<<<<<< BAD cut
2206 endif !<<<<<<<<<<<<<< BAD cut
2207 * ----------------------------------------------------
2208
2209 cl_good(icx)=1
2210 nplx=npl(VIEW(icx))
2211 nldx=nld(MAXS(icx),VIEW(icx))
2212
2213 do icy=1,nclstr1 !loop on cluster (Y)
2214 if(mod(VIEW(icy),2).eq.0)goto 20
2215
2216 * ----------------------------------------------------
2217 * cut on charge (Y VIEW)
2218 if(dedx(icy).lt.dedx_y_min)then
2219 cl_single(icy)=0
2220 goto 20
2221 endif
2222 * cut BAD (Y VIEW)
2223 badseed=BAD(VIEW(icy),nvk(MAXS(icy)),nst(MAXS(icy)))
2224 ifirst=INDSTART(icy)
2225 if(icy.ne.nclstr1) then
2226 ilast=INDSTART(icy+1)-1
2227 else
2228 ilast=TOTCLLENGTH
2229 endif
2230 badcl=badseed
2231 do igood=-ngoodstr,ngoodstr
2232 ibad=1
2233 if((INDMAX(icy)+igood).gt.ifirst.and.
2234 $ (INDMAX(icy)+igood).lt.ilast.and.
2235 $ .true.)
2236 $ ibad=BAD(VIEW(icy),
2237 $ nvk(MAXS(icy)+igood),
2238 $ nst(MAXS(icy)+igood))
2239 badcl=badcl*ibad
2240 enddo
2241 if(badcl.eq.0)then !<<<<<<<<<<<<<< BAD cut
2242 cl_single(icy)=0 !<<<<<<<<<<<<<< BAD cut
2243 goto 20 !<<<<<<<<<<<<<< BAD cut
2244 endif !<<<<<<<<<<<<<< BAD cut
2245 * ----------------------------------------------------
2246
2247
2248 cl_good(icy)=1
2249 nply=npl(VIEW(icy))
2250 nldy=nld(MAXS(icy),VIEW(icy))
2251
2252 * ----------------------------------------------
2253 * CONDITION TO FORM A COUPLE
2254 * ----------------------------------------------
2255 * geometrical consistency (same plane and ladder)
2256 if(nply.eq.nplx.and.nldy.eq.nldx)then
2257 * charge correlation
2258 * ===========================================================
2259 * this version of the subroutine is used for the calibration
2260 * thus charge-correlation selection is obviously removed
2261 * ===========================================================
2262 c$$$ ddd=(dedx(icy)
2263 c$$$ $ -kch(nplx,nldx)*dedx(icx)-cch(nplx,nldx))
2264 c$$$ ddd=ddd/sqrt(kch(nplx,nldx)**2+1)
2265 c$$$ cut=chcut*sch(nplx,nldx)
2266 c$$$ if(abs(ddd).gt.cut)goto 20 !charge not consistent
2267 * ===========================================================
2268
2269
2270 * ------------------> COUPLE <------------------
2271 * check to do not overflow vector dimentions
2272 if(ncp_plane(nplx).gt.ncouplemax)then
2273 if(DEBUG)print*,
2274 $ ' ** warning ** number of identified'//
2275 $ ' couples on plane ',nplx,
2276 $ ' exceeds vector dimention'//
2277 $ ' ( ',ncouplemax,' )'
2278 c good2=.false.
2279 c goto 880 !fill ntp and go to next event
2280 iflag=1
2281 return
2282 endif
2283
2284 if(ncp_plane(nplx).eq.ncouplemax)then
2285 if(DEBUG)print*,
2286 $ '** warning ** number of identified '//
2287 $ 'couples on plane ',nplx,
2288 $ 'exceeds vector dimention '
2289 $ ,'( ',ncouplemax,' )'
2290 c good2=.false.
2291 c goto 880 !fill ntp and go to next event
2292 iflag=1
2293 return
2294 endif
2295
2296 ncp_plane(nplx) = ncp_plane(nplx) + 1
2297 clx(nplx,ncp_plane(nplx))=icx
2298 cly(nply,ncp_plane(nplx))=icy
2299 cl_single(icx)=0
2300 cl_single(icy)=0
2301 endif
2302 * ----------------------------------------------
2303
2304 20 continue
2305 enddo !end loop on clusters(Y)
2306
2307 10 continue
2308 enddo !end loop on clusters(X)
2309
2310
2311 do icl=1,nclstr1
2312 if(cl_single(icl).eq.1)then
2313 ip=npl(VIEW(icl))
2314 ncls(ip)=ncls(ip)+1
2315 cls(ip,ncls(ip))=icl
2316 endif
2317 enddo
2318
2319
2320 if(DEBUG)then
2321 print*,'clusters ',nclstr1
2322 print*,'good ',(cl_good(i),i=1,nclstr1)
2323 print*,'singles ',(cl_single(i),i=1,nclstr1)
2324 print*,'couples per plane: ',(ncp_plane(ip),ip=1,nplanes)
2325 endif
2326
2327 do ip=1,6
2328 ncp_tot=ncp_tot+ncp_plane(ip)
2329 enddo
2330 c if(ncp_tot.gt.ncp_max)goto 100!next event (TEMPORANEO!!!)
2331
2332 if(ncp_tot.gt.ncp_max)then
2333 if(DEBUG)print*,
2334 $ '** warning ** number of identified '//
2335 $ 'couples exceeds upper limit for Hough tr. '
2336 $ ,'( ',ncp_max,' )'
2337 c good2=.false.
2338 c goto 880 !fill ntp and go to next event
2339 iflag=1
2340 return
2341 endif
2342
2343 return
2344 end
2345
2346 c$$$ subroutine cl_to_couples_2(iflag)
2347 c$$$
2348 c$$$ include '../common/commontracker.f'
2349 c$$$ include '../common/common_momanhough.f'
2350 c$$$ include '../common/momanhough_init.f'
2351 c$$$ include '../common/calib.f'
2352 c$$$ include '../common/level1.f'
2353 c$$$
2354 c$$$ logical DEBUG
2355 c$$$ common/dbg/DEBUG
2356 c$$$
2357 c$$$* output flag
2358 c$$$* --------------
2359 c$$$* 0 = good event
2360 c$$$* 1 = bad event
2361 c$$$* --------------
2362 c$$$ integer iflag
2363 c$$$
2364 c$$$ integer badseed,badcl
2365 c$$$
2366 c$$$* init variables
2367 c$$$ ncp_tot=0
2368 c$$$ do ip=1,nplanes
2369 c$$$ do ico=1,ncouplemax
2370 c$$$ clx(ip,ico)=0
2371 c$$$ cly(ip,ico)=0
2372 c$$$ enddo
2373 c$$$ ncp_plane(ip)=0
2374 c$$$ do icl=1,nclstrmax_level2
2375 c$$$ cls(ip,icl)=1
2376 c$$$ enddo
2377 c$$$ ncls(ip)=0
2378 c$$$ enddo
2379 c$$$ do icl=1,nclstrmax_level2
2380 c$$$ cl_single(icl)=1
2381 c$$$ cl_good(icl)=0
2382 c$$$ enddo
2383 c$$$
2384 c$$$* start association
2385 c$$$ ncouples=0
2386 c$$$ do icx=1,nclstr1 !loop on cluster (X)
2387 c$$$ if(mod(VIEW(icx),2).eq.1)goto 10
2388 c$$$
2389 c$$$* ----------------------------------------------------
2390 c$$$* cut on charge (X VIEW)
2391 c$$$ if(dedx(icx).lt.dedx_x_min)then
2392 c$$$ cl_single(icx)=0
2393 c$$$ goto 10
2394 c$$$ endif
2395 c$$$* cut BAD (X VIEW)
2396 c$$$ badseed=BAD(VIEW(icx),nvk(MAXS(icx)),nst(MAXS(icx)))
2397 c$$$ ifirst=INDSTART(icx)
2398 c$$$ if(icx.ne.nclstr1) then
2399 c$$$ ilast=INDSTART(icx+1)-1
2400 c$$$ else
2401 c$$$ ilast=TOTCLLENGTH
2402 c$$$ endif
2403 c$$$ badcl=badseed
2404 c$$$ do igood=-ngoodstr,ngoodstr
2405 c$$$ ibad=1
2406 c$$$ if((INDMAX(icx)+igood).gt.ifirst.and.
2407 c$$$ $ (INDMAX(icx)+igood).lt.ilast.and.
2408 c$$$ $ .true.)then
2409 c$$$ ibad=BAD(VIEW(icx),
2410 c$$$ $ nvk(MAXS(icx)+igood),
2411 c$$$ $ nst(MAXS(icx)+igood))
2412 c$$$ endif
2413 c$$$ badcl=badcl*ibad
2414 c$$$ enddo
2415 c$$$* print*,'icx ',icx,badcl
2416 c$$$ if(badcl.eq.0)then
2417 c$$$ cl_single(icx)=0
2418 c$$$ goto 10
2419 c$$$ endif
2420 c$$$* ----------------------------------------------------
2421 c$$$
2422 c$$$ cl_good(icx)=1
2423 c$$$ nplx=npl(VIEW(icx))
2424 c$$$ nldx=nld(MAXS(icx),VIEW(icx))
2425 c$$$
2426 c$$$ do icy=1,nclstr1 !loop on cluster (Y)
2427 c$$$ if(mod(VIEW(icy),2).eq.0)goto 20
2428 c$$$
2429 c$$$* ----------------------------------------------------
2430 c$$$* cut on charge (Y VIEW)
2431 c$$$ if(dedx(icy).lt.dedx_y_min)then
2432 c$$$ cl_single(icy)=0
2433 c$$$ goto 20
2434 c$$$ endif
2435 c$$$* cut BAD (Y VIEW)
2436 c$$$ badseed=BAD(VIEW(icy),nvk(MAXS(icy)),nst(MAXS(icy)))
2437 c$$$ ifirst=INDSTART(icy)
2438 c$$$ if(icy.ne.nclstr1) then
2439 c$$$ ilast=INDSTART(icy+1)-1
2440 c$$$ else
2441 c$$$ ilast=TOTCLLENGTH
2442 c$$$ endif
2443 c$$$ badcl=badseed
2444 c$$$ do igood=-ngoodstr,ngoodstr
2445 c$$$ ibad=1
2446 c$$$ if((INDMAX(icy)+igood).gt.ifirst.and.
