1 |
cafagna |
1.1 |
//
|
2 |
|
|
// globals.cpp
|
3 |
|
|
//
|
4 |
|
|
#include <sgp4.h>
|
5 |
|
|
|
6 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
7 |
|
|
double sqr(const double x)
|
8 |
|
|
{
|
9 |
|
|
return (x * x);
|
10 |
|
|
}
|
11 |
|
|
|
12 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
13 |
|
|
double Fmod2p(const double arg)
|
14 |
|
|
{
|
15 |
|
|
double modu = fmod(arg, TWOPI);
|
16 |
|
|
|
17 |
|
|
if (modu < 0.0)
|
18 |
|
|
modu += TWOPI;
|
19 |
|
|
|
20 |
|
|
return modu;
|
21 |
|
|
}
|
22 |
|
|
|
23 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
24 |
|
|
// AcTan()
|
25 |
|
|
// ArcTangent of sin(x) / cos(x). The advantage of this function over arctan()
|
26 |
|
|
// is that it returns the correct quadrant of the angle.
|
27 |
|
|
double AcTan(const double sinx, const double cosx)
|
28 |
|
|
{
|
29 |
|
|
double ret;
|
30 |
|
|
|
31 |
|
|
if (cosx == 0.0)
|
32 |
|
|
{
|
33 |
|
|
if (sinx > 0.0)
|
34 |
|
|
ret = PI / 2.0;
|
35 |
|
|
else
|
36 |
|
|
ret = 3.0 * PI / 2.0;
|
37 |
|
|
}
|
38 |
|
|
else
|
39 |
|
|
{
|
40 |
|
|
if (cosx > 0.0)
|
41 |
|
|
ret = atan(sinx / cosx);
|
42 |
|
|
else
|
43 |
|
|
ret = PI + atan(sinx / cosx);
|
44 |
|
|
}
|
45 |
|
|
|
46 |
|
|
return ret;
|
47 |
|
|
}
|
48 |
|
|
|
49 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
50 |
|
|
double rad2deg(const double r)
|
51 |
|
|
{
|
52 |
|
|
const double DEG_PER_RAD = 180.0 / PI;
|
53 |
|
|
return r * DEG_PER_RAD;
|
54 |
|
|
}
|
55 |
|
|
|
56 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
57 |
|
|
double deg2rad(const double d)
|
58 |
|
|
{
|
59 |
|
|
const double RAD_PER_DEG = PI / 180.0;
|
60 |
|
|
return d * RAD_PER_DEG;
|
61 |
|
|
}
|
62 |
|
|
|
63 |
|
|
//
|
64 |
|
|
// coord.cpp
|
65 |
|
|
//
|
66 |
|
|
// Copyright (c) 2003 Michael F. Henry
|
67 |
|
|
//
|
68 |
|
|
|
69 |
|
|
//////////////////////////////////////////////////////////////////////
|
70 |
|
|
// cCoordGeo Class
|
71 |
|
|
//////////////////////////////////////////////////////////////////////
|
72 |
|
|
|
73 |
|
|
cCoordGeo::cCoordGeo()
|
74 |
|
|
{
|
75 |
|
|
m_Lat = 0.0;
|
76 |
|
|
m_Lon = 0.0;
|
77 |
|
|
m_Alt = 0.0;
|
78 |
|
|
}
|
79 |
|
|
|
80 |
|
|
//////////////////////////////////////////////////////////////////////
|
81 |
|
|
// cCoordTopo Class
|
82 |
|
|
//////////////////////////////////////////////////////////////////////
|
83 |
|
|
|
84 |
|
|
cCoordTopo::cCoordTopo()
|
85 |
|
|
{
|
86 |
|
|
m_Az = 0.0;
|
87 |
|
|
m_El = 0.0;
|
88 |
|
|
m_Range = 0.0;
|
89 |
|
|
m_RangeRate = 0.0;
|
90 |
|
|
|
91 |
|
|
}
|
92 |
|
|
|
93 |
|
|
|
94 |
|
|
|
95 |
|
|
//
|
96 |
|
|
// cVector.cpp
|
97 |
|
|
//
|
98 |
|
|
// Copyright (c) 2001-2003 Michael F. Henry
|
99 |
|
|
//
|
100 |
|
|
//*****************************************************************************
|
101 |
|
|
// Multiply each component in the vector by 'factor'.
