| 1 |
//
|
| 2 |
// globals.cpp
|
| 3 |
//
|
| 4 |
#include <sgp4.h>
|
| 5 |
|
| 6 |
//////////////////////////////////////////////////////////////////////////////
|
| 7 |
double sqr(const double x)
|
| 8 |
{
|
| 9 |
return (x * x);
|
| 10 |
}
|
| 11 |
|
| 12 |
//////////////////////////////////////////////////////////////////////////////
|
| 13 |
double Fmod2p(const double arg)
|
| 14 |
{
|
| 15 |
double modu = fmod(arg, TWOPI);
|
| 16 |
|
| 17 |
if (modu < 0.0)
|
| 18 |
modu += TWOPI;
|
| 19 |
|
| 20 |
return modu;
|
| 21 |
}
|
| 22 |
|
| 23 |
//////////////////////////////////////////////////////////////////////////////
|
| 24 |
// AcTan()
|
| 25 |
// ArcTangent of sin(x) / cos(x). The advantage of this function over arctan()
|
| 26 |
// is that it returns the correct quadrant of the angle.
|
| 27 |
double AcTan(const double sinx, const double cosx)
|
| 28 |
{
|
| 29 |
double ret;
|
| 30 |
|
| 31 |
if (cosx == 0.0)
|
| 32 |
{
|
| 33 |
if (sinx > 0.0)
|
| 34 |
ret = PI / 2.0;
|
| 35 |
else
|
| 36 |
ret = 3.0 * PI / 2.0;
|
| 37 |
}
|
| 38 |
else
|
| 39 |
{
|
| 40 |
if (cosx > 0.0)
|
| 41 |
ret = atan(sinx / cosx);
|
| 42 |
else
|
| 43 |
ret = PI + atan(sinx / cosx);
|
| 44 |
}
|
| 45 |
|
| 46 |
return ret;
|
| 47 |
}
|
| 48 |
|
| 49 |
//////////////////////////////////////////////////////////////////////////////
|
| 50 |
double rad2deg(const double r)
|
| 51 |
{
|
| 52 |
const double DEG_PER_RAD = 180.0 / PI;
|
| 53 |
return r * DEG_PER_RAD;
|
| 54 |
}
|
| 55 |
|
| 56 |
//////////////////////////////////////////////////////////////////////////////
|
| 57 |
double deg2rad(const double d)
|
| 58 |
{
|
| 59 |
const double RAD_PER_DEG = PI / 180.0;
|
| 60 |
return d * RAD_PER_DEG;
|
| 61 |
}
|
| 62 |
|
| 63 |
//
|
| 64 |
// coord.cpp
|
| 65 |
//
|
| 66 |
// Copyright (c) 2003 Michael F. Henry
|
| 67 |
//
|
| 68 |
|
| 69 |
//////////////////////////////////////////////////////////////////////
|
| 70 |
// cCoordGeo Class
|
| 71 |
//////////////////////////////////////////////////////////////////////
|
| 72 |
|
| 73 |
cCoordGeo::cCoordGeo()
|
| 74 |
{
|
| 75 |
m_Lat = 0.0;
|
| 76 |
m_Lon = 0.0;
|
| 77 |
m_Alt = 0.0;
|
| 78 |
}
|
| 79 |
|
| 80 |
//////////////////////////////////////////////////////////////////////
|
| 81 |
// cCoordTopo Class
|
| 82 |
//////////////////////////////////////////////////////////////////////
|
| 83 |
|
| 84 |
cCoordTopo::cCoordTopo()
|
| 85 |
{
|
| 86 |
m_Az = 0.0;
|
| 87 |
m_El = 0.0;
|
| 88 |
m_Range = 0.0;
|
| 89 |
m_RangeRate = 0.0;
|
| 90 |
|
| 91 |
}
|
| 92 |
|
| 93 |
|
| 94 |
|
| 95 |
//
|
| 96 |
// cVector.cpp
|
| 97 |
//
|
| 98 |
// Copyright (c) 2001-2003 Michael F. Henry
|
| 99 |
//
|
| 100 |
//*****************************************************************************
|
| 101 |
// Multiply each component in the vector by 'factor'.
|
| 102 |
//*****************************************************************************
|
| 103 |
void cVector::Mul(double factor)
|
| 104 |
{
|
| 105 |
m_x *= factor;
|
| 106 |
m_y *= factor;
|
| 107 |
m_z *= factor;
|
| 108 |
m_w *= fabs(factor);
|
| 109 |
}
|
| 110 |
|
| 111 |
//*****************************************************************************
|
| 112 |
// Subtract a vector from this one.
|
| 113 |
//*****************************************************************************
|
| 114 |
void cVector::Sub(const cVector& vec)
|
| 115 |
{
|
| 116 |
m_x -= vec.m_x;
|
| 117 |
m_y -= vec.m_y;
|
| 118 |
m_z -= vec.m_z;
|
| 119 |
m_w -= vec.m_w;
|
| 120 |
}
|
| 121 |
|
| 122 |
//*****************************************************************************
|
| 123 |
// Calculate the angle between this vector and another
|
| 124 |
//*****************************************************************************
|
| 125 |
double cVector::Angle(const cVector& vec) const
|
| 126 |
{
|
| 127 |
return acos(Dot(vec) / (Magnitude() * vec.Magnitude()));
|
| 128 |
}
|
| 129 |
|
| 130 |
//*****************************************************************************
|
| 131 |
//
|
| 132 |
//*****************************************************************************
|
| 133 |
double cVector::Magnitude() const
|
| 134 |
{
|
| 135 |
return sqrt((m_x * m_x) +
|
| 136 |
(m_y * m_y) +
|
| 137 |
(m_z * m_z));
|
| 138 |
}
|
| 139 |
|
| 140 |
//*****************************************************************************
|
| 141 |
// Return the dot product
|
| 142 |
//*****************************************************************************
|
| 143 |
double cVector::Dot(const cVector& vec) const
|
| 144 |
{
|
| 145 |
return (m_x * vec.m_x) +
|
| 146 |
(m_y * vec.m_y) +
|
| 147 |
(m_z * vec.m_z);
|
| 148 |
}
|
| 149 |
//
|
| 150 |
// cJulian.cpp
|
| 151 |
//
|
| 152 |
// This class encapsulates Julian dates with the epoch of 12:00 noon (12:00 UT)
|
| 153 |
// on January 1, 4713 B.C. Some epoch dates:
|
| 154 |
// 01/01/1990 00:00 UTC - 2447892.5
|
| 155 |
// 01/01/1990 12:00 UTC - 2447893.0
|
| 156 |
// 01/01/2000 00:00 UTC - 2451544.5
|
| 157 |
// 01/01/2001 00:00 UTC - 2451910.5
|
| 158 |
//
|
| 159 |
// Note the Julian day begins at noon, which allows astronomers to have all
|
| 160 |
// the dates in a single observing session the same.
|
| 161 |
//
|
| 162 |
// References:
|
| 163 |
// "Astronomical Formulae for Calculators", Jean Meeus
|
| 164 |
// "Satellite Communications", Dennis Roddy, 2nd Edition, 1995.
|
| 165 |
//
|
| 166 |
// Copyright (c) 2003 Michael F. Henry
|
| 167 |
//
|
| 168 |
// mfh 12/24/2003
|
| 169 |
//
|
| 170 |
|
| 171 |
//////////////////////////////////////////////////////////////////////////////
|
| 172 |
// Create a Julian date object from a time_t object. time_t objects store the
|
| 173 |
// number of seconds since midnight UTC January 1, 1970.
|
| 174 |
cJulian::cJulian(time_t time)
|
| 175 |
{
|
| 176 |
struct tm *ptm = gmtime(&time);
|
| 177 |
assert(ptm);
|
| 178 |
|
| 179 |
int year = ptm->tm_year + 1900;
|
| 180 |
double day = ptm->tm_yday + 1 +
|
| 181 |
(ptm->tm_hour +
|
| 182 |
((ptm->tm_min +
|
| 183 |
(ptm->tm_sec / 60.0)) / 60.0)) / 24.0;
|
| 184 |
|
| 185 |
Initialize(year, day);
|
| 186 |
}
|
| 187 |
|
| 188 |
//////////////////////////////////////////////////////////////////////////////
|
| 189 |
// Create a Julian date object from a year and day of year.
|
| 190 |
// Example parameters: year = 2001, day = 1.5 (Jan 1 12h)
|
| 191 |
cJulian::cJulian(int year, double day)
|
| 192 |
{
|
| 193 |
Initialize(year, day);
|
| 194 |
}
|
| 195 |
|
| 196 |
//////////////////////////////////////////////////////////////////////////////
|
| 197 |
// Create a Julian date object.
|
| 198 |
cJulian::cJulian(int year, // i.e., 2004
|
| 199 |
int mon, // 1..12
|
| 200 |
int day, // 1..31
|
| 201 |
int hour, // 0..23
|
| 202 |
int min, // 0..59
|
| 203 |
double sec /* = 0.0 */) // 0..(59.999999...)
|
| 204 |
|
| 205 |
{
|
| 206 |
// Calculate N, the day of the year (1..366)
|
| 207 |
int N;
|
| 208 |
int F1 = (int)((275.0 * mon) / 9.0);
|
| 209 |
int F2 = (int)((mon + 9.0) / 12.0);
|
| 210 |
|
| 211 |
if (IsLeapYear(year))
|
| 212 |
{
|
| 213 |
// Leap year
|
| 214 |
N = F1 - F2 + day - 30;
|
| 215 |
}
|
| 216 |
else
|
| 217 |
{
|
| 218 |
// Common year
|
| 219 |
N = F1 - (2 * F2) + day - 30;
|
| 220 |
}
|
| 221 |
|
| 222 |
double dblDay = N + (hour + (min + (sec / 60.0)) / 60.0) / 24.0;
|
| 223 |
|
| 224 |
Initialize(year, dblDay);
|
| 225 |
}
|
| 226 |
|
| 227 |
//////////////////////////////////////////////////////////////////////////////
|
| 228 |
void cJulian::Initialize(int year, double day)
|
| 229 |
{
|
| 230 |
// 1582 A.D.: 10 days removed from calendar
|
| 231 |
// 3000 A.D.: Arbitrary error checking limit
|
| 232 |
assert((year > 1582) && (year < 3000));
|
| 233 |
assert((day >= 0.0) && (day <= 366.5));
|
| 234 |
|
| 235 |
// Now calculate Julian date
|
| 236 |
|
| 237 |
year--;
|
| 238 |
|
| 239 |
// Centuries are not leap years unless they divide by 400
|
| 240 |
int A = (year / 100);
|
| 241 |
int B = 2 - A + (A / 4);
|
| 242 |
|
| 243 |
double NewYears = (int)(365.25 * year) +
|
| 244 |
(int)(30.6001 * 14) +
|
| 245 |
1720994.5 + B; // 1720994.5 = Oct 30, year -1
|
| 246 |
|
| 247 |
m_Date = NewYears + day;
|
| 248 |
}
|
| 249 |
|
| 250 |
//////////////////////////////////////////////////////////////////////////////
|
| 251 |
// getComponent()
|
| 252 |
// Return requested components of date.
|
| 253 |
// Year : Includes the century.
|
| 254 |
// Month: 1..12
|
| 255 |
// Day : 1..31 including fractional part
|
| 256 |
void cJulian::getComponent(int *pYear,
|
| 257 |
int *pMon /* = NULL */,
|
| 258 |
double *pDOM /* = NULL */) const
|
| 259 |
{
|
| 260 |
assert(pYear != NULL);
|
| 261 |
|
| 262 |
double jdAdj = getDate() + 0.5;
|
| 263 |
int Z = (int)jdAdj; // integer part
|
| 264 |
double F = jdAdj - Z; // fractional part
|
| 265 |
double alpha = (int)((Z - 1867216.25) / 36524.25);
|
| 266 |
double A = Z + 1 + alpha - (int)(alpha / 4.0);
|
| 267 |
double B = A + 1524.0;
|
| 268 |
int C = (int)((B - 122.1) / 365.25);
|
| 269 |
int D = (int)(C * 365.25);
|
| 270 |
int E = (int)((B - D) / 30.6001);
|
| 271 |
|
| 272 |
double DOM = B - D - (int)(E * 30.6001) + F;
|
| 273 |
int month = (E < 13.5) ? (E - 1) : (E - 13);
|
| 274 |
int year = (month > 2.5) ? (C - 4716) : (C - 4715);
|
| 275 |
|
| 276 |
*pYear = year;
|
| 277 |
|
| 278 |
if (pMon != NULL)
|
| 279 |
*pMon = month;
|
| 280 |
|
| 281 |
if (pDOM != NULL)
|
| 282 |
*pDOM = DOM;
|
| 283 |
}
|
| 284 |
|
| 285 |
//////////////////////////////////////////////////////////////////////////////
|
| 286 |
// toGMST()
|
| 287 |
// Calculate Greenwich Mean Sidereal Time for the Julian date. The return value
|
| 288 |
// is the angle, in radians, measuring eastward from the Vernal Equinox to the
|
| 289 |
// prime meridian. This angle is also referred to as "ThetaG" (Theta GMST).
|
| 290 |
//
|
| 291 |
// References:
|
| 292 |
// The 1992 Astronomical Almanac, page B6.
|
| 293 |
// Explanatory Supplement to the Astronomical Almanac, page 50.
|
| 294 |
// Orbital Coordinate Systems, Part III, Dr. T.S. Kelso, Satellite Times,
|
| 295 |
// Nov/Dec 1995
|
| 296 |
double cJulian::toGMST() const
|
| 297 |
{
|
| 298 |
const double UT = fmod(m_Date + 0.5, 1.0);
|
| 299 |
const double TU = (FromJan1_12h_2000() - UT) / 36525.0;
|
| 300 |
|
| 301 |
double GMST = 24110.54841 + TU *
|
| 302 |
(8640184.812866 + TU * (0.093104 - TU * 6.2e-06));
|
| 303 |
|
| 304 |
GMST = fmod(GMST + SEC_PER_DAY * OMEGA_E * UT, SEC_PER_DAY);
|
| 305 |
|
| 306 |
if (GMST < 0.0)
|
| 307 |
GMST += SEC_PER_DAY; // "wrap" negative modulo value
|
| 308 |
|
| 309 |
return (TWOPI * (GMST / SEC_PER_DAY));
|
| 310 |
}
|
| 311 |
|
| 312 |
//////////////////////////////////////////////////////////////////////////////
|
| 313 |
// toLMST()
|
| 314 |
// Calculate Local Mean Sidereal Time for given longitude (for this date).
|
| 315 |
// The longitude is assumed to be in radians measured west from Greenwich.
|
| 316 |
// The return value is the angle, in radians, measuring eastward from the
|
| 317 |
// Vernal Equinox to the given longitude.
|
| 318 |
double cJulian::toLMST(double lon) const
|
| 319 |
{
|
| 320 |
return fmod(toGMST() + lon, TWOPI);
|
| 321 |
}
|
| 322 |
|
| 323 |
//////////////////////////////////////////////////////////////////////////////
|
| 324 |
// toTime()
|
| 325 |
// Convert to type time_t
|
| 326 |
// Avoid using this function as it discards the fractional seconds of the
|
| 327 |
// time component.