2447 c$$$ $ (INDMAX(icy)+igood).lt.ilast.and.
2448 c$$$ $ .true.)
2449 c$$$ $ ibad=BAD(VIEW(icy),
2450 c$$$ $ nvk(MAXS(icy)+igood),
2451 c$$$ $ nst(MAXS(icy)+igood))
2452 c$$$ badcl=badcl*ibad
2453 c$$$ enddo
2454 c$$$* print*,'icy ',icy,badcl
2455 c$$$ if(badcl.eq.0)then
2456 c$$$ cl_single(icy)=0
2457 c$$$ goto 20
2458 c$$$ endif
2459 c$$$* ----------------------------------------------------
2460 c$$$
2461 c$$$
2462 c$$$ cl_good(icy)=1
2463 c$$$ nply=npl(VIEW(icy))
2464 c$$$ nldy=nld(MAXS(icy),VIEW(icy))
2465 c$$$
2466 c$$$* ----------------------------------------------
2467 c$$$* CONDITION TO FORM A COUPLE
2468 c$$$* ----------------------------------------------
2469 c$$$* geometrical consistency (same plane and ladder)
2470 c$$$ if(nply.eq.nplx.and.nldy.eq.nldx)then
2471 c$$$
2472 c$$$c$$$* charge correlation
2473 c$$$c$$$ ddd=(dedx(icy)
2474 c$$$c$$$ $ -kch(nplx,nldx)*dedx(icx)-cch(nplx,nldx))
2475 c$$$c$$$ ddd=ddd/sqrt(kch(nplx,nldx)**2+1)
2476 c$$$c$$$ cut=chcut*sch(nplx,nldx)
2477 c$$$c$$$ if(abs(ddd).gt.cut)goto 20 !charge not consistent
2478 c$$$
2479 c$$$* ------------------> COUPLE <------------------
2480 c$$$* check to do not overflow vector dimentions
2481 c$$$ if(ncp_plane(nplx).gt.ncouplemax)then
2482 c$$$ if(DEBUG)print*,
2483 c$$$ $ ' ** warning ** number of identified'//
2484 c$$$ $ ' couples on plane ',nplx,
2485 c$$$ $ ' exceeds vector dimention'//
2486 c$$$ $ ' ( ',ncouplemax,' )'
2487 c$$$c good2=.false.
2488 c$$$c goto 880 !fill ntp and go to next event
2489 c$$$ iflag=1
2490 c$$$ return
2491 c$$$ endif
2492 c$$$
2493 c$$$ if(ncp_plane(nplx).eq.ncouplemax)then
2494 c$$$ if(DEBUG)print*,
2495 c$$$ $ '** warning ** number of identified '//
2496 c$$$ $ 'couples on plane ',nplx,
2497 c$$$ $ 'exceeds vector dimention '
2498 c$$$ $ ,'( ',ncouplemax,' )'
2499 c$$$c good2=.false.
2500 c$$$c goto 880 !fill ntp and go to next event
2501 c$$$ iflag=1
2502 c$$$ return
2503 c$$$ endif
2504 c$$$
2505 c$$$ ncp_plane(nplx) = ncp_plane(nplx) + 1
2506 c$$$ clx(nplx,ncp_plane(nplx))=icx
2507 c$$$ cly(nply,ncp_plane(nplx))=icy
2508 c$$$ cl_single(icx)=0
2509 c$$$ cl_single(icy)=0
2510 c$$$c print*,'couple ',nplx,ncp_plane(nplx),' --- ',icx,icy
2511 c$$$ endif
2512 c$$$* ----------------------------------------------
2513 c$$$
2514 c$$$ 20 continue
2515 c$$$ enddo !end loop on clusters(Y)
2516 c$$$
2517 c$$$ 10 continue
2518 c$$$ enddo !end loop on clusters(X)
2519 c$$$
2520 c$$$
2521 c$$$ do icl=1,nclstr1
2522 c$$$ if(cl_single(icl).eq.1)then
2523 c$$$ ip=npl(VIEW(icl))
2524 c$$$ ncls(ip)=ncls(ip)+1
2525 c$$$ cls(ip,ncls(ip))=icl
2526 c$$$ endif
2527 c$$$ enddo
2528 c$$$
2529 c$$$
2530 c$$$ if(DEBUG)then
2531 c$$$ print*,'clusters ',nclstr1
2532 c$$$ print*,'good ',(cl_good(i),i=1,nclstr1)
2533 c$$$ print*,'singles ',(cl_single(i),i=1,nclstr1)
2534 c$$$ print*,'couples per plane: ',(ncp_plane(ip),ip=1,nplanes)
2535 c$$$ endif
2536 c$$$
2537 c$$$ do ip=1,6
2538 c$$$ ncp_tot=ncp_tot+ncp_plane(ip)
2539 c$$$ enddo
2540 c$$$c if(ncp_tot.gt.ncp_max)goto 100!next event (TEMPORANEO!!!)
2541 c$$$
2542 c$$$ if(ncp_tot.gt.ncp_max)then
2543 c$$$ if(DEBUG)print*,
2544 c$$$ $ '** warning ** number of identified '//
2545 c$$$ $ 'couples exceeds upper limit for Hough tr. '
2546 c$$$ $ ,'( ',ncp_max,' )'
2547 c$$$c good2=.false.
2548 c$$$c goto 880 !fill ntp and go to next event
2549 c$$$ iflag=1
2550 c$$$ return
2551 c$$$ endif
2552 c$$$
2553 c$$$ return
2554 c$$$ end
2555
2556 ***************************************************
2557 * *
2558 * *
2559 * *
2560 * *
2561 * *
2562 * *
2563 **************************************************
2564
2565 subroutine cp_to_doubtrip(iflag)
2566 c*****************************************************
2567 c 02/02/2006 modified by Elena Vannuccini --> (1)
2568 c*****************************************************
2569
2570 include '../common/commontracker.f'
2571 include '../common/common_momanhough.f'
2572 include '../common/momanhough_init.f'
2573 include '../common/common_xyzPAM.f'
2574 include '../common/common_mini_2.f'
2575 include '../common/calib.f'
2576 include '../common/level1.f'
2577
2578 logical DEBUG
2579 common/dbg/DEBUG
2580
2581 * output flag
2582 * --------------
2583 * 0 = good event
2584 * 1 = bad event
2585 * --------------
2586 integer iflag
2587
2588
2589 * -----------------------------
2590 * DOUBLETS/TRIPLETS coordinates
2591 c double precision xm1,ym1,zm1
2592 c double precision xm2,ym2,zm2
2593 c double precision xm3,ym3,zm3
2594
2595 real xm1,ym1,zm1
2596 real xm2,ym2,zm2
2597 real xm3,ym3,zm3
2598 * -----------------------------
2599 * variable needed for tricircle:
2600 real xp(3),zp(3)!TRIPLETS coordinates, to find a circle
2601 EQUIVALENCE (xm1,xp(1))
2602 EQUIVALENCE (xm2,xp(2))
2603 EQUIVALENCE (xm3,xp(3))
2604 EQUIVALENCE (zm1,zp(1))
2605 EQUIVALENCE (zm2,zp(2))
2606 EQUIVALENCE (zm3,zp(3))
2607 real angp(3),resp(3),chi
2608 real xc,zc,radius
2609 * -----------------------------
2610
2611
2612
2613 ndblt=0 !number of doublets
2614 ntrpt=0 !number of triplets
2615
2616 do ip1=1,(nplanes-1) !loop on planes - COPPIA 1
2617 do is1=1,2 !loop on sensors - COPPIA 1
2618
2619 do icp1=1,ncp_plane(ip1) !loop on COPPIA 1
2620 icx1=clx(ip1,icp1)
2621 icy1=cly(ip1,icp1)
2622 c call xyz_PAM(icx1,icy1,is1,'COG2','COG2',0.,0.)!(1)
2623 call xyz_PAM(icx1,icy1,is1,PFAdef,PFAdef,0.,0.) !(1)
2624 xm1=xPAM
2625 ym1=yPAM
2626 zm1=zPAM
2627 c print*,'***',is1,xm1,ym1,zm1
2628 do ip2=(ip1+1),nplanes !loop on planes - COPPIA 2
2629 do is2=1,2 !loop on sensors -ndblt COPPIA 2
2630
2631 do icp2=1,ncp_plane(ip2) !loop on COPPIA 2
2632 icx2=clx(ip2,icp2)
2633 icy2=cly(ip2,icp2)
2634 c call xyz_PAM
2635 c $ (icx2,icy2,is2,'COG2','COG2',0.,0.)!(1)
2636 call xyz_PAM
2637 $ (icx2,icy2,is2,PFAdef,PFAdef,0.,0.) !(1)
2638 xm2=xPAM
2639 ym2=yPAM
2640 zm2=zPAM
2641
2642 * - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2643 * track parameters on Y VIEW
2644 * (2 couples needed)
2645 * - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2646 if(ndblt.eq.ndblt_max)then
2647 if(DEBUG)print*,
2648 $ '** warning ** number of identified '//
2649 $ 'doublets exceeds vector dimention '
2650 $ ,'( ',ndblt_max,' )'
2651 c good2=.false.
2652 c goto 880 !fill ntp and go to next event
2653 iflag=1
2654 return
2655 endif
2656 ndblt = ndblt + 1
2657 * store doublet info
2658 cpyz1(ndblt)=id_cp(ip1,icp1,is1)
2659 cpyz2(ndblt)=id_cp(ip2,icp2,is2)
2660 * tg(th_yz)
2661 alfayz2(ndblt)=(ym1-ym2)/(zm1-zm2)
2662 * y0 (cm)
2663 alfayz1(ndblt)=alfayz2(ndblt)*(zini-zm1)+ym1
2664
2665 **** -----------------------------------------------****
2666 **** reject non phisical couples ****
2667 **** -----------------------------------------------****
2668 if(
2669 $ abs(alfayz2(ndblt)).gt.alfyz2_max
2670 $ .or.