|
102 |
|
|
//*****************************************************************************
|
103 |
|
|
void cVector::Mul(double factor)
|
104 |
|
|
{
|
105 |
|
|
m_x *= factor;
|
106 |
|
|
m_y *= factor;
|
107 |
|
|
m_z *= factor;
|
108 |
|
|
m_w *= fabs(factor);
|
109 |
|
|
}
|
110 |
|
|
|
111 |
|
|
//*****************************************************************************
|
112 |
|
|
// Subtract a vector from this one.
|
113 |
|
|
//*****************************************************************************
|
114 |
|
|
void cVector::Sub(const cVector& vec)
|
115 |
|
|
{
|
116 |
|
|
m_x -= vec.m_x;
|
117 |
|
|
m_y -= vec.m_y;
|
118 |
|
|
m_z -= vec.m_z;
|
119 |
|
|
m_w -= vec.m_w;
|
120 |
|
|
}
|
121 |
|
|
|
122 |
|
|
//*****************************************************************************
|
123 |
|
|
// Calculate the angle between this vector and another
|
124 |
|
|
//*****************************************************************************
|
125 |
|
|
double cVector::Angle(const cVector& vec) const
|
126 |
|
|
{
|
127 |
|
|
return acos(Dot(vec) / (Magnitude() * vec.Magnitude()));
|
128 |
|
|
}
|
129 |
|
|
|
130 |
|
|
//*****************************************************************************
|
131 |
|
|
//
|
132 |
|
|
//*****************************************************************************
|
133 |
|
|
double cVector::Magnitude() const
|
134 |
|
|
{
|
135 |
|
|
return sqrt((m_x * m_x) +
|
136 |
|
|
(m_y * m_y) +
|
137 |
|
|
(m_z * m_z));
|
138 |
|
|
}
|
139 |
|
|
|
140 |
|
|
//*****************************************************************************
|
141 |
|
|
// Return the dot product
|
142 |
|
|
//*****************************************************************************
|
143 |
|
|
double cVector::Dot(const cVector& vec) const
|
144 |
|
|
{
|
145 |
|
|
return (m_x * vec.m_x) +
|
146 |
|
|
(m_y * vec.m_y) +
|
147 |
|
|
(m_z * vec.m_z);
|
148 |
|
|
}
|
149 |
|
|
//
|
150 |
|
|
// cJulian.cpp
|
151 |
|
|
//
|
152 |
|
|
// This class encapsulates Julian dates with the epoch of 12:00 noon (12:00 UT)
|
153 |
|
|
// on January 1, 4713 B.C. Some epoch dates:
|
154 |
|
|
// 01/01/1990 00:00 UTC - 2447892.5
|
155 |
|
|
// 01/01/1990 12:00 UTC - 2447893.0
|
156 |
|
|
// 01/01/2000 00:00 UTC - 2451544.5
|
157 |
|
|
// 01/01/2001 00:00 UTC - 2451910.5
|
158 |
|
|
//
|
159 |
|
|
// Note the Julian day begins at noon, which allows astronomers to have all
|
160 |
|
|
// the dates in a single observing session the same.
|
161 |
|
|
//
|
162 |
|
|
// References:
|
163 |
|
|
// "Astronomical Formulae for Calculators", Jean Meeus
|
164 |
|
|
// "Satellite Communications", Dennis Roddy, 2nd Edition, 1995.
|
165 |
|
|
//
|
166 |
|
|
// Copyright (c) 2003 Michael F. Henry
|
167 |
|
|
//
|
168 |
|
|
// mfh 12/24/2003
|
169 |
|
|
//
|
170 |
|
|
|
171 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
172 |
|
|
// Create a Julian date object from a time_t object. time_t objects store the
|
173 |
|
|
// number of seconds since midnight UTC January 1, 1970.