|
| 328 |
time_t cJulian::toTime() const
|
| 329 |
{
|
| 330 |
int nYear;
|
| 331 |
int nMonth;
|
| 332 |
double dblDay;
|
| 333 |
|
| 334 |
getComponent(&nYear, &nMonth, &dblDay);
|
| 335 |
|
| 336 |
// dblDay is the fractional Julian Day (i.e., 29.5577).
|
| 337 |
// Save the whole number day in nDOM and convert dblDay to
|
| 338 |
// the fractional portion of day.
|
| 339 |
int nDOM = (int)dblDay;
|
| 340 |
|
| 341 |
dblDay -= nDOM;
|
| 342 |
|
| 343 |
const int SEC_PER_MIN = 60;
|
| 344 |
const int SEC_PER_HR = 60 * SEC_PER_MIN;
|
| 345 |
const int SEC_PER_DAY = 24 * SEC_PER_HR;
|
| 346 |
|
| 347 |
int secs = (int)((dblDay * SEC_PER_DAY) + 0.5);
|
| 348 |
|
| 349 |
// Create a "struct tm" type.
|
| 350 |
// NOTE:
|
| 351 |
// The "struct tm" type has a 1-second resolution. Any fractional
|
| 352 |
// component of the "seconds" time value is discarded.
|
| 353 |
struct tm tGMT;
|
| 354 |
memset(&tGMT, 0, sizeof(tGMT));
|
| 355 |
|
| 356 |
tGMT.tm_year = nYear - 1900; // 2001 is 101
|
| 357 |
tGMT.tm_mon = nMonth - 1; // January is 0
|
| 358 |
tGMT.tm_mday = nDOM; // First day is 1
|
| 359 |
tGMT.tm_hour = secs / SEC_PER_HR;
|
| 360 |
tGMT.tm_min = (secs % SEC_PER_HR) / SEC_PER_MIN;
|
| 361 |
tGMT.tm_sec = (secs % SEC_PER_HR) % SEC_PER_MIN;
|
| 362 |
tGMT.tm_isdst = 0; // No conversion desired
|
| 363 |
|
| 364 |
time_t tEpoch = mktime(&tGMT);
|
| 365 |
|
| 366 |
if (tEpoch != -1)
|
| 367 |
{
|
| 368 |
// Valid time_t value returned from mktime().
|
| 369 |
// mktime() expects a local time which means that tEpoch now needs
|
| 370 |
// to be adjusted by the difference between this time zone and GMT.
|
| 371 |
tEpoch -= timezone;
|
| 372 |
}
|
| 373 |
|
| 374 |
return tEpoch;
|
| 375 |
}
|
| 376 |
//
|
| 377 |
// cTle.cpp
|
| 378 |
// This class encapsulates a single set of standard NORAD two line elements.
|
| 379 |
//
|
| 380 |
// Copyright 1996-2005 Michael F. Henry
|
| 381 |
//
|
| 382 |
// Note: The column offsets are ZERO based.
|
| 383 |
|
| 384 |
// Name
|
| 385 |
const int TLE_LEN_LINE_DATA = 69; const int TLE_LEN_LINE_NAME = 22;
|
| 386 |
|
| 387 |
// Line 1
|
| 388 |
const int TLE1_COL_SATNUM = 2; const int TLE1_LEN_SATNUM = 5;
|
| 389 |
const int TLE1_COL_INTLDESC_A = 9; const int TLE1_LEN_INTLDESC_A = 2;
|
| 390 |
const int TLE1_COL_INTLDESC_B = 11; const int TLE1_LEN_INTLDESC_B = 3;
|
| 391 |
const int TLE1_COL_INTLDESC_C = 14; const int TLE1_LEN_INTLDESC_C = 3;
|
| 392 |
const int TLE1_COL_EPOCH_A = 18; const int TLE1_LEN_EPOCH_A = 2;
|
| 393 |
const int TLE1_COL_EPOCH_B = 20; const int TLE1_LEN_EPOCH_B = 12;
|
| 394 |
const int TLE1_COL_MEANMOTIONDT = 33; const int TLE1_LEN_MEANMOTIONDT = 10;
|
| 395 |
const int TLE1_COL_MEANMOTIONDT2 = 44; const int TLE1_LEN_MEANMOTIONDT2 = 8;
|
| 396 |
const int TLE1_COL_BSTAR = 53; const int TLE1_LEN_BSTAR = 8;
|
| 397 |
const int TLE1_COL_EPHEMTYPE = 62; const int TLE1_LEN_EPHEMTYPE = 1;
|
| 398 |
const int TLE1_COL_ELNUM = 64; const int TLE1_LEN_ELNUM = 4;
|
| 399 |
|
| 400 |
// Line 2
|
| 401 |
const int TLE2_COL_SATNUM = 2; const int TLE2_LEN_SATNUM = 5;
|
| 402 |
const int TLE2_COL_INCLINATION = 8; const int TLE2_LEN_INCLINATION = 8;
|
| 403 |
const int TLE2_COL_RAASCENDNODE = 17; const int TLE2_LEN_RAASCENDNODE = 8;
|
| 404 |
const int TLE2_COL_ECCENTRICITY = 26; const int TLE2_LEN_ECCENTRICITY = 7;
|
| 405 |
const int TLE2_COL_ARGPERIGEE = 34; const int TLE2_LEN_ARGPERIGEE = 8;
|
| 406 |
const int TLE2_COL_MEANANOMALY = 43; const int TLE2_LEN_MEANANOMALY = 8;
|
| 407 |
const int TLE2_COL_MEANMOTION = 52; const int TLE2_LEN_MEANMOTION = 11;
|
| 408 |
const int TLE2_COL_REVATEPOCH = 63; const int TLE2_LEN_REVATEPOCH = 5;
|
| 409 |
|
| 410 |
/////////////////////////////////////////////////////////////////////////////
|
| 411 |
cTle::cTle(string& strName, string& strLine1, string& strLine2)
|
| 412 |
{
|
| 413 |
m_strName = strName;
|
| 414 |
m_strLine1 = strLine1;
|
| 415 |
m_strLine2 = strLine2;
|
| 416 |
|
| 417 |
Initialize();
|
| 418 |
}
|
| 419 |
|
| 420 |
/////////////////////////////////////////////////////////////////////////////
|
| 421 |
cTle::cTle(const cTle &tle)
|
| 422 |
{
|
| 423 |
m_strName = tle.m_strName;
|
| 424 |
m_strLine1 = tle.m_strLine1;
|
| 425 |
m_strLine2 = tle.m_strLine2;
|
| 426 |
|
| 427 |
for (int fld = FLD_FIRST; fld < FLD_LAST; fld++)
|
| 428 |
{
|
| 429 |
m_Field[fld] = tle.m_Field[fld];
|
| 430 |
}
|
| 431 |
|
| 432 |
m_mapCache = tle.m_mapCache;
|
| 433 |
}
|
| 434 |
|
| 435 |
/////////////////////////////////////////////////////////////////////////////
|
| 436 |
cTle::~cTle()
|
| 437 |
{
|
| 438 |
}
|
| 439 |
|
| 440 |
/////////////////////////////////////////////////////////////////////////////
|
| 441 |
// getField()
|
| 442 |
// Return requested field as a double (function return value) or as a text
|
| 443 |
// string (*pstr) in the units requested (eUnit). Set 'bStrUnits' to true
|
| 444 |
// to have units appended to text string.
|
| 445 |
//
|
| 446 |
// Note: numeric return values are cached; asking for the same field more
|
| 447 |
// than once incurs minimal overhead.
|
| 448 |
double cTle::getField(eField fld,
|
| 449 |
eUnits units, /* = U_NATIVE */
|
| 450 |
string *pstr /* = NULL */,
|
| 451 |
bool bStrUnits /* = false */) const
|
| 452 |
{
|
| 453 |
assert((FLD_FIRST <= fld) && (fld < FLD_LAST));
|
| 454 |
assert((U_FIRST <= units) && (units < U_LAST));
|
| 455 |
|
| 456 |
if (pstr)
|
| 457 |
{
|
| 458 |
// Return requested field in string form.
|
| 459 |
*pstr = m_Field[fld];
|
| 460 |
|
| 461 |
if (bStrUnits)
|
| 462 |
*pstr += getUnits(fld);
|
| 463 |
|
| 464 |
return 0.0;
|
| 465 |
}
|
| 466 |
else
|
| 467 |
{
|
| 468 |
// Return requested field in floating-point form.
|
| 469 |
// Return cache contents if it exists, else populate cache
|
| 470 |
FldKey key = Key(units, fld);
|
| 471 |
|
| 472 |
if (m_mapCache.find(key) == m_mapCache.end())
|
| 473 |
{
|
| 474 |
// Value not in cache; add it
|
| 475 |
double valNative = atof(m_Field[fld].c_str());
|
| 476 |
double valConv = ConvertUnits(valNative, fld, units);
|
| 477 |
m_mapCache[key] = valConv;
|
| 478 |
|
| 479 |
return valConv;
|
| 480 |
}
|
| 481 |
else
|
| 482 |
{
|
| 483 |
// return cached value
|
| 484 |
return m_mapCache[key];
|
| 485 |
}
|
| 486 |
}
|
| 487 |
}
|
| 488 |
|
| 489 |
//////////////////////////////////////////////////////////////////////////////
|
| 490 |
// Convert the given field into the requested units. It is assumed that
|
| 491 |
// the value being converted is in the TLE format's "native" form.
|
| 492 |
double cTle::ConvertUnits(double valNative, // value to convert
|
| 493 |
eField fld, // what field the value is
|
| 494 |
eUnits units) // what units to convert to
|
| 495 |
{
|
| 496 |
switch (fld)
|
| 497 |
{
|
| 498 |
case FLD_I:
|
| 499 |
case FLD_RAAN:
|
| 500 |
case FLD_ARGPER:
|
| 501 |
case FLD_M:
|
| 502 |
{
|
| 503 |
// The native TLE format is DEGREES
|
| 504 |
if (units == U_RAD)
|
| 505 |
return valNative * RADS_PER_DEG;
|
| 506 |
}
|
| 507 |
|
| 508 |
case FLD_NORADNUM:
|
| 509 |
case FLD_INTLDESC:
|
| 510 |
case FLD_SET:
|
| 511 |
case FLD_EPOCHYEAR:
|
| 512 |
case FLD_EPOCHDAY:
|
| 513 |
case FLD_ORBITNUM:
|
| 514 |
case FLD_E:
|
| 515 |
case FLD_MMOTION:
|
| 516 |
case FLD_MMOTIONDT:
|
| 517 |
case FLD_MMOTIONDT2:
|
| 518 |
case FLD_BSTAR:
|
| 519 |
case FLD_LAST:
|
| 520 |
{ // do nothing
|
| 521 |
|
| 522 |
}
|
| 523 |
|
| 524 |
}
|
| 525 |
|
| 526 |
return valNative; // return value in unconverted native format
|
| 527 |
}
|
| 528 |
|
| 529 |
//////////////////////////////////////////////////////////////////////////////
|
| 530 |
string cTle::getUnits(eField fld) const
|
| 531 |
{
|
| 532 |
static const string strDegrees = " degrees";
|
| 533 |
static const string strRevsPerDay = " revs / day";
|
| 534 |
static const string strNull;
|
| 535 |
|
| 536 |
switch (fld)
|
| 537 |
{
|
| 538 |
case FLD_I:
|
| 539 |
case FLD_RAAN:
|
| 540 |
case FLD_ARGPER:
|
| 541 |
case FLD_M:
|
| 542 |
return strDegrees;
|
| 543 |
|
| 544 |
case FLD_MMOTION:
|
| 545 |
return strRevsPerDay;
|
| 546 |
|
| 547 |
default:
|
| 548 |
return strNull;
|
| 549 |
}
|
| 550 |
}
|
| 551 |
|
| 552 |
/////////////////////////////////////////////////////////////////////////////
|
| 553 |
// ExpToDecimal()
|
| 554 |
// Converts TLE-style exponential notation of the form [ |-]00000[+|-]0 to
|
| 555 |
// decimal notation. Assumes implied decimal point to the left of the first
|
| 556 |
// number in the string, i.e.,
|
| 557 |
// " 12345-3" = 0.00012345
|
| 558 |
// "-23429-5" = -0.0000023429
|
| 559 |
// " 40436+1" = 4.0436
|
| 560 |
string cTle::ExpToDecimal(const string &str)
|
| 561 |
{
|
| 562 |
const int COL_EXP_SIGN = 6;
|
| 563 |
const int LEN_EXP = 2;
|
| 564 |
|
| 565 |
const int LEN_BUFREAL = 32; // max length of buffer to hold floating point
|
| 566 |
// representation of input string.
|
| 567 |
int nMan;
|
| 568 |
int nExp;
|
| 569 |
|
| 570 |
// sscanf(%d) will read up to the exponent sign
|
| 571 |
sscanf(str.c_str(), "%d", &nMan);
|
| 572 |
|
| 573 |
double dblMan = nMan;
|
| 574 |
bool bNeg = (nMan < 0);
|
| 575 |
|
| 576 |
if (bNeg)
|
| 577 |
dblMan *= -1;
|
| 578 |
|
| 579 |
// Move decimal place to left of first digit
|
| 580 |
while (dblMan >= 1.0)
|
| 581 |
dblMan /= 10.0;
|
| 582 |
|
| 583 |
if (bNeg)
|
| 584 |
dblMan *= -1;
|
| 585 |
|
| 586 |
// now read exponent
|
| 587 |
sscanf(str.substr(COL_EXP_SIGN, LEN_EXP).c_str(), "%d", &nExp);
|
| 588 |
|
| 589 |
double dblVal = dblMan * pow(10.0, nExp);
|
| 590 |
char szVal[LEN_BUFREAL];
|
| 591 |
|
| 592 |
snprintf(szVal, sizeof(szVal), "%.9f", dblVal);
|
| 593 |
|
| 594 |
string strVal = szVal;
|
| 595 |
|
| 596 |
return strVal;
|
| 597 |
|
| 598 |
} // ExpToDecimal()
|
| 599 |
|
| 600 |
/////////////////////////////////////////////////////////////////////////////
|
| 601 |
// Initialize()
|
| 602 |
// Initialize the string array.
|
| 603 |
void cTle::Initialize()
|
| 604 |
{
|
| 605 |
// Have we already been initialized?