2671 $ abs(alfayz1(ndblt)).gt.alfyz1_max
2672 $ )ndblt = ndblt-1
2673
2674 c$$$ if(iev.eq.33)then
2675 c$$$ print*,'********* ',ndblt,' -- ',icp1,icp2,is1,is2
2676 c$$$ $ ,' || ',icx1,icy1,icx2,icy2
2677 c$$$ $ ,' || ',xm1,ym1,xm2,ym2
2678 c$$$ $ ,' || ',alfayz2(ndblt),alfayz1(ndblt)
2679 c$$$ endif
2680 c$$$
2681 * - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2682 * track parameters on Y VIEW - end
2683 * - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2684
2685
2686 if(ip2.eq.nplanes)goto 30 !no possible combination with 3 couples
2687 do ip3=(ip2+1),nplanes !loop on planes - COPPIA 3
2688 do is3=1,2 !loop on sensors - COPPIA 3
2689
2690 do icp3=1,ncp_plane(ip3) !loop on COPPIA 3
2691 icx3=clx(ip3,icp3)
2692 icy3=cly(ip3,icp3)
2693 c call xyz_PAM
2694 c $ (icx3,icy3,is3,'COG2','COG2',0.,0.)!(1)
2695 call xyz_PAM
2696 $ (icx3,icy3,is3,PFAdef,PFAdef,0.,0.) !(1)
2697 xm3=xPAM
2698 ym3=yPAM
2699 zm3=zPAM
2700 * find the circle passing through the three points
2701 call tricircle(3,xp,zp,angp,resp,chi
2702 $ ,xc,zc,radius,iflag)
2703 c print*,xc,zc,radius
2704 * the circle must intersect the reference plane
2705 if(
2706 c $ (xc.le.-1.*xclimit.or.
2707 c $ xc.ge.xclimit).and.
2708 $ radius**2.ge.(ZINI-zc)**2.and.
2709 $ iflag.eq.0.and.
2710 $ .true.)then
2711
2712 * - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2713 * track parameters on X VIEW
2714 * (3 couples needed)
2715 * - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2716 if(ntrpt.eq.ntrpt_max)then
2717 if(DEBUG)print*,
2718 $ '** warning ** number of identified '//
2719 $ 'triplets exceeds vector dimention '
2720 $ ,'( ',ntrpt_max,' )'
2721 c good2=.false.
2722 c goto 880 !fill ntp and go to next event
2723 iflag=1
2724 return
2725 endif
2726 ntrpt = ntrpt +1
2727 * store triplet info
2728 cpxz1(ntrpt)=id_cp(ip1,icp1,is1)
2729 cpxz2(ntrpt)=id_cp(ip2,icp2,is2)
2730 cpxz3(ntrpt)=id_cp(ip3,icp3,is3)
2731
2732 if(xc.lt.0)then
2733 *************POSITIVE DEFLECTION
2734 alfaxz1(ntrpt) = xc+sqrt(radius**2-(ZINI-zc)**2)
2735 alfaxz2(ntrpt) = (ZINI-zc)/sqrt(radius**2-(ZINI-zc)**2)
2736 alfaxz3(ntrpt) = 1/radius
2737 else
2738 *************NEGATIVE DEFLECTION
2739 alfaxz1(ntrpt) = xc-sqrt(radius**2-(ZINI-zc)**2)
2740 alfaxz2(ntrpt) = -(ZINI-zc)/sqrt(radius**2-(ZINI-zc)**2)
2741 alfaxz3(ntrpt) = -1/radius
2742 endif
2743
2744 **** -----------------------------------------------****
2745 **** reject non phisical triplets ****
2746 **** -----------------------------------------------****
2747 if(
2748 $ abs(alfaxz2(ntrpt)).gt.alfxz2_max
2749 $ .or.
2750 $ abs(alfaxz1(ntrpt)).gt.alfxz1_max
2751 $ )ntrpt = ntrpt-1
2752
2753
2754 c print*,alfaxz1(ntrpt),alfaxz2(ntrpt),alfaxz3(ntrpt)
2755 * - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2756 * track parameters on X VIEW - end
2757 * - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2758 endif
2759 enddo !end loop on COPPIA 3
2760 enddo !end loop on sensors - COPPIA 3
2761 enddo !end loop on planes - COPPIA 3
2762 30 continue
2763
2764 1 enddo !end loop on COPPIA 2
2765 enddo !end loop on sensors - COPPIA 2
2766 enddo !end loop on planes - COPPIA 2
2767
2768 enddo !end loop on COPPIA1
2769 enddo !end loop on sensors - COPPIA 1
2770 enddo !end loop on planes - COPPIA 1
2771
2772 if(DEBUG)then
2773 print*,'--- doublets ',ndblt
2774 print*,'--- triplets ',ntrpt
2775 endif
2776
2777 c goto 880 !ntp fill
2778
2779
2780 return
2781 end
2782
2783
2784
2785 ***************************************************
2786 * *
2787 * *
2788 * *
2789 * *
2790 * *
2791 * *
2792 **************************************************
2793
2794 subroutine doub_to_YZcloud(iflag)
2795
2796 include '../common/commontracker.f'
2797 include '../common/common_momanhough.f'
2798 include '../common/momanhough_init.f'
2799
2800 logical DEBUG
2801 common/dbg/DEBUG
2802
2803 * output flag
2804 * --------------
2805 * 0 = good event
2806 * 1 = bad event
2807 * --------------
2808 integer iflag
2809
2810 integer db_used(ndblt_max)
2811 integer db_temp(ndblt_max)
2812 integer db_all(ndblt_max) !stores db ID in each cloud
2813
2814 integer hit_plane(nplanes)
2815
2816 * mask for used couples
2817 integer cp_useds1(ncouplemaxtot) ! sensor 1
2818 integer cp_useds2(ncouplemaxtot) ! sensor 2
2819
2820
2821 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2822 * classification of DOUBLETS
2823 * according to distance in parameter space
2824 * (cloud = group of points (doublets) in parameter space)
2825 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2826 do idb=1,ndblt
2827 db_used(idb)=0
2828 enddo
2829
2830 distance=0
2831 nclouds_yz=0 !number of clouds
2832 npt_tot=0
2833 do idb1=1,ndblt !loop (1) on DOUBLETS
2834 if(db_used(idb1).eq.1)goto 2228 !db already included in a cloud
2835
2836 c print*,'--------------'
2837 c print*,'** ',idb1,' **'
2838
2839 do icp=1,ncp_tot
2840 cp_useds1(icp)=0 !init
2841 cp_useds2(icp)=0 !init
2842 enddo
2843 do idb=1,ndblt
2844 db_all(idb)=0
2845 enddo
2846 if(cpyz1(idb1).gt.0)cp_useds2(cpyz1(idb1))=1
2847 if(cpyz1(idb1).lt.0)cp_useds1(-cpyz1(idb1))=1
2848 if(cpyz2(idb1).gt.0)cp_useds2(cpyz2(idb1))=1
2849 if(cpyz2(idb1).lt.0)cp_useds1(-cpyz2(idb1))=1
2850 temp1 = alfayz1(idb1)
2851 temp2 = alfayz2(idb1)
2852 npt=1 !counter of points in the cloud
2853
2854 db_all(npt) = idb1
2855
2856 nptloop=1
2857 db_temp(1)=idb1
2858
2859 88 continue
2860
2861 npv=0 !# new points inlcuded
2862 do iloop=1,nptloop
2863 idbref=db_temp(iloop) !local point of reference
2864 ccccc if(db_used(idbref).eq.1)goto 1188 !next
2865
2866 do idb2=1,ndblt !loop (2) on DOUBLETS
2867 if(idb2.eq.idbref)goto 1118 !next doublet
2868 if(db_used(idb2).eq.1)goto 1118
2869
2870
2871 * doublet distance in parameter space
2872 distance=
2873 $ ((alfayz1(idbref)-alfayz1(idb2))/Dalfayz1)**2
2874 $ +((alfayz2(idbref)-alfayz2(idb2))/Dalfayz2)**2
2875 distance = sqrt(distance)
2876
2877 c$$$ if(iev.eq.33)then
2878 c$$$ if(distance.lt.100)
2879 c$$$ $ print*,'********* ',idb1,idbref,idb2,distance
2880 c$$$ if(distance.lt.100)
2881 c$$$ $ print*,'********* ',alfayz1(idbref),alfayz1(idb2)
2882 c$$$ $ ,alfayz2(idbref),alfayz2(idb2)
2883 c$$$ endif
2884 if(distance.lt.cutdistyz)then
2885
2886 c print*,idb1,idb2,distance,' cloud ',nclouds_yz
2887 if(cpyz1(idb2).gt.0)cp_useds2(cpyz1(idb2))=1
2888 if(cpyz1(idb2).lt.0)cp_useds1(-cpyz1(idb2))=1
2889 if(cpyz2(idb2).gt.0)cp_useds2(cpyz2(idb2))=1
2890 if(cpyz2(idb2).lt.0)cp_useds1(-cpyz2(idb2))=1
2891 npt = npt + 1 !counter of points in the cloud
2892
2893 npv = npv +1
2894 db_temp(npv) = idb2
2895 db_used(idbref) = 1
2896 db_used(idb2) = 1
2897
2898 db_all(npt) = idb2
2899
2900 temp1 = temp1 + alfayz1(idb2)
2901 temp2 = temp2 + alfayz2(idb2)
2902 c print*,'* idbref,idb2 ',idbref,idb2
2903 endif
2904
2905 1118 continue
2906 enddo !end loop (2) on DOUBLETS
2907
2908 1188 continue
2909 enddo !end loop on... bo?
