/** * TOFScan * Author Nagni * Version 1.2 * Modified by G.De Rosa * Date 27 Apr 2006 * * Description: * Describe the performance of the TOF. * * Parameters: * TString base - the path to the root directory for the specific Pamela unpack session * TString outDirectory - the path where to save the output image (Default = base) * TString format - the format which will be used fo rsave the produced images (Default = "gif") */ #include #include #include #include #include #include #include #include #include #include #include using namespace std; void TofScan(TString base, TString outDirectory = "", TString format = ""){ std::stringstream sst; if (outDirectory == "") outDirectory = base.Data(); TString filename = ((TObjString*)base.Tokenize('/')->Last())->GetString(); TFile *file =new TFile(base.Data()) ; if (!file){ printf("file not Found \n"); return; } TTree *PhysicsTr = (TTree*)file->Get("Physics"); TBranch *TofBr = PhysicsTr->GetBranch("Tof"); pamela::tof::TofEvent *tofEvent = 0; PhysicsTr->SetBranchAddress("Tof", &tofEvent); Long64_t nevents = TofBr->GetEntries(); if (nevents <= 0) { printf("nevents = %llu \n", nevents); file->Close(); return; } TH2S *tdcHisto = new TH2S("tdcHisto", sst.str().c_str(), 409, 0, 4096, 48, 0, 48); TH2S *adcHisto = new TH2S("adcHisto", sst.str().c_str(), 409, 0, 4096, 48, 0, 48); /* * Array to convert hdc/adc to the real Photomultiplier * The array rows definitions are: * tof[0][] = chxxA (strip or channel xxA) * tof[1][] = hbxxA (halfboard xxA) * tof[2][] = chxxB (strip or channel xxB) * tof[3][] = hbxxB (halfboard xxB) * * Each single row is a sequence of photomultipliers in this shape * - The elements from 0 to 7 correspond to S11_1->S11_8 * - The elements from 8 to 13 correspond to S12_1->S12_6 * - The elements from 14 to 15 correspond to S21_1->S21_2 * - The elements from 16 to 17 correspond to S22_1->S22_2 * - The elements from 18 to 20 correspond to S31_1->S31_3 * - The elements from 21 to 23 correspond to S32_1->S32_3 * * Example: * -------> the tdc of the S12_3B photomultiplier correspond to tdc[(tof[2][10])][(tof[3][10])] * -------> the tdc of the S31_3A photomultiplier correspond to tdc[(tof[0][20])][(tof[1][20])] */ short tof[4][24] = { {4, 4, 4, 4, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 2, 3, 3, 3, 3, 4}, {1, 3, 5, 7, 10, 12, 2, 4, 2, 4, 6, 8, 10, 12, 1, 5, 3, 9, 7, 9, 11, 1, 5, 9}, {2, 2, 2, 2, 1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 2, 1, 2, 1, 2, 2, 2, 3, 3, 4}, {6, 8, 12, 10, 8, 6, 4, 2, 12, 10, 8, 6, 4, 2, 9, 7, 11, 11, 5, 3, 1, 3, 7, 11} }; TString photoS[48] = { "S11_1A", "S11_1B", "S11_2A", "S11_2B", "S11_3A", "S11_3B", "S11_4A", "S11_4B", "S11_5A", "S11_5B", "S11_6A", "S11_6B", "S11_7A", "S11_7B", "S11_8A", "S11_8B", "S12_1A", "S12_1B", "S12_2A", "S12_2B", "S12_3A", "S12_3B", "S12_4A", "S12_4B", "S12_5A", "S12_5B", "S12_6A", "S12_6B", "S21_1A", "S21_1B", "S21_2A", "S21_2B", "S22_1A", "S22_1B", "S22_2A", "S22_2B", "S31_1A", "S31_1B", "S31_2A", "S31_2B", "S31_3A", "S31_3B", "S32_1A", "S32_1B", "S32_2A", "S32_2B", "S32_3A", "S32_3B" }; int i = 0; int j = 0; int k = 0; int z = 0; int ch = 0; int hb = 0; while(i < nevents){ TofBr->GetEntry(i); k = 0; while (k < 24){ j = 0; while (j < 2){ ch = tof[2*j][k] - 1; hb = tof[2*j + 1][k] - 1; tdcHisto->Fill(tofEvent->tdc[ch][hb], 2*k + j); adcHisto->Fill(tofEvent->adc[ch][hb], 2*k + j); j++; } k++; } i++; } TH1D *tpADC = 0; TH1D *tpTDC = 0; TH1D *tpADCall = 0; TH1D *tpTDCall = 0; float *X = new float[48]; float *means = new float[48]; float *entries = new float[48]; int *entriestdc = new int[48]; int *entriesadc = new int[48]; const char *saveas = format; // all range ADC/TDC j = 0; while (j < 12){ k = 0; z = 0; while(k < 4){ if (k > 1) z = 2; i = j*4 + k; X[i] = i; tpTDCall = tdcHisto->ProjectionX(" ", i+1, i+1); tpTDCall->SetAxisRange(0,4095); entriestdc[i] = (Int_t)tpTDCall->Integral(); tpADCall = adcHisto->ProjectionX(" ", i+1, i+1); tpADCall->SetAxisRange(0,4095); entriesadc[i] = (Int_t)tpADCall->Integral(); k++; } j++; } gStyle->SetStatW(0.4); gStyle->SetStatH(0.4); gStyle->SetOptStat("nmri"); gStyle->SetTitleH(0.10); gStyle->SetTitleW(0.96); TCanvas *SCanvas = new TCanvas("SCanvas","SCanvas", 1280, 1024); SCanvas->Divide(4,2); j = 0; while (j < 12){ k = 0; z = 0; if (gROOT->IsBatch()) { SCanvas = new TCanvas("SCanvas","SCanvas", 1280, 1024); SCanvas->Divide(4,2); } else { if (j > 0) SCanvas->DrawClone(); } while(k < 4){ if (k > 1) z = 2; i = j*4 + k; X[i] = i; SCanvas->cd(k+3+z); tpTDC = tdcHisto->ProjectionX(" ", i+1, i+1); sst.str(""); sst << "TDC - " << photoS[i].Data() << " (Nev < 4096 = " << entriestdc[i] << ")"; tpTDC->SetTitle(sst.str().c_str()); tpTDC->SetTitleSize(10); tpTDC->SetAxisRange(690,1510); tpTDC->DrawCopy(); tpTDC->ComputeIntegral(); entries[i] = tpTDC->Integral(); SCanvas->cd(k+1+z); tpADC = adcHisto->ProjectionX(" ", i+1, i+1); sst.str(""); sst << "ADC - " << photoS[i].Data() << " (Nev < 4096 = " << entriesadc[i] << ")"; tpADC->SetTitle(sst.str().c_str()); tpADC->SetAxisRange(-10,710); tpADC->DrawCopy(); means[i] = tpADC->GetMean(); k++; } if ( !strcmp(saveas,"ps") ) { sst.str(""); sst << outDirectory.Data() << filename.Data() << "TOFScan.ps("; SCanvas->Print(sst.str().c_str()); } else { sst.str(""); sst << outDirectory.Data() << filename.Data() << "TOFScan" << j+1 << "." << saveas; SCanvas->SaveAs(sst.str().c_str()); } j++; } if (gROOT->IsBatch()) SCanvas->Close(); /* * This Canvas will represent a summary of the performances for TOF TDC/ADC channels */ TCanvas *performanceCanvas = new TCanvas("performanceCanvas","performanceCanvas", 1280, 1024); performanceCanvas->Divide(1,2); gStyle->SetTitleW(.9); performanceCanvas->cd(1); TGraph *adcMeans = new TGraph(48, X, means); sst.str(""); sst << "ADCMean" << " - Data in " << base.Data() << " - Nevents in the run = " << nevents; adcMeans->SetTitle(sst.str().c_str()); adcMeans->SetFillColor(2); adcMeans->GetXaxis()->SetTitle("Photomultipliers"); adcMeans->GetXaxis()->CenterTitle(); adcMeans->GetXaxis()->SetLimits(-0.5, 47.5); adcMeans->GetYaxis()->SetTitle("ADCMean"); adcMeans->GetYaxis()->CenterTitle(); adcMeans->Draw("AB"); performanceCanvas->cd(2); TGraph *tdcEntries = new TGraph(48, X, entries); sst.str(""); sst << "TDCEntries" << " - Data in " << base.Data() << " - Nevents in the run = " << nevents; tdcEntries->SetTitle(sst.str().c_str()); tdcEntries->SetFillColor(2); tdcEntries->GetXaxis()->SetTitle("Photomultipliers"); tdcEntries->GetXaxis()->CenterTitle(); tdcEntries->GetXaxis()->SetLimits(-0.5, 47.5); tdcEntries->GetYaxis()->SetTitle("TDCIntegral"); tdcEntries->GetYaxis()->CenterTitle(); tdcEntries->Draw("AB"); //------print the ps if ( !strcmp(saveas,"ps") ) { sst.str(""); sst << outDirectory.Data() << filename.Data() << "TOFScan.ps)"; performanceCanvas->Print(sst.str().c_str()); } else { sst.str(""); sst << outDirectory.Data() << filename.Data() << "TOFScan13." << saveas; performanceCanvas->SaveAs(sst.str().c_str()); } if (gROOT->IsBatch()) { SCanvas->Close(); performanceCanvas->Close(); } } int main(int argc, char* argv[]){ TString path; TString outDir ="./"; TString format ="ps"; if (argc < 2){ printf("You have to insert at least the file to analyze \n"); printf("Try '--help' for more information. \n"); exit(1); } if (!strcmp(argv[1], "--help")){ printf( "Usage: TofScan FILE [OPTION] \n"); printf( "\t --help Print this help and exit \n"); printf( "\t -outDir[path] Path where to put the output [default ./] \n"); printf( "\t -format[ps] Format for output files [default 'ps'] \n"); exit(1); } path=argv[1]; for (int i = 2; i < argc; i++){ if (!strcmp(argv[i], "-outDir")){ if (++i >= argc){ printf( "-outDir needs arguments. \n"); printf( "Try '--help' for more information. \n"); exit(1); } else{ outDir = argv[i]; continue; } } if (!strcmp(argv[i], "-format")){ if (++i >= argc){ printf( "-format needs arguments. \n"); printf( "Try '--help' for more information. \n"); exit(1); } else{ format = argv[i]; continue; } } } TofScan(argv[1], outDir, format); }