|
174 |
|
|
cJulian::cJulian(time_t time)
|
175 |
|
|
{
|
176 |
|
|
struct tm *ptm = gmtime(&time);
|
177 |
|
|
assert(ptm);
|
178 |
|
|
|
179 |
|
|
int year = ptm->tm_year + 1900;
|
180 |
|
|
double day = ptm->tm_yday + 1 +
|
181 |
|
|
(ptm->tm_hour +
|
182 |
|
|
((ptm->tm_min +
|
183 |
|
|
(ptm->tm_sec / 60.0)) / 60.0)) / 24.0;
|
184 |
|
|
|
185 |
|
|
Initialize(year, day);
|
186 |
|
|
}
|
187 |
|
|
|
188 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
189 |
|
|
// Create a Julian date object from a year and day of year.
|
190 |
|
|
// Example parameters: year = 2001, day = 1.5 (Jan 1 12h)
|
191 |
|
|
cJulian::cJulian(int year, double day)
|
192 |
|
|
{
|
193 |
|
|
Initialize(year, day);
|
194 |
|
|
}
|
195 |
|
|
|
196 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
197 |
|
|
// Create a Julian date object.
|
198 |
|
|
cJulian::cJulian(int year, // i.e., 2004
|
199 |
|
|
int mon, // 1..12
|
200 |
|
|
int day, // 1..31
|
201 |
|
|
int hour, // 0..23
|
202 |
|
|
int min, // 0..59
|
203 |
|
|
double sec /* = 0.0 */) // 0..(59.999999...)
|
204 |
|
|
|
205 |
|
|
{
|
206 |
|
|
// Calculate N, the day of the year (1..366)
|
207 |
|
|
int N;
|
208 |
|
|
int F1 = (int)((275.0 * mon) / 9.0);
|
209 |
|
|
int F2 = (int)((mon + 9.0) / 12.0);
|
210 |
|
|
|
211 |
|
|
if (IsLeapYear(year))
|
212 |
|
|
{
|
213 |
|
|
// Leap year
|
214 |
|
|
N = F1 - F2 + day - 30;
|
215 |
|
|
}
|
216 |
|
|
else
|
217 |
|
|
{
|
218 |
|
|
// Common year
|
219 |
|
|
N = F1 - (2 * F2) + day - 30;
|
220 |
|
|
}
|
221 |
|
|
|
222 |
|
|
double dblDay = N + (hour + (min + (sec / 60.0)) / 60.0) / 24.0;
|
223 |
|
|
|
224 |
|
|
Initialize(year, dblDay);
|
225 |
|
|
}
|
226 |
|
|
|
227 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
228 |
|
|
void cJulian::Initialize(int year, double day)
|
229 |
|
|
{
|
230 |
|
|
// 1582 A.D.: 10 days removed from calendar
|
231 |
|
|
// 3000 A.D.: Arbitrary error checking limit
|
232 |
|
|
assert((year > 1582) && (year < 3000));
|
233 |
|
|
assert((day >= 0.0) && (day <= 366.5));
|
234 |
|
|
|
235 |
|
|
// Now calculate Julian date
|
236 |
|
|
|
237 |
|
|
year--;
|
238 |
|
|
|
239 |
|
|
// Centuries are not leap years unless they divide by 400
|
240 |
|
|
int A = (year / 100);
|
241 |
|
|
int B = 2 - A + (A / 4);
|
242 |
|
|
|
243 |
|
|
double NewYears = (int)(365.25 * year) +
|
244 |
|
|
(int)(30.6001 * 14) +
|
245 |
|
|
1720994.5 + B; // 1720994.5 = Oct 30, year -1
|
246 |
|
|
|
247 |
|
|
m_Date = NewYears + day;
|
248 |
|
|
}
|
249 |
|
|
|
250 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
251 |
|
|
// getComponent()
|
252 |
|
|
// Return requested components of date.
|
253 |
|
|
// Year : Includes the century.