|
| 606 |
if (m_Field[FLD_NORADNUM].size())
|
| 607 |
return;
|
| 608 |
|
| 609 |
assert(!m_strName.empty());
|
| 610 |
assert(!m_strLine1.empty());
|
| 611 |
assert(!m_strLine2.empty());
|
| 612 |
|
| 613 |
m_Field[FLD_NORADNUM] = m_strLine1.substr(TLE1_COL_SATNUM, TLE1_LEN_SATNUM);
|
| 614 |
m_Field[FLD_INTLDESC] = m_strLine1.substr(TLE1_COL_INTLDESC_A,
|
| 615 |
TLE1_LEN_INTLDESC_A +
|
| 616 |
TLE1_LEN_INTLDESC_B +
|
| 617 |
TLE1_LEN_INTLDESC_C);
|
| 618 |
m_Field[FLD_EPOCHYEAR] =
|
| 619 |
m_strLine1.substr(TLE1_COL_EPOCH_A, TLE1_LEN_EPOCH_A);
|
| 620 |
|
| 621 |
m_Field[FLD_EPOCHDAY] =
|
| 622 |
m_strLine1.substr(TLE1_COL_EPOCH_B, TLE1_LEN_EPOCH_B);
|
| 623 |
|
| 624 |
if (m_strLine1[TLE1_COL_MEANMOTIONDT] == '-')
|
| 625 |
{
|
| 626 |
// value is negative
|
| 627 |
m_Field[FLD_MMOTIONDT] = "-0";
|
| 628 |
}
|
| 629 |
else
|
| 630 |
m_Field[FLD_MMOTIONDT] = "0";
|
| 631 |
|
| 632 |
m_Field[FLD_MMOTIONDT] += m_strLine1.substr(TLE1_COL_MEANMOTIONDT + 1,
|
| 633 |
TLE1_LEN_MEANMOTIONDT);
|
| 634 |
|
| 635 |
// decimal point assumed; exponential notation
|
| 636 |
m_Field[FLD_MMOTIONDT2] = ExpToDecimal(
|
| 637 |
m_strLine1.substr(TLE1_COL_MEANMOTIONDT2,
|
| 638 |
TLE1_LEN_MEANMOTIONDT2));
|
| 639 |
// decimal point assumed; exponential notation
|
| 640 |
m_Field[FLD_BSTAR] = ExpToDecimal(m_strLine1.substr(TLE1_COL_BSTAR,
|
| 641 |
TLE1_LEN_BSTAR));
|
| 642 |
//TLE1_COL_EPHEMTYPE
|
| 643 |
//TLE1_LEN_EPHEMTYPE
|
| 644 |
m_Field[FLD_SET] = m_strLine1.substr(TLE1_COL_ELNUM, TLE1_LEN_ELNUM);
|
| 645 |
|
| 646 |
TrimLeft(m_Field[FLD_SET]);
|
| 647 |
|
| 648 |
//TLE2_COL_SATNUM
|
| 649 |
//TLE2_LEN_SATNUM
|
| 650 |
|
| 651 |
m_Field[FLD_I] = m_strLine2.substr(TLE2_COL_INCLINATION,
|
| 652 |
TLE2_LEN_INCLINATION);
|
| 653 |
TrimLeft(m_Field[FLD_I]);
|
| 654 |
|
| 655 |
m_Field[FLD_RAAN] = m_strLine2.substr(TLE2_COL_RAASCENDNODE,
|
| 656 |
TLE2_LEN_RAASCENDNODE);
|
| 657 |
TrimLeft(m_Field[FLD_RAAN]);
|
| 658 |
|
| 659 |
// decimal point is assumed
|
| 660 |
m_Field[FLD_E] = "0.";
|
| 661 |
m_Field[FLD_E] += m_strLine2.substr(TLE2_COL_ECCENTRICITY,
|
| 662 |
TLE2_LEN_ECCENTRICITY);
|
| 663 |
|
| 664 |
m_Field[FLD_ARGPER] = m_strLine2.substr(TLE2_COL_ARGPERIGEE,
|
| 665 |
TLE2_LEN_ARGPERIGEE);
|
| 666 |
TrimLeft(m_Field[FLD_ARGPER]);
|
| 667 |
|
| 668 |
m_Field[FLD_M] = m_strLine2.substr(TLE2_COL_MEANANOMALY,
|
| 669 |
TLE2_LEN_MEANANOMALY);
|
| 670 |
TrimLeft(m_Field[FLD_M]);
|
| 671 |
|
| 672 |
m_Field[FLD_MMOTION] = m_strLine2.substr(TLE2_COL_MEANMOTION,
|
| 673 |
TLE2_LEN_MEANMOTION);
|
| 674 |
TrimLeft(m_Field[FLD_MMOTION]);
|
| 675 |
|
| 676 |
m_Field[FLD_ORBITNUM] = m_strLine2.substr(TLE2_COL_REVATEPOCH,
|
| 677 |
TLE2_LEN_REVATEPOCH);
|
| 678 |
TrimLeft(m_Field[FLD_ORBITNUM]);
|
| 679 |
|
| 680 |
} // InitStrVars()
|
| 681 |
|
| 682 |
/////////////////////////////////////////////////////////////////////////////
|
| 683 |
// IsTleFormat()
|
| 684 |
// Returns true if "str" is a valid data line of a two-line element set,
|
| 685 |
// else false.
|
| 686 |
//
|
| 687 |
// To be valid a line must:
|
| 688 |
// Have as the first character the line number
|
| 689 |
// Have as the second character a blank
|
| 690 |
// Be TLE_LEN_LINE_DATA characters long
|
| 691 |
// Have a valid checksum (note: no longer required as of 12/96)
|
| 692 |
//
|
| 693 |
bool cTle::IsValidLine(string& str, eTleLine line)
|
| 694 |
{
|
| 695 |
TrimLeft(str);
|
| 696 |
TrimRight(str);
|
| 697 |
|
| 698 |
size_t nLen = str.size();
|
| 699 |
|
| 700 |
if (nLen != (uint)TLE_LEN_LINE_DATA)
|
| 701 |
return false;
|
| 702 |
|
| 703 |
// First char in string must be line number
|
| 704 |
if ((str[0] - '0') != line)
|
| 705 |
return false;
|
| 706 |
|
| 707 |
// Second char in string must be blank
|
| 708 |
if (str[1] != ' ')
|
| 709 |
return false;
|
| 710 |
|
| 711 |
/*
|
| 712 |
NOTE: 12/96
|
| 713 |
The requirement that the last char in the line data must be a valid
|
| 714 |
checksum is too restrictive.
|
| 715 |
|
| 716 |
// Last char in string must be checksum
|
| 717 |
int nSum = CheckSum(str);
|
| 718 |
|
| 719 |
if (nSum != (str[TLE_LEN_LINE_DATA - 1] - '0'))
|
| 720 |
return false;
|
| 721 |
*/
|
| 722 |
|
| 723 |
return true;
|
| 724 |
|
| 725 |
} // IsTleFormat()
|
| 726 |
|
| 727 |
/////////////////////////////////////////////////////////////////////////////
|
| 728 |
// CheckSum()
|
| 729 |
// Calculate the check sum for a given line of TLE data, the last character
|
| 730 |
// of which is the current checksum. (Although there is no check here,
|
| 731 |
// the current checksum should match the one we calculate.)
|
| 732 |
// The checksum algorithm:
|
| 733 |
// Each number in the data line is summed, modulo 10.
|
| 734 |
// Non-numeric characters are zero, except minus signs, which are 1.
|
| 735 |
//
|
| 736 |
int cTle::CheckSum(const string& str)
|
| 737 |
{
|
| 738 |
// The length is "- 1" because we don't include the current (existing)
|
| 739 |
// checksum character in the checksum calculation.
|
| 740 |
size_t len = str.size() - 1;
|
| 741 |
int xsum = 0;
|
| 742 |
|
| 743 |
for (size_t i = 0; i < len; i++)
|
| 744 |
{
|
| 745 |
char ch = str[i];
|
| 746 |
if (isdigit(ch))
|
| 747 |
xsum += (ch - '0');
|
| 748 |
else if (ch == '-')
|
| 749 |
xsum++;
|
| 750 |
}
|
| 751 |
|
| 752 |
return (xsum % 10);
|
| 753 |
|
| 754 |
} // CheckSum()
|
| 755 |
|
| 756 |
/////////////////////////////////////////////////////////////////////////////
|
| 757 |
void cTle::TrimLeft(string& s)
|
| 758 |
{
|
| 759 |
while (s[0] == ' ')
|
| 760 |
s.erase(0, 1);
|
| 761 |
}
|
| 762 |
|
| 763 |
/////////////////////////////////////////////////////////////////////////////
|
| 764 |
void cTle::TrimRight(string& s)
|
| 765 |
{
|
| 766 |
while (s[s.size() - 1] == ' ')
|
| 767 |
s.erase(s.size() - 1);
|
| 768 |
}
|
| 769 |
|
| 770 |
//
|
| 771 |
// cEci.cpp
|
| 772 |
//
|
| 773 |
// Copyright (c) 2002-2003 Michael F. Henry
|
| 774 |
//
|
| 775 |
//////////////////////////////////////////////////////////////////////
|
| 776 |
// cEci Class
|
| 777 |
//////////////////////////////////////////////////////////////////////
|
| 778 |
cEci::cEci(const cVector &pos,
|
| 779 |
const cVector &vel,
|
| 780 |
const cJulian &date,
|
| 781 |
bool IsAeUnits /* = true */)
|
| 782 |
{
|
| 783 |
m_pos = pos;
|
| 784 |
m_vel = vel;
|
| 785 |
m_date = date;
|
| 786 |
m_VecUnits = (IsAeUnits ? UNITS_AE : UNITS_NONE);
|
| 787 |
}
|
| 788 |
|
| 789 |
//////////////////////////////////////////////////////////////////////
|
| 790 |
// cEci(cCoordGeo&, cJulian&)
|
| 791 |
// Calculate the ECI coordinates of the location "geo" at time "date".
|
| 792 |
// Assumes geo coordinates are km-based.
|
| 793 |
// Assumes the earth is an oblate spheroid as defined in WGS '72.
|
| 794 |
// Reference: The 1992 Astronomical Almanac, page K11
|
| 795 |
// Reference: www.celestrak.com (Dr. TS Kelso)
|
| 796 |
cEci::cEci(const cCoordGeo &geo, const cJulian &date)
|
| 797 |
{
|
| 798 |
m_VecUnits = UNITS_KM;
|
| 799 |
|
| 800 |
double mfactor = TWOPI * (OMEGA_E / SEC_PER_DAY);
|
| 801 |
double lat = geo.m_Lat;
|
| 802 |
double lon = geo.m_Lon;
|
| 803 |
double alt = geo.m_Alt;
|
| 804 |
|
| 805 |
// Calculate Local Mean Sidereal Time (theta)
|
| 806 |
double theta = date.toLMST(lon);
|
| 807 |
double c = 1.0 / sqrt(1.0 + F * (F - 2.0) * sqr(sin(lat)));
|
| 808 |
double s = sqr(1.0 - F) * c;
|
| 809 |
double achcp = (XKMPER_WGS72 * c + alt) * cos(lat);
|
| 810 |
|
| 811 |
m_date = date;
|
| 812 |
|
| 813 |
m_pos.m_x = achcp * cos(theta); // km
|
| 814 |
m_pos.m_y = achcp * sin(theta); // km
|
| 815 |
m_pos.m_z = (XKMPER_WGS72 * s + alt) * sin(lat); // km
|
| 816 |
m_pos.m_w = sqrt(sqr(m_pos.m_x) +
|
| 817 |
sqr(m_pos.m_y) +
|
| 818 |
sqr(m_pos.m_z)); // range, km
|
| 819 |
|
| 820 |
m_vel.m_x = -mfactor * m_pos.m_y; // km / sec
|
| 821 |
m_vel.m_y = mfactor * m_pos.m_x;
|
| 822 |
m_vel.m_z = 0.0;
|
| 823 |
m_vel.m_w = sqrt(sqr(m_vel.m_x) + // range rate km/sec^2
|
| 824 |
sqr(m_vel.m_y));
|
| 825 |
}
|
| 826 |
|
| 827 |
//////////////////////////////////////////////////////////////////////////////
|
| 828 |
// toGeo()
|
| 829 |
// Return the corresponding geodetic position (based on the current ECI
|
| 830 |
// coordinates/Julian date).
|
| 831 |
// Assumes the earth is an oblate spheroid as defined in WGS '72.
|
| 832 |
// Side effects: Converts the position and velocity vectors to km-based units.
|
| 833 |
// Reference: The 1992 Astronomical Almanac, page K12.
|
| 834 |
// Reference: www.celestrak.com (Dr. TS Kelso)
|
| 835 |
cCoordGeo cEci::toGeo()
|
| 836 |
{
|
| 837 |
ae2km(); // Vectors must be in kilometer-based units
|
| 838 |
|
| 839 |
double theta = AcTan(m_pos.m_y, m_pos.m_x);
|
| 840 |
double lon = fmod(theta - m_date.toGMST(), TWOPI);
|
| 841 |
|
| 842 |
if (lon < 0.0)
|
| 843 |
lon += TWOPI; // "wrap" negative modulo
|
| 844 |
|
| 845 |
double r = sqrt(sqr(m_pos.m_x) + sqr(m_pos.m_y));
|
| 846 |
double e2 = F * (2.0 - F);
|
| 847 |
double lat = AcTan(m_pos.m_z, r);
|
| 848 |
|
| 849 |
const double delta = 1.0e-07;
|
| 850 |
double phi;
|
| 851 |
double c;
|
| 852 |
|
| 853 |
do
|
| 854 |
{
|
| 855 |
phi = lat;
|
| 856 |
c = 1.0 / sqrt(1.0 - e2 * sqr(sin(phi)));
|
| 857 |
lat = AcTan(m_pos.m_z + XKMPER_WGS72 * c * e2 * sin(phi), r);
|
| 858 |
}
|
| 859 |
while (fabs(lat - phi) > delta);
|
| 860 |
|
| 861 |
double alt = r / cos(lat) - XKMPER_WGS72 * c;
|
| 862 |
|
| 863 |
return cCoordGeo(lat, lon, alt); // radians, radians, kilometers
|
| 864 |
}
|
| 865 |
|
| 866 |
//////////////////////////////////////////////////////////////////////////////
|
| 867 |
// ae2km()
|
| 868 |
// Convert the position and velocity vector units from AE-based units
|
| 869 |
// to kilometer based units.
|
| 870 |
void cEci::ae2km()
|
| 871 |
{
|
| 872 |
if (UnitsAreAe())
|
| 873 |
{
|
| 874 |
MulPos(XKMPER_WGS72 / AE); // km
|
| 875 |
MulVel((XKMPER_WGS72 / AE) * (MIN_PER_DAY / 86400)); // km/sec
|
| 876 |
m_VecUnits = UNITS_KM;
|
| 877 |
}
|
| 878 |
}
|
| 879 |
//
|
| 880 |
// cNoradBase.cpp
|
| 881 |
//
|
| 882 |
// Historical Note:
|
| 883 |
// The equations used here (and in derived classes) to determine satellite
|
| 884 |
// ECI coordinates/velocity come from the December, 1980 NORAD document
|
| 885 |
// "Space Track Report No. 3". The report details 6 orbital models and
|
| 886 |
// provides FORTRAN IV implementations of each. The classes here
|
| 887 |
// implement only two of the orbital models: SGP4 and SDP4. These two models,
|
| 888 |
// one for "near-earth" objects and one for "deep space" objects, are widely
|
| 889 |
// used in satellite tracking software and can produce very accurate results
|
| 890 |
// when used with current NORAD two-line element datum.
|
| 891 |
//
|
| 892 |
// The NORAD FORTRAN IV SGP4/SDP4 implementations were converted to Pascal by
|
| 893 |
// Dr. TS Kelso in 1995. In 1996 these routines were ported in a straight-
|
| 894 |
// forward manner to C++ by Varol Okan. The SGP4/SDP4 classes here were
|
| 895 |
// written by Michael F. Henry in 2002-03 and are a modern C++ re-write of
|
| 896 |
// the work done by Okan. In addition to introducing an object-oriented
|
| 897 |
// architecture, the last residues of the original FORTRAN code (such as
|
| 898 |
// labels and gotos) were eradicated.