2910
2911 nptloop=npv
2912 if(nptloop.ne.0)goto 88
2913
2914 * ------------------------------------------
2915 * stores the cloud only if
2916 * 1) it includes a minimum number of REAL couples
2917 * 1bis) it inlcudes a minimum number of doublets
2918 * 2) it is not already stored
2919 * ------------------------------------------
2920 do ip=1,nplanes
2921 hit_plane(ip)=0
2922 enddo
2923 ncpused=0
2924 do icp=1,ncp_tot
2925 if(cp_useds1(icp).ne.0.or.cp_useds2(icp).ne.0)then
2926 ncpused=ncpused+1
2927 ip=ip_cp(icp)
2928 hit_plane(ip)=1
2929 endif
2930 enddo
2931 nplused=0
2932 do ip=1,nplanes
2933 nplused=nplused+ hit_plane(ip)
2934 enddo
2935 c print*,'>>>> ',ncpused,npt,nplused
2936 if(ncpused.lt.ncpyz_min)goto 2228 !next doublet
2937 if(npt.lt.nptyz_min)goto 2228 !next doublet
2938 if(nplused.lt.nplyz_min)goto 2228 !next doublet
2939
2940 * ~~~~~~~~~~~~~~~~~
2941 * >>> NEW CLOUD <<<
2942
2943 if(nclouds_yz.ge.ncloyz_max)then
2944 if(DEBUG)print*,
2945 $ '** warning ** number of identified '//
2946 $ 'YZ clouds exceeds vector dimention '
2947 $ ,'( ',ncloyz_max,' )'
2948 c good2=.false.
2949 c goto 880 !fill ntp and go to next event
2950 iflag=1
2951 return
2952 endif
2953
2954 nclouds_yz = nclouds_yz + 1 !increase counter
2955 alfayz1_av(nclouds_yz) = temp1/npt !store average parameter
2956 alfayz2_av(nclouds_yz) = temp2/npt ! "
2957 do icp=1,ncp_tot
2958 cpcloud_yz(nclouds_yz,icp)=
2959 $ cp_useds1(icp)+2*cp_useds2(icp) !store cp info
2960 enddo
2961 ptcloud_yz(nclouds_yz)=npt
2962 c ptcloud_yz_nt(nclouds_yz)=npt
2963 do ipt=1,npt
2964 db_cloud(npt_tot+ipt) = db_all(ipt)
2965 c print*,'>> ',ipt,db_all(ipt)
2966 enddo
2967 npt_tot=npt_tot+npt
2968 if(DEBUG)then
2969 print*,'-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~'
2970 print*,'>>>> cloud ',nclouds_yz,' --- ',npt,' points'
2971 print*,'- alfayz1 ',alfayz1_av(nclouds_yz)
2972 print*,'- alfayz2 ',alfayz2_av(nclouds_yz)
2973 print*,'cp_useds1 ',(cp_useds1(icp),icp=1,ncp_tot)
2974 print*,'cp_useds2 ',(cp_useds2(icp),icp=1,ncp_tot)
2975 print*,'hit_plane ',(hit_plane(ip),ip=1,nplanes)
2976 c$$$ print*,'nt-uple: ptcloud_yz(',nclouds_yz,') = '
2977 c$$$ $ ,ptcloud_yz(nclouds_yz)
2978 c$$$ print*,'nt-uple: db_cloud(...) = '
2979 c$$$ $ ,(db_cloud(iii),iii=npt_tot-npt+1,npt_tot)
2980 endif
2981 * >>> NEW CLOUD <<<
2982 * ~~~~~~~~~~~~~~~~~
2983 2228 continue
2984 enddo !end loop (1) on DOUBLETS
2985
2986
2987 if(DEBUG)then
2988 print*,'---------------------- '
2989 print*,'Y-Z total clouds ',nclouds_yz
2990 print*,' '
2991 endif
2992
2993
2994 return
2995 end
2996
2997
2998
2999
3000
3001 ***************************************************
3002 * *
3003 * *
3004 * *
3005 * *
3006 * *
3007 * *
3008 **************************************************
3009
3010 subroutine trip_to_XZcloud(iflag)
3011
3012 include '../common/commontracker.f'
3013 include '../common/common_momanhough.f'
3014 include '../common/momanhough_init.f'
3015
3016 logical DEBUG
3017 common/dbg/DEBUG
3018
3019 * output flag
3020 * --------------
3021 * 0 = good event
3022 * 1 = bad event
3023 * --------------
3024 integer iflag
3025
3026 integer tr_used(ntrpt_max)
3027 integer tr_temp(ntrpt_max)
3028 integer tr_incl(ntrpt_max)
3029 integer tr_all(ntrpt_max) !stores tr ID in each cloud
3030
3031 integer hit_plane(nplanes)
3032
3033 * mask for used couples
3034 integer cp_useds1(ncouplemaxtot) ! sensor 1
3035 integer cp_useds2(ncouplemaxtot) ! sensor 2
3036
3037 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3038 * classification of TRIPLETS
3039 * according to distance in parameter space
3040 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3041 do itr=1,ntrpt
3042 tr_used(itr)=0
3043 enddo
3044
3045 distance=0
3046 nclouds_xz=0 !number of clouds
3047 npt_tot=0 !total number of selected triplets
3048 do itr1=1,ntrpt !loop (1) on TRIPLETS
3049 if(tr_used(itr1).eq.1)goto 22288 !already included in a cloud
3050 c print*,'--------------'
3051 c print*,'** ',itr1,' **'
3052
3053 do icp=1,ncp_tot
3054 cp_useds1(icp)=0
3055 cp_useds2(icp)=0
3056 enddo
3057 do itr=1,ntrpt
3058 tr_all(itr)=0 !list of included triplets
3059 enddo
3060 if(cpxz1(itr1).gt.0)cp_useds2(cpxz1(itr1))=1
3061 if(cpxz1(itr1).lt.0)cp_useds1(-cpxz1(itr1))=1
3062 if(cpxz2(itr1).gt.0)cp_useds2(cpxz2(itr1))=1
3063 if(cpxz2(itr1).lt.0)cp_useds1(-cpxz2(itr1))=1
3064 if(cpxz3(itr1).gt.0)cp_useds2(cpxz3(itr1))=1
3065 if(cpxz3(itr1).lt.0)cp_useds1(-cpxz3(itr1))=1
3066 temp1 = alfaxz1(itr1)
3067 temp2 = alfaxz2(itr1)
3068 temp3 = alfaxz3(itr1)
3069 npt=1 !counter of points in the cloud
3070
3071 tr_all(npt) = itr1
3072
3073 nptloop=1
3074 c tr_temp(1)=itr1
3075 tr_incl(1)=itr1
3076
3077 8881 continue
3078
3079 npv=0 !# new points inlcuded
3080 do iloop=1,nptloop
3081 itrref=tr_incl(iloop) !local point of reference
3082 do itr2=1,ntrpt !loop (2) on TRIPLETS
3083 if(itr2.eq.itr1)goto 11188 !next triplet
3084 if(tr_used(itr2).eq.1)goto 11188 !next triplet
3085 * triplet distance in parameter space
3086 * solo i due parametri spaziali per il momemnto
3087 distance=
3088 $ ((alfaxz1(itrref)-alfaxz1(itr2))/Dalfaxz1)**2
3089 $ +((alfaxz2(itrref)-alfaxz2(itr2))/Dalfaxz2)**2
3090 distance = sqrt(distance)
3091
3092 if(distance.lt.cutdistxz)then
3093 c print*,idb1,idb2,distance,' cloud ',nclouds_yz
3094 if(cpxz1(itr2).gt.0)cp_useds2(cpxz1(itr2))=1
3095 if(cpxz1(itr2).lt.0)cp_useds1(-cpxz1(itr2))=1
3096 if(cpxz2(itr2).gt.0)cp_useds2(cpxz2(itr2))=1
3097 if(cpxz2(itr2).lt.0)cp_useds1(-cpxz2(itr2))=1
3098 if(cpxz3(itr2).gt.0)cp_useds2(cpxz3(itr2))=1
3099 if(cpxz3(itr2).lt.0)cp_useds1(-cpxz3(itr2))=1
3100 npt = npt + 1 !counter of points in the cloud
3101
3102 npv = npv +1
3103 tr_temp(npv) = itr2
3104 tr_used(itrref) = 1
3105 tr_used(itr2) = 1
3106
3107 tr_all(npt) = itr2
3108
3109 temp1 = temp1 + alfaxz1(itr2)
3110 temp2 = temp2 + alfaxz2(itr2)
3111 temp3 = temp3 + alfaxz3(itr2)
3112 c print*,'* itrref,itr2 ',itrref,itr2,distance
3113 endif
3114
3115 11188 continue
3116 enddo !end loop (2) on TRIPLETS
3117
3118 11888 continue
3119 enddo !end loop on... bo?
3120
3121 nptloop=npv
3122 do i=1,npv
3123 tr_incl(i)=tr_temp(i)
3124 enddo
3125 if(nptloop.ne.0)goto 8881
3126
3127 * ------------------------------------------
3128 * stores the cloud only if
3129 * 1) it includes a minimum number of REAL couples
3130 * 1bis)
3131 * 2) it is not already stored
3132 * ------------------------------------------
3133 c print*,'check cp_used'
3134 do ip=1,nplanes
3135 hit_plane(ip)=0
3136 enddo
3137 ncpused=0
3138 do icp=1,ncp_tot
3139 if(cp_useds1(icp).ne.0.or.cp_useds2(icp).ne.0)then
3140 ncpused=ncpused+1
3141 ip=ip_cp(icp)
3142 hit_plane(ip)=1
3143 endif
3144 enddo
3145 nplused=0
3146 do ip=1,nplanes
3147 nplused=nplused+ hit_plane(ip)
3148 enddo
3149 if(ncpused.lt.ncpxz_min)goto 22288 !next triplet
3150 if(npt.lt.nptxz_min)goto 22288 !next triplet
3151 if(nplused.lt.nplxz_min)goto 22288 !next doublet
3152
3153 * ~~~~~~~~~~~~~~~~~
3154 * >>> NEW CLOUD <<<
3155 if(nclouds_xz.ge.ncloxz_max)then
3156 if(DEBUG)print*,
3157 $ '** warning ** number of identified '//
3158 $ 'XZ clouds exceeds vector dimention '
3159 $ ,'( ',ncloxz_max,' )'
3160 c good2=.false.