|
254 |
|
|
// Month: 1..12
|
255 |
|
|
// Day : 1..31 including fractional part
|
256 |
|
|
void cJulian::getComponent(int *pYear,
|
257 |
|
|
int *pMon /* = NULL */,
|
258 |
|
|
double *pDOM /* = NULL */) const
|
259 |
|
|
{
|
260 |
|
|
assert(pYear != NULL);
|
261 |
|
|
|
262 |
|
|
double jdAdj = getDate() + 0.5;
|
263 |
|
|
int Z = (int)jdAdj; // integer part
|
264 |
|
|
double F = jdAdj - Z; // fractional part
|
265 |
|
|
double alpha = (int)((Z - 1867216.25) / 36524.25);
|
266 |
|
|
double A = Z + 1 + alpha - (int)(alpha / 4.0);
|
267 |
|
|
double B = A + 1524.0;
|
268 |
|
|
int C = (int)((B - 122.1) / 365.25);
|
269 |
|
|
int D = (int)(C * 365.25);
|
270 |
|
|
int E = (int)((B - D) / 30.6001);
|
271 |
|
|
|
272 |
|
|
double DOM = B - D - (int)(E * 30.6001) + F;
|
273 |
|
|
int month = (E < 13.5) ? (E - 1) : (E - 13);
|
274 |
|
|
int year = (month > 2.5) ? (C - 4716) : (C - 4715);
|
275 |
|
|
|
276 |
|
|
*pYear = year;
|
277 |
|
|
|
278 |
|
|
if (pMon != NULL)
|
279 |
|
|
*pMon = month;
|
280 |
|
|
|
281 |
|
|
if (pDOM != NULL)
|
282 |
|
|
*pDOM = DOM;
|
283 |
|
|
}
|
284 |
|
|
|
285 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
286 |
|
|
// toGMST()
|
287 |
|
|
// Calculate Greenwich Mean Sidereal Time for the Julian date. The return value
|
288 |
|
|
// is the angle, in radians, measuring eastward from the Vernal Equinox to the
|
289 |
|
|
// prime meridian. This angle is also referred to as "ThetaG" (Theta GMST).
|
290 |
|
|
//
|
291 |
|
|
// References:
|
292 |
|
|
// The 1992 Astronomical Almanac, page B6.
|
293 |
|
|
// Explanatory Supplement to the Astronomical Almanac, page 50.
|
294 |
|
|
// Orbital Coordinate Systems, Part III, Dr. T.S. Kelso, Satellite Times,
|
295 |
|
|
// Nov/Dec 1995
|
296 |
|
|
double cJulian::toGMST() const
|
297 |
|
|
{
|
298 |
|
|
const double UT = fmod(m_Date + 0.5, 1.0);
|
299 |
|
|
const double TU = (FromJan1_12h_2000() - UT) / 36525.0;
|
300 |
|
|
|
301 |
|
|
double GMST = 24110.54841 + TU *
|
302 |
|
|
(8640184.812866 + TU * (0.093104 - TU * 6.2e-06));
|
303 |
|
|
|
304 |
|
|
GMST = fmod(GMST + SEC_PER_DAY * OMEGA_E * UT, SEC_PER_DAY);
|
305 |
|
|
|
306 |
|
|
if (GMST < 0.0)
|
307 |
|
|
GMST += SEC_PER_DAY; // "wrap" negative modulo value
|
308 |
|
|
|
309 |
|
|
return (TWOPI * (GMST / SEC_PER_DAY));
|
310 |
|
|
}
|
311 |
|
|
|
312 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
313 |
|
|
// toLMST()
|
314 |
|
|
// Calculate Local Mean Sidereal Time for given longitude (for this date).
|
315 |
|
|
// The longitude is assumed to be in radians measured west from Greenwich.
|
316 |
|
|
// The return value is the angle, in radians, measuring eastward from the
|
317 |
|
|
// Vernal Equinox to the given longitude.