|
| 899 |
//
|
| 900 |
// For excellent information on the underlying physics of orbits, visible
|
| 901 |
// satellite observations, current NORAD TLE data, and other related material,
|
| 902 |
// see http://www.celestrak.com which is maintained by Dr. TS Kelso.
|
| 903 |
//
|
| 904 |
// Copyright (c) 2003 Michael F. Henry
|
| 905 |
//
|
| 906 |
// mfh 12/07/2003
|
| 907 |
//
|
| 908 |
//////////////////////////////////////////////////////////////////////////////
|
| 909 |
cNoradBase::cNoradBase(const cOrbit &orbit) :
|
| 910 |
m_Orbit(orbit)
|
| 911 |
{
|
| 912 |
Initialize();
|
| 913 |
}
|
| 914 |
|
| 915 |
cNoradBase& cNoradBase::operator=(const cNoradBase &b)
|
| 916 |
{
|
| 917 |
// m_Orbit is a "const" member var, so cast away its
|
| 918 |
// "const-ness" in order to complete the assigment.
|
| 919 |
*(const_cast<cOrbit*>(&m_Orbit)) = b.m_Orbit;
|
| 920 |
|
| 921 |
return *this;
|
| 922 |
}
|
| 923 |
|
| 924 |
//////////////////////////////////////////////////////////////////////////////
|
| 925 |
// Initialize()
|
| 926 |
// Perform the initialization of member variables, specifically the variables
|
| 927 |
// used by derived-class objects to calculate ECI coordinates.
|
| 928 |
void cNoradBase::Initialize()
|
| 929 |
{
|
| 930 |
// Initialize any variables which are time-independent when
|
| 931 |
// calculating the ECI coordinates of the satellite.
|
| 932 |
m_satInc = m_Orbit.Inclination();
|
| 933 |
m_satEcc = m_Orbit.Eccentricity();
|
| 934 |
|
| 935 |
m_cosio = cos(m_satInc);
|
| 936 |
m_theta2 = m_cosio * m_cosio;
|
| 937 |
m_x3thm1 = 3.0 * m_theta2 - 1.0;
|
| 938 |
m_eosq = m_satEcc * m_satEcc;
|
| 939 |
m_betao2 = 1.0 - m_eosq;
|
| 940 |
m_betao = sqrt(m_betao2);
|
| 941 |
|
| 942 |
// The "recovered" semi-minor axis and mean motion.
|
| 943 |
m_aodp = m_Orbit.SemiMinor();
|
| 944 |
m_xnodp = m_Orbit.mnMotionRec();
|
| 945 |
|
| 946 |
// For perigee below 156 km, the values of S and QOMS2T are altered.
|
| 947 |
m_perigee = XKMPER_WGS72 * (m_aodp * (1.0 - m_satEcc) - AE);
|
| 948 |
|
| 949 |
m_s4 = S;
|
| 950 |
m_qoms24 = QOMS2T;
|
| 951 |
|
| 952 |
if (m_perigee < 156.0)
|
| 953 |
{
|
| 954 |
m_s4 = m_perigee - 78.0;
|
| 955 |
|
| 956 |
if (m_perigee <= 98.0)
|
| 957 |
{
|
| 958 |
m_s4 = 20.0;
|
| 959 |
}
|
| 960 |
|
| 961 |
m_qoms24 = pow((120.0 - m_s4) * AE / XKMPER_WGS72, 4.0);
|
| 962 |
m_s4 = m_s4 / XKMPER_WGS72 + AE;
|
| 963 |
}
|
| 964 |
|
| 965 |
const double pinvsq = 1.0 / (m_aodp * m_aodp * m_betao2 * m_betao2);
|
| 966 |
|
| 967 |
m_tsi = 1.0 / (m_aodp - m_s4);
|
| 968 |
m_eta = m_aodp * m_satEcc * m_tsi;
|
| 969 |
m_etasq = m_eta * m_eta;
|
| 970 |
m_eeta = m_satEcc * m_eta;
|
| 971 |
|
| 972 |
const double psisq = fabs(1.0 - m_etasq);
|
| 973 |
|
| 974 |
m_coef = m_qoms24 * pow(m_tsi,4.0);
|
| 975 |
m_coef1 = m_coef / pow(psisq,3.5);
|
| 976 |
|
| 977 |
const double c2 = m_coef1 * m_xnodp *
|
| 978 |
(m_aodp * (1.0 + 1.5 * m_etasq + m_eeta * (4.0 + m_etasq)) +
|
| 979 |
0.75 * CK2 * m_tsi / psisq * m_x3thm1 *
|
| 980 |
(8.0 + 3.0 * m_etasq * (8.0 + m_etasq)));
|
| 981 |
|
| 982 |
m_c1 = m_Orbit.BStar() * c2;
|
| 983 |
m_sinio = sin(m_satInc);
|
| 984 |
|
| 985 |
const double a3ovk2 = -XJ3 / CK2 * pow(AE,3.0);
|
| 986 |
|
| 987 |
m_c3 = m_coef * m_tsi * a3ovk2 * m_xnodp * AE * m_sinio / m_satEcc;
|
| 988 |
m_x1mth2 = 1.0 - m_theta2;
|
| 989 |
m_c4 = 2.0 * m_xnodp * m_coef1 * m_aodp * m_betao2 *
|
| 990 |
(m_eta * (2.0 + 0.5 * m_etasq) +
|
| 991 |
m_satEcc * (0.5 + 2.0 * m_etasq) -
|
| 992 |
2.0 * CK2 * m_tsi / (m_aodp * psisq) *
|
| 993 |
(-3.0 * m_x3thm1 * (1.0 - 2.0 * m_eeta + m_etasq * (1.5 - 0.5 * m_eeta)) +
|
| 994 |
0.75 * m_x1mth2 *
|
| 995 |
(2.0 * m_etasq - m_eeta * (1.0 + m_etasq)) *
|
| 996 |
cos(2.0 * m_Orbit.ArgPerigee())));
|
| 997 |
|
| 998 |
const double theta4 = m_theta2 * m_theta2;
|
| 999 |
const double temp1 = 3.0 * CK2 * pinvsq * m_xnodp;
|
| 1000 |
const double temp2 = temp1 * CK2 * pinvsq;
|
| 1001 |
const double temp3 = 1.25 * CK4 * pinvsq * pinvsq * m_xnodp;
|
| 1002 |
|
| 1003 |
m_xmdot = m_xnodp + 0.5 * temp1 * m_betao * m_x3thm1 +
|
| 1004 |
0.0625 * temp2 * m_betao *
|
| 1005 |
(13.0 - 78.0 * m_theta2 + 137.0 * theta4);
|
| 1006 |
|
| 1007 |
const double x1m5th = 1.0 - 5.0 * m_theta2;
|
| 1008 |
|
| 1009 |
m_omgdot = -0.5 * temp1 * x1m5th + 0.0625 * temp2 *
|
| 1010 |
(7.0 - 114.0 * m_theta2 + 395.0 * theta4) +
|
| 1011 |
temp3 * (3.0 - 36.0 * m_theta2 + 49.0 * theta4);
|
| 1012 |
|
| 1013 |
const double xhdot1 = -temp1 * m_cosio;
|
| 1014 |
|
| 1015 |
m_xnodot = xhdot1 + (0.5 * temp2 * (4.0 - 19.0 * m_theta2) +
|
| 1016 |
2.0 * temp3 * (3.0 - 7.0 * m_theta2)) * m_cosio;
|
| 1017 |
m_xnodcf = 3.5 * m_betao2 * xhdot1 * m_c1;
|
| 1018 |
m_t2cof = 1.5 * m_c1;
|
| 1019 |
m_xlcof = 0.125 * a3ovk2 * m_sinio *
|
| 1020 |
(3.0 + 5.0 * m_cosio) / (1.0 + m_cosio);
|
| 1021 |
m_aycof = 0.25 * a3ovk2 * m_sinio;
|
| 1022 |
m_x7thm1 = 7.0 * m_theta2 - 1.0;
|
| 1023 |
}
|
| 1024 |
|
| 1025 |
//////////////////////////////////////////////////////////////////////////////
|
| 1026 |
bool cNoradBase::FinalPosition(double incl, double omega,
|
| 1027 |
double e, double a,
|
| 1028 |
double xl, double xnode,
|
| 1029 |
double xn, double tsince,
|
| 1030 |
cEci &eci)
|
| 1031 |
{
|
| 1032 |
if ((e * e) > 1.0)
|
| 1033 |
{
|
| 1034 |
// error in satellite data
|
| 1035 |
return false;
|
| 1036 |
}
|
| 1037 |
|
| 1038 |
double beta = sqrt(1.0 - e * e);
|
| 1039 |
|
| 1040 |
// Long period periodics
|
| 1041 |
double axn = e * cos(omega);
|
| 1042 |
double temp = 1.0 / (a * beta * beta);
|
| 1043 |
double xll = temp * m_xlcof * axn;
|
| 1044 |
double aynl = temp * m_aycof;
|
| 1045 |
double xlt = xl + xll;
|
| 1046 |
double ayn = e * sin(omega) + aynl;
|
| 1047 |
|
| 1048 |
// Solve Kepler's Equation
|
| 1049 |
|
| 1050 |
double capu = Fmod2p(xlt - xnode);
|
| 1051 |
double temp2 = capu;
|
| 1052 |
double temp3 = 0.0;
|
| 1053 |
double temp4 = 0.0;
|
| 1054 |
double temp5 = 0.0;
|
| 1055 |
double temp6 = 0.0;
|
| 1056 |
double sinepw = 0.0;
|
| 1057 |
double cosepw = 0.0;
|
| 1058 |
bool fDone = false;
|
| 1059 |
|
| 1060 |
for (int i = 1; (i <= 10) && !fDone; i++)
|
| 1061 |
{
|
| 1062 |
sinepw = sin(temp2);
|
| 1063 |
cosepw = cos(temp2);
|
| 1064 |
temp3 = axn * sinepw;
|
| 1065 |
temp4 = ayn * cosepw;
|
| 1066 |
temp5 = axn * cosepw;
|
| 1067 |
temp6 = ayn * sinepw;
|
| 1068 |
|
| 1069 |
double epw = (capu - temp4 + temp3 - temp2) /
|
| 1070 |
(1.0 - temp5 - temp6) + temp2;
|
| 1071 |
|
| 1072 |
if (fabs(epw - temp2) <= E6A)
|
| 1073 |
fDone = true;
|
| 1074 |
else
|
| 1075 |
temp2 = epw;
|
| 1076 |
}
|
| 1077 |
|
| 1078 |
// Short period preliminary quantities
|
| 1079 |
double ecose = temp5 + temp6;
|
| 1080 |
double esine = temp3 - temp4;
|
| 1081 |
double elsq = axn * axn + ayn * ayn;
|
| 1082 |
temp = 1.0 - elsq;
|
| 1083 |
double pl = a * temp;
|
| 1084 |
double r = a * (1.0 - ecose);
|
| 1085 |
double temp1 = 1.0 / r;
|
| 1086 |
double rdot = XKE * sqrt(a) * esine * temp1;
|
| 1087 |
double rfdot = XKE * sqrt(pl) * temp1;
|
| 1088 |
temp2 = a * temp1;
|
| 1089 |
double betal = sqrt(temp);
|
| 1090 |
temp3 = 1.0 / (1.0 + betal);
|
| 1091 |
double cosu = temp2 * (cosepw - axn + ayn * esine * temp3);
|
| 1092 |
double sinu = temp2 * (sinepw - ayn - axn * esine * temp3);
|
| 1093 |
double u = AcTan(sinu, cosu);
|
| 1094 |
double sin2u = 2.0 * sinu * cosu;
|
| 1095 |
double cos2u = 2.0 * cosu * cosu - 1.0;
|
| 1096 |
|
| 1097 |
temp = 1.0 / pl;
|
| 1098 |
temp1 = CK2 * temp;
|
| 1099 |
temp2 = temp1 * temp;
|
| 1100 |
|
| 1101 |
// Update for short periodics
|
| 1102 |
double rk = r * (1.0 - 1.5 * temp2 * betal * m_x3thm1) +
|
| 1103 |
0.5 * temp1 * m_x1mth2 * cos2u;
|
| 1104 |
double uk = u - 0.25 * temp2 * m_x7thm1 * sin2u;
|
| 1105 |
double xnodek = xnode + 1.5 * temp2 * m_cosio * sin2u;
|
| 1106 |
double xinck = incl + 1.5 * temp2 * m_cosio * m_sinio * cos2u;
|
| 1107 |
double rdotk = rdot - xn * temp1 * m_x1mth2 * sin2u;
|
| 1108 |
double rfdotk = rfdot + xn * temp1 * (m_x1mth2 * cos2u + 1.5 * m_x3thm1);
|
| 1109 |
|
| 1110 |
// Orientation vectors
|
| 1111 |
double sinuk = sin(uk);
|
| 1112 |
double cosuk = cos(uk);
|
| 1113 |
double sinik = sin(xinck);
|
| 1114 |
double cosik = cos(xinck);
|
| 1115 |
double sinnok = sin(xnodek);
|
| 1116 |
double cosnok = cos(xnodek);
|
| 1117 |
double xmx = -sinnok * cosik;
|
| 1118 |
double xmy = cosnok * cosik;
|
| 1119 |
double ux = xmx * sinuk + cosnok * cosuk;
|
| 1120 |
double uy = xmy * sinuk + sinnok * cosuk;
|
| 1121 |
double uz = sinik * sinuk;
|
| 1122 |
double vx = xmx * cosuk - cosnok * sinuk;
|
| 1123 |
double vy = xmy * cosuk - sinnok * sinuk;
|
| 1124 |
double vz = sinik * cosuk;
|
| 1125 |
|
| 1126 |
// Position
|
| 1127 |
double x = rk * ux;
|
| 1128 |
double y = rk * uy;
|
| 1129 |
double z = rk * uz;
|
| 1130 |
|
| 1131 |
cVector vecPos(x, y, z);
|
| 1132 |
|
| 1133 |
// Validate on altitude
|
| 1134 |
double altKm = (vecPos.Magnitude() * (XKMPER_WGS72 / AE));
|
| 1135 |
|
| 1136 |
if ((altKm < XKMPER_WGS72) || (altKm > (2 * GEOSYNC_ALT)))
|
| 1137 |
return false;
|
| 1138 |
|
| 1139 |
// Velocity
|
| 1140 |
double xdot = rdotk * ux + rfdotk * vx;
|
| 1141 |
double ydot = rdotk * uy + rfdotk * vy;
|
| 1142 |
double zdot = rdotk * uz + rfdotk * vz;
|
| 1143 |
|
| 1144 |
cVector vecVel(xdot, ydot, zdot);
|
| 1145 |
|
| 1146 |
cJulian gmt = m_Orbit.Epoch();
|
| 1147 |
gmt.addMin(tsince);
|
| 1148 |
|
| 1149 |
eci = cEci(vecPos, vecVel, gmt);
|
| 1150 |
|
| 1151 |
return true;
|
| 1152 |
}
|
| 1153 |
|
| 1154 |
//
|
| 1155 |
// cNoradSGP4.cpp
|
| 1156 |
//
|
| 1157 |
// NORAD SGP4 implementation. See historical note in cNoradBase.cpp
|
| 1158 |
// Copyright (c) 2003 Michael F. Henry
|
| 1159 |
//
|
| 1160 |
// mfh 12/07/2003
|
| 1161 |
//
|
| 1162 |
//////////////////////////////////////////////////////////////////////////////
|
| 1163 |
cNoradSGP4::cNoradSGP4(const cOrbit &orbit) :
|
| 1164 |
cNoradBase(orbit)
|
| 1165 |
{
|
| 1166 |
m_c5 = 2.0 * m_coef1 * m_aodp * m_betao2 *
|
| 1167 |
(1.0 + 2.75 * (m_etasq + m_eeta) + m_eeta * m_etasq);
|
| 1168 |
m_omgcof = m_Orbit.BStar() * m_c3 * cos(m_Orbit.ArgPerigee());
|
| 1169 |
m_xmcof = -TWOTHRD * m_coef * m_Orbit.BStar() * AE / m_eeta;
|
| 1170 |
m_delmo = pow(1.0 + m_eta * cos(m_Orbit.mnAnomaly()), 3.0);
|
| 1171 |
m_sinmo = sin(m_Orbit.mnAnomaly());
|
| 1172 |
}
|
| 1173 |
|
| 1174 |
|
| 1175 |
//////////////////////////////////////////////////////////////////////////////
|
| 1176 |
// getPosition()
|
| 1177 |
// This procedure returns the ECI position and velocity for the satellite
|
| 1178 |
// in the orbit at the given number of minutes since the TLE epoch time
|
| 1179 |
// using the NORAD Simplified General Perturbation 4, near earth orbit
|
| 1180 |
// model.