3161 c goto 880 !fill ntp and go to next event
3162 iflag=1
3163 return
3164 endif
3165 nclouds_xz = nclouds_xz + 1 !increase counter
3166 alfaxz1_av(nclouds_xz) = temp1/npt !store average parameter
3167 alfaxz2_av(nclouds_xz) = temp2/npt ! "
3168 alfaxz3_av(nclouds_xz) = temp3/npt ! "
3169 do icp=1,ncp_tot
3170 cpcloud_xz(nclouds_xz,icp)=
3171 $ cp_useds1(icp)+2*cp_useds2(icp) !store cp info
3172 enddo
3173 ptcloud_xz(nclouds_xz)=npt
3174 do ipt=1,npt
3175 tr_cloud(npt_tot+ipt) = tr_all(ipt)
3176 enddo
3177 npt_tot=npt_tot+npt
3178
3179 if(DEBUG)then
3180 print*,'-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~'
3181 print*,'>>>> cloud ',nclouds_xz,' --- ',npt,' points'
3182 print*,'- alfaxz1 ',alfaxz1_av(nclouds_xz)
3183 print*,'- alfaxz2 ',alfaxz2_av(nclouds_xz)
3184 print*,'- alfaxz3 ',alfaxz3_av(nclouds_xz)
3185 print*,'cp_useds1 ',(cp_useds1(icp),icp=1,ncp_tot)
3186 print*,'cp_useds2 ',(cp_useds2(icp),icp=1,ncp_tot)
3187 print*,'hit_plane ',(hit_plane(ip),ip=1,nplanes)
3188 c$$$ print*,'nt-uple: ptcloud_xz(',nclouds_xz,') = '
3189 c$$$ $ ,ptcloud_xz(nclouds_xz)
3190 c$$$ print*,'nt-uple: tr_cloud(...) = '
3191 c$$$ $ ,(tr_cloud(iii),iii=npt_tot-npt+1,npt_tot)
3192 endif
3193 * >>> NEW CLOUD <<<
3194 * ~~~~~~~~~~~~~~~~~
3195 22288 continue
3196 enddo !end loop (1) on DOUBLETS
3197
3198 if(DEBUG)then
3199 print*,'---------------------- '
3200 print*,'X-Z total clouds ',nclouds_xz
3201 print*,' '
3202 endif
3203
3204
3205 return
3206 end
3207
3208
3209 ***************************************************
3210 * *
3211 * *
3212 * *
3213 * *
3214 * *
3215 * *
3216 **************************************************
3217
3218 subroutine clouds_to_ctrack(iflag)
3219 c*****************************************************
3220 c 02/02/2006 modified by Elena Vannuccini --> (1)
3221 c*****************************************************
3222
3223 include '../common/commontracker.f'
3224 include '../common/common_momanhough.f'
3225 include '../common/common_xyzPAM.f'
3226 include '../common/common_mini_2.f'
3227 include '../common/common_mech.f'
3228 include '../common/momanhough_init.f'
3229
3230 logical DEBUG
3231 common/dbg/DEBUG
3232
3233 * output flag
3234 * --------------
3235 * 0 = good event
3236 * 1 = bad event
3237 * --------------
3238 integer iflag
3239
3240 * -----------------------------------------------------------
3241 * mask to store (locally) the couples included
3242 * in the intersection bewteen a XZ and YZ cloud
3243 integer cpintersec(ncouplemaxtot)
3244 * -----------------------------------------------------------
3245 * list of matching couples in the combination
3246 * between a XZ and YZ cloud
3247 integer cp_match(nplanes,ncouplemax)
3248 integer ncp_match(nplanes)
3249 * -----------------------------------------------------------
3250 integer hit_plane(nplanes)
3251 * -----------------------------------------------------------
3252 * variables for track fitting
3253 double precision AL_INI(5)
3254 double precision tath
3255 * -----------------------------------------------------------
3256 c real fitz(nplanes) !z coordinates of the planes in cm
3257
3258
3259
3260 ntracks=0 !counter of track candidates
3261
3262 do iyz=1,nclouds_yz !loop on YZ couds
3263 do ixz=1,nclouds_xz !loop on XZ couds
3264
3265 * --------------------------------------------------
3266 * check of consistency of the clouds
3267 * ---> required a minimum number of matching couples
3268 * the track fit will be performed on the INTERSECTION
3269 * of the two clouds
3270 * --------------------------------------------------
3271 do ip=1,nplanes
3272 hit_plane(ip)=0
3273 ncp_match(ip)=0
3274 do icpp=1,ncouplemax
3275 cp_match(ip,icpp)=0 !init couple list
3276 enddo
3277 enddo
3278 ncp_ok=0
3279 do icp=1,ncp_tot !loop on couples
3280 * get info on
3281 cpintersec(icp)=min(
3282 $ cpcloud_yz(iyz,icp),
3283 $ cpcloud_xz(ixz,icp))
3284 if(
3285 $ (cpcloud_yz(iyz,icp).eq.1.and.cpcloud_xz(ixz,icp).eq.2).or.
3286 $ (cpcloud_yz(iyz,icp).eq.2.and.cpcloud_xz(ixz,icp).eq.1).or.
3287 $ .false.)cpintersec(icp)=0
3288 if(cpintersec(icp).ne.0)then
3289 ncp_ok=ncp_ok+1
3290
3291 ip=ip_cp(icp)
3292 hit_plane(ip)=1
3293 if(cpintersec(icp).eq.1)then
3294 * 1) only the couple image in sensor 1 matches
3295 id=-icp
3296 ncp_match(ip)=ncp_match(ip)+1
3297 cp_match(ip,ncp_match(ip))=id
3298 elseif(cpintersec(icp).eq.2)then
3299 * 2) only the couple image in sensor 2 matches
3300 id=icp
3301 ncp_match(ip)=ncp_match(ip)+1
3302 cp_match(ip,ncp_match(ip))=id
3303 else
3304 * 3) both couple images match
3305 id=icp
3306 do is=1,2
3307 id=-id
3308 ncp_match(ip)=ncp_match(ip)+1
3309 cp_match(ip,ncp_match(ip))=id
3310 enddo
3311 endif
3312 endif !end matching condition
3313 enddo !end loop on couples
3314
3315 nplused=0
3316 do ip=1,nplanes
3317 nplused=nplused+ hit_plane(ip)
3318 enddo
3319
3320 if(nplused.lt.nplxz_min)goto 888 !next doublet
3321 if(ncp_ok.lt.ncpok)goto 888 !next cloud
3322
3323 if(DEBUG)then
3324 print*,'Combination ',iyz,ixz
3325 $ ,' db ',ptcloud_yz(iyz)
3326 $ ,' tr ',ptcloud_xz(ixz)
3327 $ ,' -----> # matching couples ',ncp_ok
3328 endif
3329 c$$$ print*,'~~~~~~~~~~~~~~~~~~~~~~~~~'
3330 c$$$ print*,'Configurazione cluster XZ'
3331 c$$$ print*,'1 -- ',(clx(1,i),i=1,ncp_plane(1))
3332 c$$$ print*,'2 -- ',(clx(2,i),i=1,ncp_plane(1))
3333 c$$$ print*,'3 -- ',(clx(3,i),i=1,ncp_plane(1))
3334 c$$$ print*,'4 -- ',(clx(4,i),i=1,ncp_plane(1))
3335 c$$$ print*,'5 -- ',(clx(5,i),i=1,ncp_plane(1))
3336 c$$$ print*,'6 -- ',(clx(6,i),i=1,ncp_plane(1))
3337 c$$$ print*,'Configurazione cluster YZ'
3338 c$$$ print*,'1 -- ',(cly(1,i),i=1,ncp_plane(1))
3339 c$$$ print*,'2 -- ',(cly(2,i),i=1,ncp_plane(1))
3340 c$$$ print*,'3 -- ',(cly(3,i),i=1,ncp_plane(1))
3341 c$$$ print*,'4 -- ',(cly(4,i),i=1,ncp_plane(1))
3342 c$$$ print*,'5 -- ',(cly(5,i),i=1,ncp_plane(1))
3343 c$$$ print*,'6 -- ',(cly(6,i),i=1,ncp_plane(1))
3344 c$$$ print*,'~~~~~~~~~~~~~~~~~~~~~~~~~'
3345
3346 * -------> INITIAL GUESS <-------
3347 AL_INI(1)=dreal(alfaxz1_av(ixz))
3348 AL_INI(2)=dreal(alfayz1_av(iyz))
3349 AL_INI(4)=datan(dreal(alfayz2_av(iyz))
3350 $ /dreal(alfaxz2_av(ixz)))
3351 tath=-dreal(alfaxz2_av(ixz))/dcos(AL_INI(4))
3352 AL_INI(3)=tath/sqrt(1+tath**2)
3353 AL_INI(5)=(1.e2*alfaxz3_av(ixz))/(0.3*0.43) !0.
3354
3355 c print*,'*******',AL_INI(5)
3356 if(AL_INI(5).gt.defmax)goto 888 !next cloud
3357
3358 c print*,'alfaxz2, alfayz2 '
3359 c $ ,alfaxz2_av(ixz),alfayz2_av(iyz)
3360
3361 * -------> INITIAL GUESS <-------
3362 c print*,'AL_INI ',(al_ini(i),i=1,5)
3363
3364 if(DEBUG)then
3365 print*,'1 >>> ',(cp_match(6,i),i=1,ncp_match(6))
3366 print*,'2 >>> ',(cp_match(5,i),i=1,ncp_match(5))
3367 print*,'3 >>> ',(cp_match(4,i),i=1,ncp_match(4))
3368 print*,'4 >>> ',(cp_match(3,i),i=1,ncp_match(3))
3369 print*,'5 >>> ',(cp_match(2,i),i=1,ncp_match(2))
3370 print*,'6 >>> ',(cp_match(1,i),i=1,ncp_match(1))
3371 endif
3372
3373 do icp1=1,max(1,ncp_match(1))
3374 hit_plane(1)=icp1
3375 if(ncp_match(1).eq.0)hit_plane(1)=0 !-icp1
3376
3377 do icp2=1,max(1,ncp_match(2))
3378 hit_plane(2)=icp2
3379 if(ncp_match(2).eq.0)hit_plane(2)=0 !-icp2
3380
3381 do icp3=1,max(1,ncp_match(3))
3382 hit_plane(3)=icp3
3383 if(ncp_match(3).eq.0)hit_plane(3)=0 !-icp3
3384
3385 do icp4=1,max(1,ncp_match(4))
3386 hit_plane(4)=icp4
3387 if(ncp_match(4).eq.0)hit_plane(4)=0 !-icp4
3388
3389 do icp5=1,max(1,ncp_match(5))
3390 hit_plane(5)=icp5
3391 if(ncp_match(5).eq.0)hit_plane(5)=0 !-icp5
3392
3393 do icp6=1,max(1,ncp_match(6))
3394 hit_plane(6)=icp6
3395 if(ncp_match(6).eq.0)hit_plane(6)=0 !-icp6
3396
3397
3398 call track_init !init TRACK common
3399
3400 do ip=1,nplanes !loop on planes
3401 if(hit_plane(ip).ne.0)then
3402 id=cp_match(ip,hit_plane(ip))
3403 is=is_cp(id)
3404 icp=icp_cp(id)
3405 if(ip_cp(id).ne.ip)
3406 $ print*,'OKKIO!!'