|
318 |
|
|
double cJulian::toLMST(double lon) const
|
319 |
|
|
{
|
320 |
|
|
return fmod(toGMST() + lon, TWOPI);
|
321 |
|
|
}
|
322 |
|
|
|
323 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
324 |
|
|
// toTime()
|
325 |
|
|
// Convert to type time_t
|
326 |
|
|
// Avoid using this function as it discards the fractional seconds of the
|
327 |
|
|
// time component.
|
328 |
|
|
time_t cJulian::toTime() const
|
329 |
|
|
{
|
330 |
|
|
int nYear;
|
331 |
|
|
int nMonth;
|
332 |
|
|
double dblDay;
|
333 |
|
|
|
334 |
|
|
getComponent(&nYear, &nMonth, &dblDay);
|
335 |
|
|
|
336 |
|
|
// dblDay is the fractional Julian Day (i.e., 29.5577).
|
337 |
|
|
// Save the whole number day in nDOM and convert dblDay to
|
338 |
|
|
// the fractional portion of day.
|
339 |
|
|
int nDOM = (int)dblDay;
|
340 |
|
|
|
341 |
|
|
dblDay -= nDOM;
|
342 |
|
|
|
343 |
|
|
const int SEC_PER_MIN = 60;
|
344 |
|
|
const int SEC_PER_HR = 60 * SEC_PER_MIN;
|
345 |
|
|
const int SEC_PER_DAY = 24 * SEC_PER_HR;
|
346 |
|
|
|
347 |
|
|
int secs = (int)((dblDay * SEC_PER_DAY) + 0.5);
|
348 |
|
|
|
349 |
|
|
// Create a "struct tm" type.
|
350 |
|
|
// NOTE:
|
351 |
|
|
// The "struct tm" type has a 1-second resolution. Any fractional
|
352 |
|
|
// component of the "seconds" time value is discarded.
|
353 |
|
|
struct tm tGMT;
|
354 |
|
|
memset(&tGMT, 0, sizeof(tGMT));
|
355 |
|
|
|
356 |
|
|
tGMT.tm_year = nYear - 1900; // 2001 is 101
|
357 |
|
|
tGMT.tm_mon = nMonth - 1; // January is 0
|
358 |
|
|
tGMT.tm_mday = nDOM; // First day is 1
|
359 |
|
|
tGMT.tm_hour = secs / SEC_PER_HR;
|
360 |
|
|
tGMT.tm_min = (secs % SEC_PER_HR) / SEC_PER_MIN;
|
361 |
|
|
tGMT.tm_sec = (secs % SEC_PER_HR) % SEC_PER_MIN;
|
362 |
|
|
tGMT.tm_isdst = 0; // No conversion desired
|
363 |
|
|
|
364 |
|
|
time_t tEpoch = mktime(&tGMT);
|
365 |
|
|
|
366 |
|
|
if (tEpoch != -1)
|
367 |
|
|
{
|
368 |
|
|
// Valid time_t value returned from mktime().
|
369 |
|
|
// mktime() expects a local time which means that tEpoch now needs
|
370 |
|
|
// to be adjusted by the difference between this time zone and GMT.
|
371 |
|
|
tEpoch -= timezone;
|
372 |
|
|
}
|
373 |
|
|
|
374 |
|
|
return tEpoch;
|
375 |
|
|
}
|
376 |
|
|
//
|
377 |
|
|
// cTle.cpp
|
378 |
|
|
// This class encapsulates a single set of standard NORAD two line elements.
|
379 |
|
|
//
|
380 |
|
|
// Copyright 1996-2005 Michael F. Henry
|
381 |
|
|
//
|
382 |
|
|
// Note: The column offsets are ZERO based.