|
| 1181 |
//
|
| 1182 |
// tsince - Time in minutes since the TLE epoch (GMT).
|
| 1183 |
// eci - ECI object to hold position information.
|
| 1184 |
// To convert the returned ECI position vector to km,
|
| 1185 |
// multiply each component by:
|
| 1186 |
// (XKMPER_WGS72 / AE).
|
| 1187 |
// To convert the returned ECI velocity vector to km/sec,
|
| 1188 |
// multiply each component by:
|
| 1189 |
// (XKMPER_WGS72 / AE) * (MIN_PER_DAY / 86400).
|
| 1190 |
|
| 1191 |
bool cNoradSGP4::getPosition(double tsince, cEci &eci)
|
| 1192 |
{
|
| 1193 |
// For m_perigee less than 220 kilometers, the isimp flag is set and
|
| 1194 |
// the equations are truncated to linear variation in sqrt a and
|
| 1195 |
// quadratic variation in mean anomaly. Also, the m_c3 term, the
|
| 1196 |
// delta omega term, and the delta m term are dropped.
|
| 1197 |
bool isimp = false;
|
| 1198 |
if ((m_aodp * (1.0 - m_satEcc) / AE) < (220.0 / XKMPER_WGS72 + AE))
|
| 1199 |
{
|
| 1200 |
isimp = true;
|
| 1201 |
}
|
| 1202 |
|
| 1203 |
double d2 = 0.0;
|
| 1204 |
double d3 = 0.0;
|
| 1205 |
double d4 = 0.0;
|
| 1206 |
|
| 1207 |
double t3cof = 0.0;
|
| 1208 |
double t4cof = 0.0;
|
| 1209 |
double t5cof = 0.0;
|
| 1210 |
|
| 1211 |
if (!isimp)
|
| 1212 |
{
|
| 1213 |
double c1sq = m_c1 * m_c1;
|
| 1214 |
|
| 1215 |
d2 = 4.0 * m_aodp * m_tsi * c1sq;
|
| 1216 |
|
| 1217 |
double temp = d2 * m_tsi * m_c1 / 3.0;
|
| 1218 |
|
| 1219 |
d3 = (17.0 * m_aodp + m_s4) * temp;
|
| 1220 |
d4 = 0.5 * temp * m_aodp * m_tsi *
|
| 1221 |
(221.0 * m_aodp + 31.0 * m_s4) * m_c1;
|
| 1222 |
t3cof = d2 + 2.0 * c1sq;
|
| 1223 |
t4cof = 0.25 * (3.0 * d3 + m_c1 * (12.0 * d2 + 10.0 * c1sq));
|
| 1224 |
t5cof = 0.2 * (3.0 * d4 + 12.0 * m_c1 * d3 + 6.0 *
|
| 1225 |
d2 * d2 + 15.0 * c1sq * (2.0 * d2 + c1sq));
|
| 1226 |
}
|
| 1227 |
|
| 1228 |
// Update for secular gravity and atmospheric drag.
|
| 1229 |
double xmdf = m_Orbit.mnAnomaly() + m_xmdot * tsince;
|
| 1230 |
double omgadf = m_Orbit.ArgPerigee() + m_omgdot * tsince;
|
| 1231 |
double xnoddf = m_Orbit.RAAN() + m_xnodot * tsince;
|
| 1232 |
double omega = omgadf;
|
| 1233 |
double xmp = xmdf;
|
| 1234 |
double tsq = tsince * tsince;
|
| 1235 |
double xnode = xnoddf + m_xnodcf * tsq;
|
| 1236 |
double tempa = 1.0 - m_c1 * tsince;
|
| 1237 |
double tempe = m_Orbit.BStar() * m_c4 * tsince;
|
| 1238 |
double templ = m_t2cof * tsq;
|
| 1239 |
|
| 1240 |
if (!isimp)
|
| 1241 |
{
|
| 1242 |
double delomg = m_omgcof * tsince;
|
| 1243 |
double delm = m_xmcof * (pow(1.0 + m_eta * cos(xmdf), 3.0) - m_delmo);
|
| 1244 |
double temp = delomg + delm;
|
| 1245 |
|
| 1246 |
xmp = xmdf + temp;
|
| 1247 |
omega = omgadf - temp;
|
| 1248 |
|
| 1249 |
double tcube = tsq * tsince;
|
| 1250 |
double tfour = tsince * tcube;
|
| 1251 |
|
| 1252 |
tempa = tempa - d2 * tsq - d3 * tcube - d4 * tfour;
|
| 1253 |
tempe = tempe + m_Orbit.BStar() * m_c5 * (sin(xmp) - m_sinmo);
|
| 1254 |
templ = templ + t3cof * tcube + tfour * (t4cof + tsince * t5cof);
|
| 1255 |
}
|
| 1256 |
|
| 1257 |
double a = m_aodp * sqr(tempa);
|
| 1258 |
double e = m_satEcc - tempe;
|
| 1259 |
|
| 1260 |
|
| 1261 |
double xl = xmp + omega + xnode + m_xnodp * templ;
|
| 1262 |
double xn = XKE / pow(a, 1.5);
|
| 1263 |
|
| 1264 |
return FinalPosition(m_satInc, omgadf, e, a, xl, xnode, xn, tsince, eci);
|
| 1265 |
}
|
| 1266 |
|
| 1267 |
//
|
| 1268 |
// cNoradSDP4.cpp
|
| 1269 |
//
|
| 1270 |
// NORAD SDP4 implementation. See historical note in cNoradBase.cpp
|
| 1271 |
// Copyright (c) 2003 Michael F. Henry
|
| 1272 |
//
|
| 1273 |
// mfh 12/07/2003
|
| 1274 |
//
|
| 1275 |
|
| 1276 |
const double zns = 1.19459E-5; const double c1ss = 2.9864797E-6;
|
| 1277 |
const double zes = 0.01675; const double znl = 1.5835218E-4;
|
| 1278 |
const double c1l = 4.7968065E-7; const double zel = 0.05490;
|
| 1279 |
const double zcosis = 0.91744867; const double zsinis = 0.39785416;
|
| 1280 |
const double zsings = -0.98088458; const double zcosgs = 0.1945905;
|
| 1281 |
const double q22 = 1.7891679E-6; const double q31 = 2.1460748E-6;
|
| 1282 |
const double q33 = 2.2123015E-7; const double g22 = 5.7686396;
|
| 1283 |
const double g32 = 0.95240898; const double g44 = 1.8014998;
|
| 1284 |
const double g52 = 1.0508330; const double g54 = 4.4108898;
|
| 1285 |
const double root22 = 1.7891679E-6; const double root32 = 3.7393792E-7;
|
| 1286 |
const double root44 = 7.3636953E-9; const double root52 = 1.1428639E-7;
|
| 1287 |
const double root54 = 2.1765803E-9; const double thdt = 4.3752691E-3;
|
| 1288 |
|
| 1289 |
//////////////////////////////////////////////////////////////////////////////
|
| 1290 |
cNoradSDP4::cNoradSDP4(const cOrbit &orbit) :
|
| 1291 |
cNoradBase(orbit)
|
| 1292 |
{
|
| 1293 |
m_sing = sin(m_Orbit.ArgPerigee());
|
| 1294 |
m_cosg = cos(m_Orbit.ArgPerigee());
|
| 1295 |
|
| 1296 |
dp_savtsn = 0.0;
|
| 1297 |
dp_zmos = 0.0;
|
| 1298 |
dp_se2 = 0.0;
|
| 1299 |
dp_se3 = 0.0;
|
| 1300 |
dp_si2 = 0.0;
|
| 1301 |
dp_si3 = 0.0;
|
| 1302 |
dp_sl2 = 0.0;
|
| 1303 |
dp_sl3 = 0.0;
|
| 1304 |
dp_sl4 = 0.0;
|
| 1305 |
dp_sghs = 0.0;
|
| 1306 |
dp_sgh2 = 0.0;
|
| 1307 |
dp_sgh3 = 0.0;
|
| 1308 |
dp_sgh4 = 0.0;
|
| 1309 |
dp_sh2 = 0.0;
|
| 1310 |
dp_sh3 = 0.0;
|
| 1311 |
dp_zmol = 0.0;
|
| 1312 |
dp_ee2 = 0.0;
|
| 1313 |
dp_e3 = 0.0;
|
| 1314 |
dp_xi2 = 0.0;
|
| 1315 |
dp_xi3 = 0.0;
|
| 1316 |
dp_xl2 = 0.0;
|
| 1317 |
dp_xl3 = 0.0;
|
| 1318 |
dp_xl4 = 0.0;
|
| 1319 |
dp_xgh2 = 0.0;
|
| 1320 |
dp_xgh3 = 0.0;
|
| 1321 |
dp_xgh4 = 0.0;
|
| 1322 |
dp_xh2 = 0.0;
|
| 1323 |
dp_xh3 = 0.0;
|
| 1324 |
dp_xqncl = 0.0;
|
| 1325 |
dp_thgr = 0.0;
|
| 1326 |
dp_omegaq = 0.0;
|
| 1327 |
dp_sse = 0.0;
|
| 1328 |
dp_ssi = 0.0;
|
| 1329 |
dp_ssl = 0.0;
|
| 1330 |
dp_ssh = 0.0;
|
| 1331 |
dp_ssg = 0.0;
|
| 1332 |
dp_d2201 = 0.0;
|
| 1333 |
dp_d2211 = 0.0;
|
| 1334 |
dp_d3210 = 0.0;
|
| 1335 |
dp_d3222 = 0.0;
|
| 1336 |
dp_d4410 = 0.0;
|
| 1337 |
dp_d4422 = 0.0;
|
| 1338 |
dp_d5220 = 0.0;
|
| 1339 |
dp_d5232 = 0.0;
|
| 1340 |
dp_d5421 = 0.0;
|
| 1341 |
dp_d5433 = 0.0;
|
| 1342 |
dp_xlamo = 0.0;
|
| 1343 |
dp_del1 = 0.0;
|
| 1344 |
dp_del2 = 0.0;
|
| 1345 |
dp_del3 = 0.0;
|
| 1346 |
dp_fasx2 = 0.0;
|
| 1347 |
dp_fasx4 = 0.0;
|
| 1348 |
dp_fasx6 = 0.0;
|
| 1349 |
dp_xfact = 0.0;
|
| 1350 |
dp_xli = 0.0;
|
| 1351 |
dp_xni = 0.0;
|
| 1352 |
dp_atime = 0.0;
|
| 1353 |
dp_stepp = 0.0;
|
| 1354 |
dp_stepn = 0.0;
|
| 1355 |
dp_step2 = 0.0;
|
| 1356 |
|
| 1357 |
dp_iresfl = false;
|
| 1358 |
dp_isynfl = false;
|
| 1359 |
|
| 1360 |
}
|
| 1361 |
|
| 1362 |
|
| 1363 |
/////////////////////////////////////////////////////////////////////////////
|
| 1364 |
bool cNoradSDP4::DeepInit(double *eosq, double *sinio, double *cosio,
|
| 1365 |
double *betao, double *aodp, double *theta2,
|
| 1366 |
double *sing, double *cosg, double *betao2,
|
| 1367 |
double *xmdot, double *omgdot, double *xnodott)
|
| 1368 |
{
|
| 1369 |
eqsq = *eosq;
|
| 1370 |
siniq = *sinio;
|
| 1371 |
cosiq = *cosio;
|
| 1372 |
rteqsq = *betao;
|
| 1373 |
ao = *aodp;
|
| 1374 |
cosq2 = *theta2;
|
| 1375 |
sinomo = *sing;
|
| 1376 |
cosomo = *cosg;
|
| 1377 |
bsq = *betao2;
|
| 1378 |
xlldot = *xmdot;
|
| 1379 |
omgdt = *omgdot;
|
| 1380 |
xnodot = *xnodott;
|
| 1381 |
|
| 1382 |
// Deep space initialization
|
| 1383 |
cJulian jd = m_Orbit.Epoch();
|
| 1384 |
|
| 1385 |
dp_thgr = jd.toGMST();
|
| 1386 |
|
| 1387 |
double eq = m_Orbit.Eccentricity();
|
| 1388 |
double aqnv = 1.0 / ao;
|
| 1389 |
|
| 1390 |
dp_xqncl = m_Orbit.Inclination();
|
| 1391 |
|
| 1392 |
double xmao = m_Orbit.mnAnomaly();
|
| 1393 |
double xpidot = omgdt + xnodot;
|
| 1394 |
double sinq = sin(m_Orbit.RAAN());
|
| 1395 |
double cosq = cos(m_Orbit.RAAN());
|
| 1396 |
|
| 1397 |
dp_omegaq = m_Orbit.ArgPerigee();
|
| 1398 |
|
| 1399 |
// Initialize lunar solar terms
|
| 1400 |
double day = jd.FromJan1_12h_1900();
|
| 1401 |
|
| 1402 |
if (day != dpi_day)
|
| 1403 |
{
|
| 1404 |
dpi_day = day;
|
| 1405 |
dpi_xnodce = 4.5236020 - 9.2422029E-4 * day;
|
| 1406 |
dpi_stem = sin(dpi_xnodce);
|
| 1407 |
dpi_ctem = cos(dpi_xnodce);
|
| 1408 |
dpi_zcosil = 0.91375164 - 0.03568096 * dpi_ctem;
|
| 1409 |
dpi_zsinil = sqrt(1.0 - dpi_zcosil * dpi_zcosil);
|
| 1410 |
dpi_zsinhl = 0.089683511 *dpi_stem / dpi_zsinil;
|
| 1411 |
dpi_zcoshl = sqrt(1.0 - dpi_zsinhl * dpi_zsinhl);
|
| 1412 |
dpi_c = 4.7199672 + 0.22997150 * day;
|
| 1413 |
dpi_gam = 5.8351514 + 0.0019443680 * day;
|
| 1414 |
dp_zmol = Fmod2p(dpi_c - dpi_gam);
|
| 1415 |
dpi_zx = 0.39785416 * dpi_stem / dpi_zsinil;
|
| 1416 |
dpi_zy = dpi_zcoshl * dpi_ctem + 0.91744867 * dpi_zsinhl * dpi_stem;
|
| 1417 |
dpi_zx = AcTan(dpi_zx,dpi_zy) + dpi_gam - dpi_xnodce;
|
| 1418 |
dpi_zcosgl = cos(dpi_zx);
|
| 1419 |
dpi_zsingl = sin(dpi_zx);
|
| 1420 |
dp_zmos = 6.2565837 + 0.017201977 * day;
|
| 1421 |
dp_zmos = Fmod2p(dp_zmos);
|
| 1422 |
}
|
| 1423 |
|
| 1424 |
dp_savtsn = 1.0e20;
|
| 1425 |
|
| 1426 |
double zcosg = zcosgs;
|
| 1427 |
double zsing = zsings;
|
| 1428 |
double zcosi = zcosis;
|
| 1429 |
double zsini = zsinis;
|
| 1430 |
double zcosh = cosq;
|
| 1431 |
double zsinh = sinq;
|
| 1432 |
double cc = c1ss;
|
| 1433 |
double zn = zns;
|
| 1434 |
double ze = zes;
|
| 1435 |
double zmo = dp_zmos;
|
| 1436 |
double xnoi = 1.0 / m_xnodp;
|
| 1437 |
|
| 1438 |
double a1; double a3; double a7; double a8; double a9; double a10;
|
| 1439 |
double a2; double a4; double a5; double a6; double x1; double x2;
|
| 1440 |
double x3; double x4; double x5; double x6; double x7; double x8;
|
| 1441 |
double z31; double z32; double z33; double z1; double z2; double z3;
|
| 1442 |
double z11; double z12; double z13; double z21; double z22; double z23;
|
| 1443 |
double s3; double s2; double s4; double s1; double s5; double s6;
|
| 1444 |
double s7;
|
| 1445 |
double se = 0.0; double si = 0.0; double sl = 0.0;
|
| 1446 |
double sgh = 0.0; double sh = 0.0;
|
| 1447 |
|
| 1448 |
// Apply the solar and lunar terms on the first pass, then re-apply the
|
| 1449 |
// solar terms again on the second pass.