3407 $ ,'id ',id,is,icp
3408 $ ,ip_cp(id),ip
3409 icx=clx(ip,icp)
3410 icy=cly(ip,icp)
3411 * *************************
3412 c call xyz_PAM(icx,icy,is,
3413 c $ 'COG2','COG2',0.,0.)
3414 call xyz_PAM(icx,icy,is, !(1)
3415 $ PFAdef,PFAdef,0.,0.) !(1)
3416 * *************************
3417 * -----------------------------
3418 xgood(nplanes-ip+1)=1.
3419 ygood(nplanes-ip+1)=1.
3420 xm(nplanes-ip+1)=xPAM
3421 ym(nplanes-ip+1)=yPAM
3422 zm(nplanes-ip+1)=zPAM
3423 resx(nplanes-ip+1)=resxPAM
3424 resy(nplanes-ip+1)=resyPAM
3425 * -----------------------------
3426 endif
3427 enddo !end loop on planes
3428 * **********************************************************
3429 * ************************** FIT *** FIT *** FIT *** FIT ***
3430 * **********************************************************
3431 do i=1,5
3432 AL(i)=AL_INI(i)
3433 enddo
3434 ifail=0 !error flag in chi^2 computation
3435 jstep=0 !number of minimization steps
3436 call mini_2(jstep,ifail)
3437 if(ifail.ne.0) then
3438 if(DEBUG)then
3439 print *,
3440 $ '*** MINIMIZATION FAILURE *** '
3441 $ //'(mini_2 in clouds_to_ctrack)'
3442 endif
3443 chi2=-chi2
3444 endif
3445 * **********************************************************
3446 * ************************** FIT *** FIT *** FIT *** FIT ***
3447 * **********************************************************
3448
3449 if(chi2.le.0.)goto 666
3450
3451 * --------------------------
3452 * STORE candidate TRACK INFO
3453 * --------------------------
3454 if(ntracks.eq.NTRACKSMAX)then
3455
3456 if(DEBUG)print*,
3457 $ '** warning ** number of candidate tracks '//
3458 $ ' exceeds vector dimension '
3459 $ ,'( ',NTRACKSMAX,' )'
3460 c good2=.false.
3461 c goto 880 !fill ntp and go to next event
3462 iflag=1
3463 return
3464 endif
3465
3466 ntracks = ntracks + 1
3467
3468 c$$$ ndof=0
3469 do ip=1,nplanes
3470 c$$$ ndof=ndof
3471 c$$$ $ +int(xgood(ip))
3472 c$$$ $ +int(ygood(ip))
3473 XV_STORE(ip,ntracks)=sngl(xv(ip))
3474 YV_STORE(ip,ntracks)=sngl(yv(ip))
3475 ZV_STORE(ip,ntracks)=sngl(zv(ip))
3476 XM_STORE(ip,ntracks)=sngl(xm(ip))
3477 YM_STORE(ip,ntracks)=sngl(ym(ip))
3478 ZM_STORE(ip,ntracks)=sngl(zm(ip))
3479 RESX_STORE(ip,ntracks)=sngl(resx(ip))
3480 RESY_STORE(ip,ntracks)=sngl(resy(ip))
3481 XV_STORE(ip,ntracks)=sngl(xv(ip))
3482 YV_STORE(ip,ntracks)=sngl(yv(ip))
3483 ZV_STORE(ip,ntracks)=sngl(zv(ip))
3484 AXV_STORE(ip,ntracks)=sngl(axv(ip))
3485 AYV_STORE(ip,ntracks)=sngl(ayv(ip))
3486 XGOOD_STORE(ip,ntracks)=sngl(xgood(ip))
3487 YGOOD_STORE(ip,ntracks)=sngl(ygood(ip))
3488 if(hit_plane(ip).ne.0)then
3489 CP_STORE(nplanes-ip+1,ntracks)=
3490 $ cp_match(ip,hit_plane(ip))
3491 else
3492 CP_STORE(nplanes-ip+1,ntracks)=0
3493 endif
3494 CLS_STORE(nplanes-ip+1,ntracks)=0
3495 do i=1,5
3496 AL_STORE(i,ntracks)=sngl(AL(i))
3497 enddo
3498 enddo
3499
3500 c$$$ * Number of Degree Of Freedom
3501 c$$$ ndof=ndof-5
3502 c$$$ * reduced chi^2
3503 c$$$ rchi2=chi2/dble(ndof)
3504 RCHI2_STORE(ntracks)=chi2
3505
3506 * --------------------------------
3507 * STORE candidate TRACK INFO - end
3508 * --------------------------------
3509
3510 666 continue
3511 enddo !end loop on cp in plane 6
3512 enddo !end loop on cp in plane 5
3513 enddo !end loop on cp in plane 4
3514 enddo !end loop on cp in plane 3
3515 enddo !end loop on cp in plane 2
3516 enddo !end loop on cp in plane 1
3517
3518 888 continue
3519 enddo !end loop on XZ couds
3520 enddo !end loop on YZ couds
3521
3522 if(ntracks.eq.0)then
3523 iflag=1
3524 return
3525 endif
3526
3527 if(DEBUG)then
3528 print*,'****** TRACK CANDIDATES ***********'
3529 print*,'# R. chi2 RIG'
3530 do i=1,ntracks
3531 print*,i,' --- ',rchi2_store(i),' --- '
3532 $ ,1./abs(AL_STORE(5,i))
3533 enddo
3534 print*,'***********************************'
3535 endif
3536
3537
3538 return
3539 end
3540
3541
3542 ***************************************************
3543 * *
3544 * *
3545 * *
3546 * *
3547 * *
3548 * *
3549 **************************************************
3550
3551 subroutine refine_track(ibest)
3552
3553 c******************************************************
3554 cccccc 06/10/2005 modified by elena vannuccini ---> (1)
3555 cccccc 31/01/2006 modified by elena vannuccini ---> (2)
3556 c******************************************************
3557
3558 include '../common/commontracker.f'
3559 include '../common/common_momanhough.f'
3560 include '../common/common_xyzPAM.f'
3561 include '../common/common_mini_2.f'
3562 include '../common/common_mech.f'
3563 include '../common/momanhough_init.f'
3564 include '../common/level1.f'
3565 include '../common/calib.f'
3566
3567 logical DEBUG
3568 common/dbg/DEBUG
3569
3570 * flag to chose PFA
3571 character*10 PFA
3572 common/FINALPFA/PFA
3573
3574 * =================================================
3575 * new estimate of positions using ETA algorithm
3576 * and
3577 * search for new couples and single clusters to add
3578 * =================================================
3579 call track_init
3580 do ip=1,nplanes !loop on planes
3581
3582 * -------------------------------------------------
3583 * If the plane has been already included, it just
3584 * computes again the coordinates of the x-y couple
3585 * using improved PFAs
3586 * -------------------------------------------------
3587 if(XGOOD_STORE(nplanes-ip+1,ibest).eq.1..and.
3588 $ YGOOD_STORE(nplanes-ip+1,ibest).eq.1. )then
3589
3590 id=CP_STORE(nplanes-ip+1,ibest)
3591
3592 is=is_cp(id)
3593 icp=icp_cp(id)
3594 if(ip_cp(id).ne.ip)
3595 $ print*,'OKKIO!!'
3596 $ ,'id ',id,is,icp
3597 $ ,ip_cp(id),ip
3598 icx=clx(ip,icp)
3599 icy=cly(ip,icp)
3600 call xyz_PAM(icx,icy,is,
3601 c $ 'ETA2','ETA2',
3602 $ PFA,PFA,
3603 $ AXV_STORE(nplanes-ip+1,ibest),
3604 $ AYV_STORE(nplanes-ip+1,ibest))
3605 c$$$ call xyz_PAM(icx,icy,is,
3606 c$$$ $ 'COG2','COG2',
3607 c$$$ $ 0.,
3608 c$$$ $ 0.)
3609 xm(nplanes-ip+1) = xPAM
3610 ym(nplanes-ip+1) = yPAM
3611 zm(nplanes-ip+1) = zPAM
3612 xgood(nplanes-ip+1) = 1
3613 ygood(nplanes-ip+1) = 1
3614 resx(nplanes-ip+1) = resxPAM
3615 resy(nplanes-ip+1) = resyPAM
3616
3617 c dedxtrk(nplanes-ip+1) = (dedx(icx)+dedx(icy))/2. !(1)
3618 dedxtrk_x(nplanes-ip+1)=dedx(icx)/mip(VIEW(icx),LADDER(icx)) !(1)(2)
3619 dedxtrk_y(nplanes-ip+1)=dedx(icy)/mip(VIEW(icy),LADDER(icy)) !(1)(2)
3620
3621 * -------------------------------------------------
3622 * If the plane has NOT been already included,
3623 * it tries to include a COUPLE or a single cluster
3624 * -------------------------------------------------
3625 else
3626
3627 xgood(nplanes-ip+1)=0
3628 ygood(nplanes-ip+1)=0
3629
3630 * --------------------------------------------------------------
3631 * determine which ladder and sensor are intersected by the track
3632 xP=XV_STORE(nplanes-ip+1,ibest)
3633 yP=YV_STORE(nplanes-ip+1,ibest)
3634 zP=ZV_STORE(nplanes-ip+1,ibest)
3635 call whichsensor(ip,xP,yP,nldt,ist)
3636 * if the track hit the plane in a dead area, go to the next plane
3637 if(nldt.eq.0.or.ist.eq.0)goto 133
3638 * --------------------------------------------------------------
3639
3640 if(DEBUG)then
3641 print*,
3642 $ '------ Plane ',ip,' intersected on LADDER ',nldt
3643 $ ,' SENSOR ',ist
3644 print*,
3645 $ '------ coord: ',XP,YP
3646 endif
3647
3648 * ===========================================
3649 * STEP 1 >>>>>>> try to include a new couple
3650 * ===========================================
3651 c if(DEBUG)print*,'>>>> try to include a new couple'
3652 distmin=1000000.
3653 xmm = 0.
3654 ymm = 0.
3655 zmm = 0.
3656 rxmm = 0.
3657 rymm = 0.
3658 dedxmmx = 0. !(1)
3659 dedxmmy = 0. !(1)
3660 idm = 0 !ID of the closer couple
3661 distance=0.
3662 do icp=1,ncp_plane(ip) !loop on couples on plane icp
3663 icx=clx(ip,icp)
3664 icy=cly(ip,icp)
3665 if(LADDER(icx).ne.nldt.or. !If the ladder number does not match
3666 $ cl_used(icx).eq.1.or. !or the X cluster is already used
3667 $ cl_used(icy).eq.1.or. !or the Y cluster is already used
3668 $ .false.)goto 1188 !then jump to next couple.
3669 *
3670 call xyz_PAM(icx,icy,ist,
3671 $ PFA,PFA,
3672 c $ 'ETA2','ETA2',
3673 $ AXV_STORE(nplanes-ip+1,ibest),
3674 $ AYV_STORE(nplanes-ip+1,ibest))
3675
3676 distance = distance_to(XP,YP)
3677 id=id_cp(ip,icp,ist)
3678 if(DEBUG)print*,'( couple ',id
3679 $ ,' ) normalized distance ',distance
3680 if(distance.lt.distmin)then
3681 xmm = xPAM
3682 ymm = yPAM
3683 zmm = zPAM
3684 rxmm = resxPAM
3685 rymm = resyPAM
3686 distmin = distance
3687 idm = id
3688 c dedxmm = (dedx(icx)+dedx(icy))/2. !(1)
3689 dedxmmx = dedx(icx)/mip(VIEW(icx),LADDER(icx)) !(1)(2)
3690 dedxmmy = dedx(icy)/mip(VIEW(icy),LADDER(icy)) !(1)(2)
3691 endif
3692 1188 continue
3693 enddo !end loop on couples on plane icp
3694 if(distmin.le.clinc)then
3695 * -----------------------------------
3696 xm(nplanes-ip+1) = xmm !<<<
3697 ym(nplanes-ip+1) = ymm !<<<
3698 zm(nplanes-ip+1) = zmm !<<<
3699 xgood(nplanes-ip+1) = 1 !<<<
3700 ygood(nplanes-ip+1) = 1 !<<<
3701 resx(nplanes-ip+1)=rxmm !<<<
3702 resy(nplanes-ip+1)=rymm !<<<
3703 c dedxtrk(nplanes-ip+1) = dedxmm !<<< !(1)
3704 dedxtrk_x(nplanes-ip+1) = dedxmmx !(1)
3705 dedxtrk_y(nplanes-ip+1) = dedxmmy !(1)
3706 * -----------------------------------
3707 CP_STORE(nplanes-ip+1,ibest)=idm
3708 if(DEBUG)print*,'%%%% included couple ',idm
3709 $ ,' (norm.dist.= ',distmin,', cut ',clinc,' )'
3710 goto 133 !next plane
3711 endif
3712 * ================================================
3713 * STEP 2 >>>>>>> try to include a single cluster
3714 * either from a couple or single
3715 * ================================================
3716 c if(DEBUG)print*,'>>>> try to include a new cluster'
3717 distmin=1000000.
3718 xmm_A = 0. !---------------------------
3719 ymm_A = 0. ! init variables that
3720 zmm_A = 0. ! define the SINGLET
3721 xmm_B = 0. !
3722 ymm_B = 0. !
3723 zmm_B = 0. !
3724 rxmm = 0. !
3725 rymm = 0. !
3726 dedxmmx = 0. !(1)
3727 dedxmmy = 0. !(1)
3728 iclm=0 !---------------------------
3729 distance=0.
3730
3731 *----- clusters inside couples -------------------------------------
3732 do icp=1,ncp_plane(ip) !loop on cluster inside couples
3733 icx=clx(ip,icp)
3734 icy=cly(ip,icp)
3735 id=id_cp(ip,icp,ist)
3736 if(LADDER(icx).ne.nldt)goto 11882 !if the ladder number does not match
3737 * !jump to the next couple
3738 *----- try cluster x -----------------------------------------------
3739 if(cl_used(icx).eq.1)goto 11881 !if the X cluster is already used
3740 * !jump to the Y cluster
3741 call xyz_PAM(icx,0,ist,
3742 c $ 'ETA2','ETA2',
3743 $ PFA,PFA,
3744 $ AXV_STORE(nplanes-ip+1,ibest),0.)
3745 distance = distance_to(XP,YP)
3746 c if(DEBUG)print*,'normalized distance ',distance
3747 if(DEBUG)print*,'( cl-X ',icx
3748 $ ,' in cp ',id,' ) normalized distance ',distance
3749 if(distance.lt.distmin)then
3750 xmm_A = xPAM_A
3751 ymm_A = yPAM_A
3752 zmm_A = zPAM_A
3753 xmm_B = xPAM_B
3754 ymm_B = yPAM_B
3755 zmm_B = zPAM_B
3756 rxmm = resxPAM
3757 rymm = resyPAM
3758 distmin = distance
3759 iclm = icx
3760 c dedxmm = dedx(icx) !(1)
3761 dedxmmx = dedx(icx)/mip(VIEW(icx),LADDER(icx)) !(1)(2)
3762 dedxmmy = 0. !(1)
3763 endif
3764 11881 continue
3765 *----- try cluster y -----------------------------------------------
3766 if(cl_used(icy).eq.1)goto 11882 !if the Y cluster is already used
3767 * !jump to the next couple
3768 call xyz_PAM(0,icy,ist,
3769 c $ 'ETA2','ETA2',
3770 $ PFA,PFA,
3771 $ 0.,AYV_STORE(nplanes-ip+1,ibest))
3772 distance = distance_to(XP,YP)
3773 if(DEBUG)print*,'( cl-Y ',icy
3774 $ ,' in cp ',id,' ) normalized distance ',distance
3775 if(distance.lt.distmin)then
3776 xmm_A = xPAM_A
3777 ymm_A = yPAM_A
3778 zmm_A = zPAM_A
3779 xmm_B = xPAM_B
3780 ymm_B = yPAM_B
3781 zmm_B = zPAM_B
3782 rxmm = resxPAM
3783 rymm = resyPAM
3784 distmin = distance
3785 iclm = icy
3786 c dedxmm = dedx(icy) !(1)
3787 dedxmmx = 0. !(1)
3788 dedxmmy = dedx(icy)/mip(VIEW(icy),LADDER(icy)) !(1)(2)
3789 endif
3790 11882 continue
3791 enddo !end loop on cluster inside couples
3792 *----- single clusters -----------------------------------------------
3793 do ic=1,ncls(ip) !loop on single clusters
3794 icl=cls(ip,ic)
3795 if(cl_used(icl).eq.1.or. !if the cluster is already used
3796 $ LADDER(icl).ne.nldt.or. !or the ladder number does not match
3797 $ .false.)goto 18882 !jump to the next singlet
3798 if(mod(VIEW(icl),2).eq.0)then!<---- X view
3799 call xyz_PAM(icl,0,ist,
3800 c $ 'ETA2','ETA2',
3801 $ PFA,PFA,
3802 $ AXV_STORE(nplanes-ip+1,ibest),0.)
3803 else !<---- Y view
3804 call xyz_PAM(0,icl,ist,
3805 c $ 'ETA2','ETA2',
3806 $ PFA,PFA,
3807 $ 0.,AYV_STORE(nplanes-ip+1,ibest))
3808 endif
3809
3810 distance = distance_to(XP,YP)
3811 if(DEBUG)print*,'( cl-s ',icl
3812 $ ,' ) normalized distance ',distance
3813 if(distance.lt.distmin)then
3814 xmm_A = xPAM_A
3815 ymm_A = yPAM_A
3816 zmm_A = zPAM_A
3817 xmm_B = xPAM_B
3818 ymm_B = yPAM_B
3819 zmm_B = zPAM_B
3820 rxmm = resxPAM
3821 rymm = resyPAM
3822 distmin = distance
3823 iclm = icl
3824 c dedxmm = dedx(icl) !(1)
3825 if(mod(VIEW(icl),2).eq.0)then !<---- X view
3826 dedxmmx = dedx(icl)/mip(VIEW(icl),LADDER(icl)) !(1)(2)
3827 dedxmmy = 0. !(1)
3828 else !<---- Y view
3829 dedxmmx = 0. !(1)
3830 dedxmmy = dedx(icl)/mip(VIEW(icl),LADDER(icl)) !(1)(2)
3831 endif
3832 endif
3833 18882 continue
3834 enddo !end loop on single clusters
3835
3836 if(distmin.le.clinc)then
3837
3838 CLS_STORE(nplanes-ip+1,ibest)=iclm !<<<<
3839 * ----------------------------
3840 if(mod(VIEW(iclm),2).eq.0)then
3841 XGOOD(nplanes-ip+1)=1.
3842 resx(nplanes-ip+1)=rxmm
3843 if(DEBUG)print*,'%%%% included X-cl ',iclm
3844 $ ,' ( norm.dist.= ',distmin,', cut ',clinc,' )'
3845 else
3846 YGOOD(nplanes-ip+1)=1.
3847 resy(nplanes-ip+1)=rymm
3848 if(DEBUG)print*,'%%%% included Y-cl ',iclm
3849 $ ,' ( norm.dist.= ',distmin,', cut ',clinc,' )'
3850 endif
3851 * ----------------------------
3852 xm_A(nplanes-ip+1) = xmm_A
3853 ym_A(nplanes-ip+1) = ymm_A
3854 xm_B(nplanes-ip+1) = xmm_B
3855 ym_B(nplanes-ip+1) = ymm_B
3856 zm(nplanes-ip+1) = (zmm_A+zmm_B)/2.