|
| 1450 |
|
| 1451 |
for (int pass = 1; pass <= 2; pass++)
|
| 1452 |
{
|
| 1453 |
// Do solar terms
|
| 1454 |
a1 = zcosg * zcosh + zsing * zcosi * zsinh;
|
| 1455 |
a3 = -zsing * zcosh + zcosg * zcosi * zsinh;
|
| 1456 |
a7 = -zcosg * zsinh + zsing * zcosi * zcosh;
|
| 1457 |
a8 = zsing * zsini;
|
| 1458 |
a9 = zsing * zsinh + zcosg * zcosi * zcosh;
|
| 1459 |
a10 = zcosg * zsini;
|
| 1460 |
a2 = cosiq * a7 + siniq * a8;
|
| 1461 |
a4 = cosiq * a9 + siniq * a10;
|
| 1462 |
a5 = -siniq * a7 + cosiq * a8;
|
| 1463 |
a6 = -siniq * a9 + cosiq * a10;
|
| 1464 |
x1 = a1 * cosomo + a2 * sinomo;
|
| 1465 |
x2 = a3 * cosomo + a4 * sinomo;
|
| 1466 |
x3 = -a1 * sinomo + a2 * cosomo;
|
| 1467 |
x4 = -a3 * sinomo + a4 * cosomo;
|
| 1468 |
x5 = a5 * sinomo;
|
| 1469 |
x6 = a6 * sinomo;
|
| 1470 |
x7 = a5 * cosomo;
|
| 1471 |
x8 = a6 * cosomo;
|
| 1472 |
z31 = 12.0 * x1 * x1 - 3.0 * x3 * x3;
|
| 1473 |
z32 = 24.0 * x1 * x2 - 6.0 * x3 * x4;
|
| 1474 |
z33 = 12.0 * x2 * x2 - 3.0 * x4 * x4;
|
| 1475 |
z1 = 3.0 * (a1 * a1 + a2 * a2) + z31 * eqsq;
|
| 1476 |
z2 = 6.0 * (a1 * a3 + a2 * a4) + z32 * eqsq;
|
| 1477 |
z3 = 3.0 * (a3 * a3 + a4 * a4) + z33 * eqsq;
|
| 1478 |
z11 = -6.0 * a1 * a5 + eqsq*(-24.0 * x1 * x7 - 6.0 * x3 * x5);
|
| 1479 |
z12 = -6.0 * (a1 * a6 + a3 * a5) +
|
| 1480 |
eqsq * (-24.0 * (x2 * x7 + x1 * x8) - 6.0 * (x3 * x6 + x4 * x5));
|
| 1481 |
z13 = -6.0 * a3 * a6 + eqsq * (-24.0 * x2 * x8 - 6.0 * x4 * x6);
|
| 1482 |
z21 = 6.0 * a2 * a5 + eqsq * (24.0 * x1 * x5 - 6.0 * x3 * x7);
|
| 1483 |
z22 = 6.0*(a4 * a5 + a2 * a6) +
|
| 1484 |
eqsq * (24.0 * (x2 * x5 + x1 * x6) - 6.0 * (x4 * x7 + x3 * x8));
|
| 1485 |
z23 = 6.0 * a4 * a6 + eqsq*(24.0 * x2 * x6 - 6.0 * x4 * x8);
|
| 1486 |
z1 = z1 + z1 + bsq * z31;
|
| 1487 |
z2 = z2 + z2 + bsq * z32;
|
| 1488 |
z3 = z3 + z3 + bsq * z33;
|
| 1489 |
s3 = cc * xnoi;
|
| 1490 |
s2 = -0.5 * s3/rteqsq;
|
| 1491 |
s4 = s3 * rteqsq;
|
| 1492 |
s1 = -15.0 * eq * s4;
|
| 1493 |
s5 = x1 * x3 + x2 * x4;
|
| 1494 |
s6 = x2 * x3 + x1 * x4;
|
| 1495 |
s7 = x2 * x4 - x1 * x3;
|
| 1496 |
se = s1 * zn * s5;
|
| 1497 |
si = s2 * zn * (z11 + z13);
|
| 1498 |
sl = -zn * s3 * (z1 + z3 - 14.0 - 6.0 * eqsq);
|
| 1499 |
sgh = s4 * zn * (z31 + z33 - 6.0);
|
| 1500 |
sh = -zn * s2 * (z21 + z23);
|
| 1501 |
|
| 1502 |
if (dp_xqncl < 5.2359877E-2)
|
| 1503 |
sh = 0.0;
|
| 1504 |
|
| 1505 |
dp_ee2 = 2.0 * s1 * s6;
|
| 1506 |
dp_e3 = 2.0 * s1 * s7;
|
| 1507 |
dp_xi2 = 2.0 * s2 * z12;
|
| 1508 |
dp_xi3 = 2.0 * s2 * (z13 - z11);
|
| 1509 |
dp_xl2 = -2.0 * s3 * z2;
|
| 1510 |
dp_xl3 = -2.0 * s3 * (z3 - z1);
|
| 1511 |
dp_xl4 = -2.0 * s3 * (-21.0 - 9.0 * eqsq) * ze;
|
| 1512 |
dp_xgh2 = 2.0 * s4 * z32;
|
| 1513 |
dp_xgh3 = 2.0 * s4 * (z33 - z31);
|
| 1514 |
dp_xgh4 = -18.0 * s4 * ze;
|
| 1515 |
dp_xh2 = -2.0 * s2 * z22;
|
| 1516 |
dp_xh3 = -2.0 * s2 * (z23 - z21);
|
| 1517 |
|
| 1518 |
if (pass == 1)
|
| 1519 |
{
|
| 1520 |
// Do lunar terms
|
| 1521 |
dp_sse = se;
|
| 1522 |
dp_ssi = si;
|
| 1523 |
dp_ssl = sl;
|
| 1524 |
dp_ssh = sh / siniq;
|
| 1525 |
dp_ssg = sgh - cosiq * dp_ssh;
|
| 1526 |
dp_se2 = dp_ee2;
|
| 1527 |
dp_si2 = dp_xi2;
|
| 1528 |
dp_sl2 = dp_xl2;
|
| 1529 |
dp_sgh2 = dp_xgh2;
|
| 1530 |
dp_sh2 = dp_xh2;
|
| 1531 |
dp_se3 = dp_e3;
|
| 1532 |
dp_si3 = dp_xi3;
|
| 1533 |
dp_sl3 = dp_xl3;
|
| 1534 |
dp_sgh3 = dp_xgh3;
|
| 1535 |
dp_sh3 = dp_xh3;
|
| 1536 |
dp_sl4 = dp_xl4;
|
| 1537 |
dp_sgh4 = dp_xgh4;
|
| 1538 |
zcosg = dpi_zcosgl;
|
| 1539 |
zsing = dpi_zsingl;
|
| 1540 |
zcosi = dpi_zcosil;
|
| 1541 |
zsini = dpi_zsinil;
|
| 1542 |
zcosh = dpi_zcoshl * cosq + dpi_zsinhl * sinq;
|
| 1543 |
zsinh = sinq * dpi_zcoshl - cosq * dpi_zsinhl;
|
| 1544 |
zn = znl;
|
| 1545 |
cc = c1l;
|
| 1546 |
ze = zel;
|
| 1547 |
zmo = dp_zmol;
|
| 1548 |
}
|
| 1549 |
}
|
| 1550 |
|
| 1551 |
dp_sse = dp_sse + se;
|
| 1552 |
dp_ssi = dp_ssi + si;
|
| 1553 |
dp_ssl = dp_ssl + sl;
|
| 1554 |
dp_ssg = dp_ssg + sgh - cosiq / siniq * sh;
|
| 1555 |
dp_ssh = dp_ssh + sh / siniq;
|
| 1556 |
|
| 1557 |
// Geopotential resonance initialization for 12 hour orbits
|
| 1558 |
dp_iresfl = false;
|
| 1559 |
dp_isynfl = false;
|
| 1560 |
|
| 1561 |
bool bInitOnExit = true;
|
| 1562 |
double g310;
|
| 1563 |
double f220;
|
| 1564 |
double bfact = 0.0;
|
| 1565 |
|
| 1566 |
if ((m_xnodp >= 0.0052359877) || (m_xnodp <= 0.0034906585))
|
| 1567 |
{
|
| 1568 |
if ((m_xnodp < 8.26E-3) || (m_xnodp > 9.24E-3) || (eq < 0.5))
|
| 1569 |
{
|
| 1570 |
bInitOnExit = false;
|
| 1571 |
}
|
| 1572 |
else
|
| 1573 |
{
|
| 1574 |
dp_iresfl = true;
|
| 1575 |
|
| 1576 |
double eoc = eq * eqsq;
|
| 1577 |
double g201 = -0.306 - (eq - 0.64) * 0.440;
|
| 1578 |
|
| 1579 |
double g211; double g322;
|
| 1580 |
|
| 1581 |
double g410; double g422;
|
| 1582 |
double g520;
|
| 1583 |
|
| 1584 |
if (eq <= 0.65)
|
| 1585 |
{
|
| 1586 |
g211 = 3.616 - 13.247 * eq + 16.290 * eqsq;
|
| 1587 |
g310 = -19.302 + 117.390 * eq - 228.419 * eqsq + 156.591 * eoc;
|
| 1588 |
g322 = -18.9068 + 109.7927 * eq - 214.6334 * eqsq + 146.5816 * eoc;
|
| 1589 |
g410 = -41.122 + 242.694 * eq - 471.094 * eqsq + 313.953 * eoc;
|
| 1590 |
g422 = -146.407 + 841.880 * eq - 1629.014 * eqsq + 1083.435 * eoc;
|
| 1591 |
g520 = -532.114 + 3017.977 * eq - 5740.0 * eqsq + 3708.276 * eoc;
|
| 1592 |
}
|
| 1593 |
else
|
| 1594 |
{
|
| 1595 |
g211 = -72.099 + 331.819 * eq - 508.738 * eqsq + 266.724 * eoc;
|
| 1596 |
g310 = -346.844 + 1582.851 * eq - 2415.925 * eqsq + 1246.113 * eoc;
|
| 1597 |
g322 = -342.585 + 1554.908 * eq - 2366.899 * eqsq + 1215.972 * eoc;
|
| 1598 |
g410 = -1052.797 + 4758.686 * eq - 7193.992 * eqsq + 3651.957 * eoc;
|
| 1599 |
g422 = -3581.69 + 16178.11 * eq - 24462.77 * eqsq + 12422.52 * eoc;
|
| 1600 |
|
| 1601 |
if (eq <= 0.715)
|
| 1602 |
g520 = 1464.74 - 4664.75 * eq + 3763.64 * eqsq;
|
| 1603 |
else
|
| 1604 |
g520 = -5149.66 + 29936.92 * eq - 54087.36 * eqsq + 31324.56 * eoc;
|
| 1605 |
}
|
| 1606 |
|
| 1607 |
double g533;
|
| 1608 |
double g521;
|
| 1609 |
double g532;
|
| 1610 |
|
| 1611 |
if (eq < 0.7)
|
| 1612 |
{
|
| 1613 |
g533 = -919.2277 + 4988.61 * eq - 9064.77 * eqsq + 5542.21 * eoc;
|
| 1614 |
g521 = -822.71072 + 4568.6173 * eq - 8491.4146 * eqsq + 5337.524 * eoc;
|
| 1615 |
g532 = -853.666 + 4690.25 * eq - 8624.77 * eqsq + 5341.4 * eoc;
|
| 1616 |
}
|
| 1617 |
else
|
| 1618 |
{
|
| 1619 |
g533 = -37995.78 + 161616.52 * eq - 229838.2 * eqsq + 109377.94 * eoc;
|
| 1620 |
g521 = -51752.104 + 218913.95 * eq - 309468.16 * eqsq + 146349.42 * eoc;
|
| 1621 |
g532 = -40023.88 + 170470.89 * eq - 242699.48 * eqsq + 115605.82 * eoc;
|
| 1622 |
}
|
| 1623 |
|
| 1624 |
double sini2 = siniq * siniq;
|
| 1625 |
f220 = 0.75*(1.0 + 2.0 * cosiq + cosq2);
|
| 1626 |
double f221 = 1.5 * sini2;
|
| 1627 |
double f321 = 1.875 * siniq*(1.0 - 2.0 * cosiq - 3.0 * cosq2);
|
| 1628 |
double f322 = -1.875 * siniq*(1.0 + 2.0 * cosiq - 3.0 * cosq2);
|
| 1629 |
double f441 = 35.0 * sini2 * f220;
|
| 1630 |
double f442 = 39.3750 * sini2 * sini2;
|
| 1631 |
double f522 = 9.84375 * siniq*(sini2*(1.0 - 2.0 * cosiq - 5.0 * cosq2) +
|
| 1632 |
0.33333333*(-2.0 + 4.0 * cosiq + 6.0 * cosq2));
|
| 1633 |
double f523 = siniq*(4.92187512 * sini2*(-2.0 - 4.0 * cosiq + 10.0 * cosq2) +
|
| 1634 |
6.56250012 * (1.0 + 2.0 * cosiq - 3.0 * cosq2));
|
| 1635 |
double f542 = 29.53125 * siniq*(2.0 - 8.0 * cosiq + cosq2 * (-12.0 + 8.0 * cosiq + 10.0 * cosq2));
|
| 1636 |
double f543 = 29.53125 * siniq*(-2.0 - 8.0 * cosiq + cosq2 * (12.0 + 8.0 * cosiq - 10.0 * cosq2));
|
| 1637 |
double xno2 = m_xnodp * m_xnodp;
|
| 1638 |
double ainv2 = aqnv * aqnv;
|
| 1639 |
double temp1 = 3.0 * xno2 * ainv2;
|
| 1640 |
double temp = temp1 * root22;
|
| 1641 |
|
| 1642 |
dp_d2201 = temp * f220 * g201;
|
| 1643 |
dp_d2211 = temp * f221 * g211;
|
| 1644 |
temp1 = temp1 * aqnv;
|
| 1645 |
temp = temp1 * root32;
|
| 1646 |
dp_d3210 = temp * f321 * g310;
|
| 1647 |
dp_d3222 = temp * f322 * g322;
|
| 1648 |
temp1 = temp1 * aqnv;
|
| 1649 |
temp = 2.0 * temp1 * root44;
|
| 1650 |
dp_d4410 = temp * f441 * g410;
|
| 1651 |
dp_d4422 = temp * f442 * g422;
|
| 1652 |
temp1 = temp1 * aqnv;
|
| 1653 |
temp = temp1 * root52;
|
| 1654 |
dp_d5220 = temp * f522 * g520;
|
| 1655 |
dp_d5232 = temp * f523 * g532;
|
| 1656 |
temp = 2.0 * temp1 * root54;
|
| 1657 |
dp_d5421 = temp * f542 * g521;
|
| 1658 |
dp_d5433 = temp * f543 * g533;
|
| 1659 |
dp_xlamo = xmao + m_Orbit.RAAN() + m_Orbit.RAAN() - dp_thgr - dp_thgr;
|
| 1660 |
bfact = xlldot + xnodot + xnodot - thdt - thdt;
|
| 1661 |
bfact = bfact + dp_ssl + dp_ssh + dp_ssh;
|
| 1662 |
}
|
| 1663 |
}
|
| 1664 |
else
|
| 1665 |
{
|
| 1666 |
// Synchronous resonance terms initialization
|
| 1667 |
dp_iresfl = true;
|
| 1668 |
dp_isynfl = true;
|
| 1669 |
double g200 = 1.0 + eqsq * (-2.5 + 0.8125 * eqsq);
|
| 1670 |
g310 = 1.0 + 2.0 * eqsq;
|
| 1671 |
double g300 = 1.0 + eqsq * (-6.0 + 6.60937 * eqsq);
|
| 1672 |
f220 = 0.75 * (1.0 + cosiq) * (1.0 + cosiq);
|
| 1673 |
double f311 = 0.9375 * siniq * siniq * (1.0 + 3 * cosiq) - 0.75 * (1.0 + cosiq);
|
| 1674 |
double f330 = 1.0 + cosiq;
|
| 1675 |
f330 = 1.875 * f330 * f330 * f330;
|
| 1676 |
dp_del1 = 3.0 * m_xnodp * m_xnodp * aqnv * aqnv;
|
| 1677 |
dp_del2 = 2.0 * dp_del1 * f220 * g200 * q22;
|
| 1678 |
dp_del3 = 3.0 * dp_del1 * f330 * g300 * q33 * aqnv;
|
| 1679 |
dp_del1 = dp_del1 * f311 * g310 * q31 * aqnv;
|
| 1680 |
dp_fasx2 = 0.13130908;
|
| 1681 |
dp_fasx4 = 2.8843198;
|
| 1682 |
dp_fasx6 = 0.37448087;
|
| 1683 |
dp_xlamo = xmao + m_Orbit.RAAN() + m_Orbit.ArgPerigee() - dp_thgr;
|
| 1684 |
bfact = xlldot + xpidot - thdt;
|
| 1685 |
bfact = bfact + dp_ssl + dp_ssg + dp_ssh;
|
| 1686 |
}
|
| 1687 |
|
| 1688 |
if (bInitOnExit)
|
| 1689 |
{
|
| 1690 |
dp_xfact = bfact - m_xnodp;
|
| 1691 |
|
| 1692 |
// Initialize integrator
|
| 1693 |
dp_xli = dp_xlamo;
|
| 1694 |
dp_xni = m_xnodp;
|
| 1695 |
dp_atime = 0.0;
|
| 1696 |
dp_stepp = 720.0;
|
| 1697 |
dp_stepn = -720.0;
|
| 1698 |
dp_step2 = 259200.0;
|
| 1699 |
}
|
| 1700 |
|
| 1701 |
*eosq = eqsq;
|
| 1702 |
*sinio = siniq;
|
| 1703 |
*cosio = cosiq;
|
| 1704 |
*betao = rteqsq;
|
| 1705 |
*aodp = ao;
|
| 1706 |
*theta2 = cosq2;
|
| 1707 |
*sing = sinomo;
|
| 1708 |
*cosg = cosomo;
|
| 1709 |
*betao2 = bsq;
|
| 1710 |
*xmdot = xlldot;
|
| 1711 |
*omgdot = omgdt;
|
| 1712 |
*xnodott = xnodot;
|
| 1713 |
|
| 1714 |
return true;
|
| 1715 |
}
|
| 1716 |
|
| 1717 |
//////////////////////////////////////////////////////////////////////////////
|
| 1718 |
bool cNoradSDP4::DeepCalcDotTerms(double *pxndot, double *pxnddt, double *pxldot)
|
| 1719 |
{
|
| 1720 |
// Dot terms calculated
|
| 1721 |
if (dp_isynfl)
|
| 1722 |
{
|
| 1723 |
*pxndot = dp_del1 * sin(dp_xli - dp_fasx2) +
|
| 1724 |
dp_del2 * sin(2.0 * (dp_xli - dp_fasx4)) +
|
| 1725 |
dp_del3 * sin(3.0 * (dp_xli - dp_fasx6));
|
| 1726 |
*pxnddt = dp_del1 * cos(dp_xli - dp_fasx2) +
|
| 1727 |
2.0 * dp_del2 * cos(2.0 * (dp_xli - dp_fasx4)) +
|
| 1728 |
3.0 * dp_del3 * cos(3.0 * (dp_xli - dp_fasx6));
|
| 1729 |
}
|
| 1730 |
else
|
| 1731 |
{
|
| 1732 |
double xomi = dp_omegaq + omgdt * dp_atime;
|
| 1733 |
double x2omi = xomi + xomi;
|
| 1734 |
double x2li = dp_xli + dp_xli;
|
| 1735 |
|
| 1736 |
*pxndot = dp_d2201 * sin(x2omi + dp_xli - g22) +
|
| 1737 |
dp_d2211 * sin(dp_xli - g22) +
|
| 1738 |
dp_d3210 * sin(xomi + dp_xli - g32) +
|
| 1739 |
dp_d3222 * sin(-xomi + dp_xli - g32) +
|
| 1740 |
dp_d4410 * sin(x2omi + x2li - g44) +
|
| 1741 |
dp_d4422 * sin(x2li - g44) +
|
| 1742 |
dp_d5220 * sin(xomi + dp_xli - g52) +
|
| 1743 |
dp_d5232 * sin(-xomi + dp_xli - g52) +
|
| 1744 |
dp_d5421 * sin(xomi + x2li - g54) +
|
| 1745 |
dp_d5433 * sin(-xomi + x2li - g54);
|
| 1746 |
|
| 1747 |
*pxnddt = dp_d2201 * cos(x2omi + dp_xli - g22) +
|
| 1748 |
dp_d2211 * cos(dp_xli - g22) +
|
| 1749 |
dp_d3210 * cos(xomi + dp_xli - g32) +
|
| 1750 |
dp_d3222 * cos(-xomi + dp_xli - g32) +
|
| 1751 |
dp_d5220 * cos(xomi + dp_xli - g52) +
|
| 1752 |
dp_d5232 * cos(-xomi + dp_xli - g52) +
|
| 1753 |
2.0 * (dp_d4410 * cos(x2omi + x2li - g44) +
|
| 1754 |
dp_d4422 * cos(x2li - g44) +
|
| 1755 |
dp_d5421 * cos(xomi + x2li - g54) +
|
| 1756 |
dp_d5433 * cos(-xomi + x2li - g54));
|
| 1757 |
}
|
| 1758 |
|
| 1759 |
*pxldot = dp_xni + dp_xfact;
|
| 1760 |
*pxnddt = (*pxnddt) * (*pxldot);
|
| 1761 |
|
| 1762 |
return true;
|
| 1763 |
}
|
| 1764 |
|
| 1765 |
//////////////////////////////////////////////////////////////////////////////
|
| 1766 |
void cNoradSDP4::DeepCalcIntegrator(double *pxndot, double *pxnddt,
|
| 1767 |
double *pxldot, const double &delt)
|
| 1768 |
{
|
| 1769 |
DeepCalcDotTerms(pxndot, pxnddt, pxldot);
|
| 1770 |
|
| 1771 |
dp_xli = dp_xli + (*pxldot) * delt + (*pxndot) * dp_step2;
|
| 1772 |
dp_xni = dp_xni + (*pxndot) * delt + (*pxnddt) * dp_step2;
|
| 1773 |
dp_atime = dp_atime + delt;
|
| 1774 |
}
|
| 1775 |
|
| 1776 |
//////////////////////////////////////////////////////////////////////////////
|
| 1777 |
bool cNoradSDP4::DeepSecular(double *xmdf, double *omgadf, double *xnode,
|
| 1778 |
double *emm, double *xincc, double *xnn,
|
| 1779 |
double *tsince)
|
| 1780 |
{
|
| 1781 |
xll = *xmdf;
|
| 1782 |
omgasm = *omgadf;
|
| 1783 |
xnodes = *xnode;
|
| 1784 |
xn = *xnn;
|
| 1785 |
t = *tsince;
|
| 1786 |
|
| 1787 |
// Deep space secular effects
|
| 1788 |
xll = xll + dp_ssl * t;
|
| 1789 |
omgasm = omgasm + dp_ssg * t;
|
| 1790 |
xnodes = xnodes + dp_ssh * t;
|
| 1791 |
_em = m_Orbit.Eccentricity() + dp_sse * t;
|
| 1792 |
xinc = m_Orbit.Inclination() + dp_ssi * t;
|
| 1793 |
|
| 1794 |
if (xinc < 0.0)
|
| 1795 |
{
|
| 1796 |
xinc = -xinc;
|
| 1797 |
xnodes = xnodes + PI;
|
| 1798 |
omgasm = omgasm - PI;
|
| 1799 |
}
|
| 1800 |
|
| 1801 |
double xnddt = 0.0;
|
| 1802 |
double xndot = 0.0;
|
| 1803 |
double xldot = 0.0;
|
| 1804 |
double ft = 0.0;
|
| 1805 |
double delt = 0.0;
|
| 1806 |
|
| 1807 |
bool fDone = false;
|
| 1808 |
|
| 1809 |
if (dp_iresfl)
|
| 1810 |
{
|
| 1811 |
while (!fDone)
|
| 1812 |
{
|
| 1813 |
if ((dp_atime == 0.0) ||
|
| 1814 |
((t >= 0.0) && (dp_atime < 0.0)) ||
|
| 1815 |
((t < 0.0) && (dp_atime >= 0.0)))
|
| 1816 |
{
|
| 1817 |
if (t < 0)
|
| 1818 |
delt = dp_stepn;
|
| 1819 |
else
|
| 1820 |
delt = dp_stepp;
|
| 1821 |
|
| 1822 |
// Epoch restart
|
| 1823 |
dp_atime = 0.0;
|
| 1824 |
dp_xni = m_xnodp;
|
| 1825 |
dp_xli = dp_xlamo;
|
| 1826 |
|
| 1827 |
fDone = true;
|
| 1828 |
}
|
| 1829 |
else
|
| 1830 |
{
|
| 1831 |
if (fabs(t) < fabs(dp_atime))
|
| 1832 |
{
|
| 1833 |
delt = dp_stepp;
|
| 1834 |
|
| 1835 |
if (t >= 0.0)
|
| 1836 |
delt = dp_stepn;
|
| 1837 |
|
| 1838 |
DeepCalcIntegrator(&xndot, &xnddt, &xldot, delt);
|
| 1839 |
}
|
| 1840 |
else
|
| 1841 |
{
|
| 1842 |
delt = dp_stepn;
|
| 1843 |
|
| 1844 |
delt = dp_stepp;
|
| 1845 |
|
| 1846 |
fDone = true;
|
| 1847 |
}
|
| 1848 |
}
|
| 1849 |
}
|
| 1850 |
|
| 1851 |
while (fabs(t - dp_atime) >= dp_stepp)
|
| 1852 |
{
|
| 1853 |
DeepCalcIntegrator(&xndot, &xnddt, &xldot, delt);
|
| 1854 |
}
|
| 1855 |
|
| 1856 |
ft = t - dp_atime;
|
| 1857 |
|
| 1858 |
DeepCalcDotTerms(&xndot, &xnddt, &xldot);
|
| 1859 |
|
| 1860 |
xn = dp_xni + xndot * ft + xnddt * ft * ft * 0.5;
|
| 1861 |
|
| 1862 |
double xl = dp_xli + xldot * ft + xndot * ft * ft * 0.5;
|
| 1863 |
double temp = -xnodes + dp_thgr + t * thdt;
|
| 1864 |
|
| 1865 |
xll = xl - omgasm + temp;
|
| 1866 |
|
| 1867 |
if (!dp_isynfl)
|
| 1868 |
xll = xl + temp + temp;
|
| 1869 |
}
|
| 1870 |
|
| 1871 |
*xmdf = xll;
|
| 1872 |
*omgadf = omgasm;
|
| 1873 |
*xnode = xnodes;
|
| 1874 |
*emm = _em;
|
| 1875 |
*xincc = xinc;
|
| 1876 |
*xnn = xn;
|
| 1877 |
*tsince = t;
|
| 1878 |
|
| 1879 |
return true;
|
| 1880 |
}
|
| 1881 |
|
| 1882 |
//////////////////////////////////////////////////////////////////////////////
|
| 1883 |
bool cNoradSDP4::DeepPeriodics(double *e, double *xincc,
|
| 1884 |
double *omgadf, double *xnode,
|
| 1885 |
double *xmam)
|
| 1886 |
{
|
| 1887 |
_em = *e;
|
| 1888 |
xinc = *xincc;
|
| 1889 |
omgasm = *omgadf;
|
| 1890 |
xnodes = *xnode;
|
| 1891 |
xll = *xmam;
|
| 1892 |
|
| 1893 |
// Lunar-solar periodics
|
| 1894 |
double sinis = sin(xinc);
|
| 1895 |
double cosis = cos(xinc);
|
| 1896 |
|
| 1897 |
double sghs = 0.0;
|
| 1898 |
double shs = 0.0;
|
| 1899 |
double sh1 = 0.0;
|
| 1900 |
double pe = 0.0;
|
| 1901 |
double pinc = 0.0;
|
| 1902 |
double pl = 0.0;
|
| 1903 |
double sghl = 0.0;
|
| 1904 |
|
| 1905 |
if (fabs(dp_savtsn - t) >= 30.0)
|
| 1906 |
{
|
| 1907 |
dp_savtsn = t;
|
| 1908 |
|
| 1909 |
double zm = dp_zmos + zns * t;
|
| 1910 |
double zf = zm + 2.0 * zes * sin(zm);
|
| 1911 |
double sinzf = sin(zf);
|
| 1912 |
double f2 = 0.5 * sinzf * sinzf - 0.25;
|
| 1913 |
double f3 = -0.5 * sinzf * cos(zf);
|
| 1914 |
double ses = dp_se2 * f2 + dp_se3 * f3;
|
| 1915 |
double sis = dp_si2 * f2 + dp_si3 * f3;
|
| 1916 |
double sls = dp_sl2 * f2 + dp_sl3 * f3 + dp_sl4 * sinzf;
|
| 1917 |
|
| 1918 |
sghs = dp_sgh2 * f2 + dp_sgh3 * f3 + dp_sgh4 * sinzf;
|
| 1919 |
shs = dp_sh2 * f2 + dp_sh3 * f3;
|
| 1920 |
zm = dp_zmol + znl * t;
|
| 1921 |
zf = zm + 2.0 * zel * sin(zm);
|
| 1922 |
sinzf = sin(zf);
|
| 1923 |
f2 = 0.5 * sinzf * sinzf - 0.25;
|
| 1924 |
f3 = -0.5 * sinzf * cos(zf);
|
| 1925 |
|
| 1926 |
double sel = dp_ee2 * f2 + dp_e3 * f3;
|
| 1927 |
double sil = dp_xi2 * f2 + dp_xi3 * f3;
|
| 1928 |
double sll = dp_xl2 * f2 + dp_xl3 * f3 + dp_xl4 * sinzf;
|
| 1929 |
|
| 1930 |
sghl = dp_xgh2 * f2 + dp_xgh3 * f3 + dp_xgh4 * sinzf;
|
| 1931 |
sh1 = dp_xh2 * f2 + dp_xh3 * f3;
|
| 1932 |
pe = ses + sel;
|
| 1933 |
pinc = sis + sil;
|
| 1934 |
pl = sls + sll;
|
| 1935 |
}
|
| 1936 |
|
| 1937 |
double pgh = sghs + sghl;
|
| 1938 |
double ph = shs + sh1;
|
| 1939 |