3857 c dedxtrk(nplanes-ip+1) = dedxmm !<<< !(1)
3858 dedxtrk_x(nplanes-ip+1) = dedxmmx !<<< !(1)
3859 dedxtrk_y(nplanes-ip+1) = dedxmmy !<<< !(1)
3860 * ----------------------------
3861 endif
3862 endif
3863 133 continue
3864 enddo !end loop on planes
3865
3866
3867
3868 return
3869 end
3870
3871 ***************************************************
3872 * *
3873 * *
3874 * *
3875 * *
3876 * *
3877 * *
3878 **************************************************
3879
3880 subroutine clean_XYclouds(ibest,iflag)
3881
3882 include '../common/commontracker.f'
3883 include '../common/common_momanhough.f'
3884 include '../common/momanhough_init.f'
3885 c include '../common/calib.f'
3886 c include '../common/level1.f'
3887
3888 logical DEBUG
3889 common/dbg/DEBUG
3890
3891
3892 do ip=1,nplanes !loop on planes
3893
3894 id=CP_STORE(nplanes-ip+1,ibest)
3895 icl=CLS_STORE(nplanes-ip+1,ibest)
3896 if(id.ne.0.or.icl.ne.0)then
3897 if(id.ne.0)then
3898 iclx=clx(ip,icp_cp(id))
3899 icly=cly(ip,icp_cp(id))
3900 cl_used(iclx)=1 !tag used clusters
3901 cl_used(icly)=1 !tag used clusters
3902 elseif(icl.ne.0)then
3903 cl_used(icl)=1 !tag used clusters
3904 endif
3905
3906 c if(DEBUG)then
3907 c print*,ip,' <<< ',id
3908 c endif
3909 * -----------------------------
3910 * remove the couple from clouds
3911 * remove also vitual couples containing the
3912 * selected clusters
3913 * -----------------------------
3914 do icp=1,ncp_plane(ip)
3915 if(
3916 $ clx(ip,icp).eq.iclx
3917 $ .or.
3918 $ clx(ip,icp).eq.icl
3919 $ .or.
3920 $ cly(ip,icp).eq.icly
3921 $ .or.
3922 $ cly(ip,icp).eq.icl
3923 $ )then
3924 id=id_cp(ip,icp,1)
3925 if(DEBUG)then
3926 print*,ip,' <<< cp ',id
3927 $ ,' ( cl-x '
3928 $ ,clx(ip,icp)
3929 $ ,' cl-y '
3930 $ ,cly(ip,icp),' ) --> removed'
3931 endif
3932 * -----------------------------
3933 * remove the couple from clouds
3934 do iyz=1,nclouds_yz
3935 if(cpcloud_yz(iyz,abs(id)).ne.0)then
3936 ptcloud_yz(iyz)=ptcloud_yz(iyz)-1
3937 cpcloud_yz(iyz,abs(id))=0
3938 endif
3939 enddo
3940 do ixz=1,nclouds_xz
3941 if(cpcloud_xz(ixz,abs(id)).ne.0)then
3942 ptcloud_xz(ixz)=ptcloud_xz(ixz)-1
3943 cpcloud_xz(ixz,abs(id))=0
3944 endif
3945 enddo
3946 * -----------------------------
3947 endif
3948 enddo
3949
3950 endif
3951 enddo !end loop on planes
3952
3953 return
3954 end
3955
3956
3957
3958
3959 c$$$*** * * * *** * * * *** * * * *** * * * *** * * * *** * * * ***
3960 c$$$ real function fbad_cog(ncog,ic)
3961 c$$$
3962 c$$$
3963 c$$$ include '../common/commontracker.f'
3964 c$$$ include '../common/level1.f'
3965 c$$$ include '../common/calib.f'
3966 c$$$
3967 c$$$* --> signal of the central strip
3968 c$$$ sc = CLSIGNAL(INDMAX(ic)) !center
3969 c$$$
3970 c$$$* signal of adjacent strips
3971 c$$$* --> left
3972 c$$$ sl1 = 0 !left 1
3973 c$$$ if(
3974 c$$$ $ (INDMAX(ic)-1).ge.INDSTART(ic)
3975 c$$$ $ )
3976 c$$$ $ sl1 = max(0.,CLSIGNAL(INDMAX(ic)-1))
3977 c$$$
3978 c$$$ sl2 = 0 !left 2
3979 c$$$ if(
3980 c$$$ $ (INDMAX(ic)-2).ge.INDSTART(ic)
3981 c$$$ $ )
3982 c$$$ $ sl2 = max(0.,CLSIGNAL(INDMAX(ic)-2))
3983 c$$$
3984 c$$$* --> right
3985 c$$$ sr1 = 0 !right 1
3986 c$$$ if(
3987 c$$$ $ (ic.ne.NCLSTR1.and.(INDMAX(ic)+1).lt.INDSTART(ic+1))
3988 c$$$ $ .or.
3989 c$$$ $ (ic.eq.NCLSTR1.and.(INDMAX(ic)+1).le.TOTCLLENGTH)
3990 c$$$ $ )
3991 c$$$ $ sr1 = max(0.,CLSIGNAL(INDMAX(ic)+1))
3992 c$$$
3993 c$$$ sr2 = 0 !right 2
3994 c$$$ if(
3995 c$$$ $ (ic.ne.NCLSTR1.and.(INDMAX(ic)+2).lt.INDSTART(ic+1))
3996 c$$$ $ .or.
3997 c$$$ $ (ic.eq.NCLSTR1.and.(INDMAX(ic)+2).le.TOTCLLENGTH)
3998 c$$$ $ )
3999 c$$$ $ sr2 = max(0.,CLSIGNAL(INDMAX(ic)+2))
4000 c$$$
4001 c$$$
4002 c$$$ if(mod(int(VIEW(ic)),2).eq.1)then !Y-view
4003 c$$$ f = 4.
4004 c$$$ si = 8.4
4005 c$$$ else !X-view
4006 c$$$ f = 6.
4007 c$$$ si = 3.9
4008 c$$$ endif
4009 c$$$
4010 c$$$ fbad_cog = 1.
4011 c$$$ f0 = 1
4012 c$$$ f1 = 1
4013 c$$$ f2 = 1
4014 c$$$ f3 = 1
4015 c$$$ if(sl1.gt.sr1.and.sl1.gt.0.)then
4016 c$$$
4017 c$$$ if(BAD(VIEW(ic),nvk(MAXS(ic)),nst(MAXS(ic)) ).eq.0)f0=f
4018 c$$$ if(BAD(VIEW(ic),nvk(MAXS(ic)),nst(MAXS(ic)-1)).eq.0)f1=f
4019 c$$$c if(BAD(VIEW(ic),nvk(MAXS(ic)),nst(MAXS(ic)+1)).eq.0)f3=f
4020 c$$$
4021 c$$$ if(ncog.eq.2.and.sl1.ne.0)then
4022 c$$$ fbad_cog = (f1**2*sc**2/sl1**2+f0**2)/(sc**2/sl1**2+1.)
4023 c$$$ elseif(ncog.eq.3.and.sl1.ne.0.and.sr1.ne.0)then
4024 c$$$ fbad_cog = 1.
4025 c$$$ elseif(ncog.eq.4.and.sl1.ne.0.and.sr1.ne.0.and.sl2.ne.0)then
4026 c$$$ fbad_cog = 1.
4027 c$$$ else
4028 c$$$ fbad_cog = 1.
4029 c$$$ endif
4030 c$$$
4031 c$$$ elseif(sl1.le.sr1.and.sr1.gt.0.)then
4032 c$$$
4033 c$$$
4034 c$$$ if(BAD(VIEW(ic),nvk(MAXS(ic)),nst(MAXS(ic)) ).eq.0)f0=f
4035 c$$$ if(BAD(VIEW(ic),nvk(MAXS(ic)),nst(MAXS(ic)+1)).eq.0)f1=f
4036 c$$$c if(BAD(VIEW(ic),nvk(MAXS(ic)),nst(MAXS(ic)-1)).eq.0)f3=f
4037 c$$$
4038 c$$$ if(ncog.eq.2.and.sr1.ne.0)then
4039 c$$$ fbad_cog = (f1**2*sc**2/sr1**2+f0**2)/(sc**2/sr1**2+1.)
4040 c$$$ elseif(ncog.eq.3.and.sr1.ne.0.and.sl1.ne.0)then
4041 c$$$ fbad_cog = 1.
4042 c$$$ elseif(ncog.eq.4.and.sr1.ne.0.and.sl1.ne.0.and.sr2.ne.0)then
4043 c$$$ fbad_cog = 1.
4044 c$$$ else
4045 c$$$ fbad_cog = 1.
4046 c$$$ endif
4047 c$$$
4048 c$$$ endif
4049 c$$$
4050 c$$$ fbad_cog = sqrt(fbad_cog)
4051 c$$$
4052 c$$$ return
4053 c$$$ end
4054 c$$$
4055
4056
4057
4058
4059

  ViewVC Help
Powered by ViewVC 1.1.23