xinc = xinc + pinc;
|
| 1940 |
_em = _em + pe;
|
| 1941 |
|
| 1942 |
if (dp_xqncl >= 0.2)
|
| 1943 |
{
|
| 1944 |
// Apply periodics directly
|
| 1945 |
ph = ph / siniq;
|
| 1946 |
pgh = pgh - cosiq * ph;
|
| 1947 |
omgasm = omgasm + pgh;
|
| 1948 |
xnodes = xnodes + ph;
|
| 1949 |
xll = xll + pl;
|
| 1950 |
}
|
| 1951 |
else
|
| 1952 |
{
|
| 1953 |
// Apply periodics with Lyddane modification
|
| 1954 |
double sinok = sin(xnodes);
|
| 1955 |
double cosok = cos(xnodes);
|
| 1956 |
double alfdp = sinis * sinok;
|
| 1957 |
double betdp = sinis * cosok;
|
| 1958 |
double dalf = ph * cosok + pinc * cosis * sinok;
|
| 1959 |
double dbet = -ph * sinok + pinc * cosis * cosok;
|
| 1960 |
|
| 1961 |
alfdp = alfdp + dalf;
|
| 1962 |
betdp = betdp + dbet;
|
| 1963 |
|
| 1964 |
double xls = xll + omgasm + cosis * xnodes;
|
| 1965 |
double dls = pl + pgh - pinc * xnodes * sinis;
|
| 1966 |
|
| 1967 |
xls = xls + dls;
|
| 1968 |
xnodes = AcTan(alfdp, betdp);
|
| 1969 |
xll = xll + pl;
|
| 1970 |
omgasm = xls - xll - cos(xinc) * xnodes;
|
| 1971 |
}
|
| 1972 |
|
| 1973 |
*e = _em;
|
| 1974 |
*xincc = xinc;
|
| 1975 |
*omgadf = omgasm;
|
| 1976 |
|
| 1977 |
*xnode = xnodes;
|
| 1978 |
*xmam = xll;
|
| 1979 |
|
| 1980 |
return true;
|
| 1981 |
}
|
| 1982 |
|
| 1983 |
//////////////////////////////////////////////////////////////////////////////
|
| 1984 |
// getPosition()
|
| 1985 |
// This procedure returns the ECI position and velocity for the satellite
|
| 1986 |
// in the orbit at the given number of minutes since the TLE epoch time
|
| 1987 |
// using the NORAD Simplified General Perturbation 4, "deep space" orbit
|
| 1988 |
// model.
|
| 1989 |
//
|
| 1990 |
// tsince - Time in minutes since the TLE epoch (GMT).
|
| 1991 |
// pECI - pointer to location to store the ECI data.
|
| 1992 |
// To convert the returned ECI position vector to km,
|
| 1993 |
// multiply each component by:
|
| 1994 |
// (XKMPER_WGS72 / AE).
|
| 1995 |
// To convert the returned ECI velocity vector to km/sec,
|
| 1996 |
// multiply each component by:
|
| 1997 |
// (XKMPER_WGS72 / AE) * (MIN_PER_DAY / 86400).
|
| 1998 |
bool cNoradSDP4::getPosition(double tsince, cEci &eci)
|
| 1999 |
{
|
| 2000 |
DeepInit(&m_eosq, &m_sinio, &m_cosio, &m_betao, &m_aodp, &m_theta2,
|
| 2001 |
&m_sing, &m_cosg, &m_betao2, &m_xmdot, &m_omgdot, &m_xnodot);
|
| 2002 |
|
| 2003 |
// Update for secular gravity and atmospheric drag
|
| 2004 |
double xmdf = m_Orbit.mnAnomaly() + m_xmdot * tsince;
|
| 2005 |
double omgadf = m_Orbit.ArgPerigee() + m_omgdot * tsince;
|
| 2006 |
double xnoddf = m_Orbit.RAAN() + m_xnodot * tsince;
|
| 2007 |
double tsq = tsince * tsince;
|
| 2008 |
double xnode = xnoddf + m_xnodcf * tsq;
|
| 2009 |
double tempa = 1.0 - m_c1 * tsince;
|
| 2010 |
double tempe = m_Orbit.BStar() * m_c4 * tsince;
|
| 2011 |
double templ = m_t2cof * tsq;
|
| 2012 |
double xn = m_xnodp;
|
| 2013 |
double em;
|
| 2014 |
double xinc;
|
| 2015 |
|
| 2016 |
DeepSecular(&xmdf, &omgadf, &xnode, &em, &xinc, &xn, &tsince);
|
| 2017 |
|
| 2018 |
double a = pow(XKE / xn, TWOTHRD) * sqr(tempa);
|
| 2019 |
double e = em - tempe;
|
| 2020 |
double xmam = xmdf + m_xnodp * templ;
|
| 2021 |
|
| 2022 |
DeepPeriodics(&e, &xinc, &omgadf, &xnode, &xmam);
|
| 2023 |
|
| 2024 |
double xl = xmam + omgadf + xnode;
|
| 2025 |
|
| 2026 |
xn = XKE / pow(a, 1.5);
|
| 2027 |
|
| 2028 |
return FinalPosition(xinc, omgadf, e, a, xl, xnode, xn, tsince, eci);
|
| 2029 |
}
|
| 2030 |
|
| 2031 |
|
| 2032 |
// cOrbit.cpp
|
| 2033 |
//
|
| 2034 |
// Copyright (c) 2002-2003 Michael F. Henry
|
| 2035 |
//
|
| 2036 |
// mfh 11/15/2003
|
| 2037 |
//
|
| 2038 |
//////////////////////////////////////////////////////////////////////
|
| 2039 |
cOrbit::cOrbit(const cTle &tle) :
|
| 2040 |
m_tle(tle),
|
| 2041 |
m_pNoradModel(NULL)
|
| 2042 |
{
|
| 2043 |
m_tle.Initialize();
|
| 2044 |
|
| 2045 |
int epochYear = (int)m_tle.getField(cTle::FLD_EPOCHYEAR);
|
| 2046 |
double epochDay = m_tle.getField(cTle::FLD_EPOCHDAY );
|
| 2047 |
|
| 2048 |
if (epochYear < 57)
|
| 2049 |
epochYear += 2000;
|
| 2050 |
else
|
| 2051 |
epochYear += 1900;
|
| 2052 |
|
| 2053 |
m_jdEpoch = cJulian(epochYear, epochDay);
|
| 2054 |
|
| 2055 |
m_secPeriod = -1.0;
|
| 2056 |
|
| 2057 |
// Recover the original mean motion and semimajor axis from the
|
| 2058 |
// input elements.
|
| 2059 |
double mm = mnMotion();
|
| 2060 |
double rpmin = mm * 2 * PI / MIN_PER_DAY; // rads per minute
|
| 2061 |
|
| 2062 |
double a1 = pow(XKE / rpmin, TWOTHRD);
|
| 2063 |
double e = Eccentricity();
|
| 2064 |
double i = Inclination();
|
| 2065 |
double temp = (1.5 * CK2 * (3.0 * sqr(cos(i)) - 1.0) /
|
| 2066 |
pow(1.0 - e * e, 1.5));
|
| 2067 |
double delta1 = temp / (a1 * a1);
|
| 2068 |
double a0 = a1 *
|
| 2069 |
(1.0 - delta1 *
|
| 2070 |
((1.0 / 3.0) + delta1 *
|
| 2071 |
(1.0 + 134.0 / 81.0 * delta1)));
|
| 2072 |
|
| 2073 |
double delta0 = temp / (a0 * a0);
|
| 2074 |
|
| 2075 |
m_mnMotionRec = rpmin / (1.0 + delta0);
|
| 2076 |
m_aeAxisSemiMinorRec = a0 / (1.0 - delta0);
|
| 2077 |
m_aeAxisSemiMajorRec = m_aeAxisSemiMinorRec / sqrt(1.0 - (e * e));
|
| 2078 |
m_kmPerigeeRec = XKMPER_WGS72 * (m_aeAxisSemiMajorRec * (1.0 - e) - AE);
|
| 2079 |
m_kmApogeeRec = XKMPER_WGS72 * (m_aeAxisSemiMajorRec * (1.0 + e) - AE);
|
| 2080 |
|
| 2081 |
if (2.0 * PI / m_mnMotionRec >= 225.0)
|
| 2082 |
{
|
| 2083 |
// SDP4 - period >= 225 minutes.
|
| 2084 |
m_pNoradModel = new cNoradSDP4(*this);
|
| 2085 |
}
|
| 2086 |
else
|
| 2087 |
{
|
| 2088 |
// SGP4 - period < 225 minutes
|
| 2089 |
m_pNoradModel = new cNoradSGP4(*this);
|
| 2090 |
}
|
| 2091 |
}
|
| 2092 |
|
| 2093 |
/////////////////////////////////////////////////////////////////////////////
|
| 2094 |
cOrbit::~cOrbit()
|
| 2095 |
{
|
| 2096 |
delete m_pNoradModel;
|
| 2097 |
}
|
| 2098 |
|
| 2099 |
//////////////////////////////////////////////////////////////////////////////
|
| 2100 |
// Return the period in seconds
|
| 2101 |
double cOrbit::Period() const
|
| 2102 |
{
|
| 2103 |
if (m_secPeriod < 0.0)
|
| 2104 |
{
|
| 2105 |
// Calculate the period using the recovered mean motion.
|
| 2106 |
if (m_mnMotionRec == 0)
|
| 2107 |
m_secPeriod = 0.0;
|
| 2108 |
else
|
| 2109 |
m_secPeriod = (2 * PI) / m_mnMotionRec * 60.0;
|
| 2110 |
}
|
| 2111 |
|
| 2112 |
return m_secPeriod;
|
| 2113 |
}
|
| 2114 |
|
| 2115 |
//////////////////////////////////////////////////////////////////////////////
|
| 2116 |
// Returns elapsed number of seconds from epoch to given time.
|
| 2117 |
// Note: "Predicted" TLEs can have epochs in the future.
|
| 2118 |
double cOrbit::TPlusEpoch(const cJulian &gmt) const
|
| 2119 |
{
|
| 2120 |
return gmt.spanSec(Epoch());
|
| 2121 |
}
|
| 2122 |
|
| 2123 |
//////////////////////////////////////////////////////////////////////////////
|
| 2124 |
// Returns the mean anomaly in radians at given GMT.
|
| 2125 |
// At epoch, the mean anomaly is given by the elements data.
|
| 2126 |
double cOrbit::mnAnomaly(cJulian gmt) const
|
| 2127 |
{
|
| 2128 |
double span = TPlusEpoch(gmt);
|
| 2129 |
double P = Period();
|
| 2130 |
|
| 2131 |
assert(P != 0.0);
|
| 2132 |
|
| 2133 |
return fmod(mnAnomaly() + (TWOPI * (span / P)), TWOPI);
|
| 2134 |
}
|
| 2135 |
|
| 2136 |
//////////////////////////////////////////////////////////////////////////////
|
| 2137 |
// getPosition()
|
| 2138 |
// This procedure returns the ECI position and velocity for the satellite
|
| 2139 |
// at "tsince" minutes from the (GMT) TLE epoch. The vectors returned in
|
| 2140 |
// the ECI object are kilometer-based.
|
| 2141 |
// tsince - Time in minutes since the TLE epoch (GMT).
|
| 2142 |
bool cOrbit::getPosition(double tsince, cEci *pEci) const
|
| 2143 |
{
|
| 2144 |
bool rc;
|
| 2145 |
|
| 2146 |
rc = m_pNoradModel->getPosition(tsince, *pEci);
|
| 2147 |
|
| 2148 |
pEci->ae2km();
|
| 2149 |
|
| 2150 |
return rc;
|
| 2151 |
}
|
| 2152 |
|
| 2153 |
//////////////////////////////////////////////////////////////////////////////
|
| 2154 |
// SatName()
|
| 2155 |
// Return the name of the satellite. If requested, the NORAD number is
|
| 2156 |
// appended to the end of the name, i.e., "ISS (ZARYA) #25544".
|
| 2157 |
// The name of the satellite with the NORAD number appended is important
|
| 2158 |
// because many satellites, especially debris, have the same name and
|
| 2159 |
// would otherwise appear to be the same satellite in ouput data.
|
| 2160 |
string cOrbit::SatName(bool fAppendId /* = false */) const
|
| 2161 |
{
|
| 2162 |
string str = m_tle.getName();
|
| 2163 |
|
| 2164 |
if (fAppendId)
|
| 2165 |
{
|
| 2166 |
string strId;
|
| 2167 |
|
| 2168 |
m_tle.getField(cTle::FLD_NORADNUM, cTle::U_NATIVE, &strId);
|
| 2169 |
str = str + " #" + strId;
|
| 2170 |
}
|
| 2171 |
|
| 2172 |
return str;
|
| 2173 |
}
|
| 2174 |
|