|
383 |
|
|
|
384 |
|
|
// Name
|
385 |
|
|
const int TLE_LEN_LINE_DATA = 69; const int TLE_LEN_LINE_NAME = 22;
|
386 |
|
|
|
387 |
|
|
// Line 1
|
388 |
|
|
const int TLE1_COL_SATNUM = 2; const int TLE1_LEN_SATNUM = 5;
|
389 |
|
|
const int TLE1_COL_INTLDESC_A = 9; const int TLE1_LEN_INTLDESC_A = 2;
|
390 |
|
|
const int TLE1_COL_INTLDESC_B = 11; const int TLE1_LEN_INTLDESC_B = 3;
|
391 |
|
|
const int TLE1_COL_INTLDESC_C = 14; const int TLE1_LEN_INTLDESC_C = 3;
|
392 |
|
|
const int TLE1_COL_EPOCH_A = 18; const int TLE1_LEN_EPOCH_A = 2;
|
393 |
|
|
const int TLE1_COL_EPOCH_B = 20; const int TLE1_LEN_EPOCH_B = 12;
|
394 |
|
|
const int TLE1_COL_MEANMOTIONDT = 33; const int TLE1_LEN_MEANMOTIONDT = 10;
|
395 |
|
|
const int TLE1_COL_MEANMOTIONDT2 = 44; const int TLE1_LEN_MEANMOTIONDT2 = 8;
|
396 |
|
|
const int TLE1_COL_BSTAR = 53; const int TLE1_LEN_BSTAR = 8;
|
397 |
|
|
const int TLE1_COL_EPHEMTYPE = 62; const int TLE1_LEN_EPHEMTYPE = 1;
|
398 |
|
|
const int TLE1_COL_ELNUM = 64; const int TLE1_LEN_ELNUM = 4;
|
399 |
|
|
|
400 |
|
|
// Line 2
|
401 |
|
|
const int TLE2_COL_SATNUM = 2; const int TLE2_LEN_SATNUM = 5;
|
402 |
|
|
const int TLE2_COL_INCLINATION = 8; const int TLE2_LEN_INCLINATION = 8;
|
403 |
|
|
const int TLE2_COL_RAASCENDNODE = 17; const int TLE2_LEN_RAASCENDNODE = 8;
|
404 |
|
|
const int TLE2_COL_ECCENTRICITY = 26; const int TLE2_LEN_ECCENTRICITY = 7;
|
405 |
|
|
const int TLE2_COL_ARGPERIGEE = 34; const int TLE2_LEN_ARGPERIGEE = 8;
|
406 |
|
|
const int TLE2_COL_MEANANOMALY = 43; const int TLE2_LEN_MEANANOMALY = 8;
|
407 |
|
|
const int TLE2_COL_MEANMOTION = 52; const int TLE2_LEN_MEANMOTION = 11;
|
408 |
|
|
const int TLE2_COL_REVATEPOCH = 63; const int TLE2_LEN_REVATEPOCH = 5;
|
409 |
|
|
|
410 |
|
|
/////////////////////////////////////////////////////////////////////////////
|
411 |
|
|
cTle::cTle(string& strName, string& strLine1, string& strLine2)
|
412 |
|
|
{
|
413 |
|
|
m_strName = strName;
|
414 |
|
|
m_strLine1 = strLine1;
|
415 |
|
|
m_strLine2 = strLine2;
|
416 |
|
|
|
417 |
|
|
Initialize();
|
418 |
|
|
}
|
419 |
|
|
|
420 |
|
|
/////////////////////////////////////////////////////////////////////////////
|
421 |
|
|
cTle::cTle(const cTle &tle)
|
422 |
|
|
{
|
423 |
|
|
m_strName = tle.m_strName;
|
424 |
|
|
m_strLine1 = tle.m_strLine1;
|
425 |
|
|
m_strLine2 = tle.m_strLine2;
|
426 |
|
|
|
427 |
|
|
for (int fld = FLD_FIRST; fld < FLD_LAST; fld++)
|
428 |
|
|
{
|
429 |
|
|
m_Field[fld] = tle.m_Field[fld];
|
430 |
|
|
}
|
431 |
|
|
|
432 |
|
|
m_mapCache = tle.m_mapCache;
|
433 |
|
|
}
|
434 |
|
|
|
435 |
|
|
/////////////////////////////////////////////////////////////////////////////
|
436 |
|
|
cTle::~cTle()
|
437 |
|
|
{
|
438 |
|
|
}
|
439 |
|
|
|
440 |
|
|
/////////////////////////////////////////////////////////////////////////////
|
441 |
|
|
// getField()
|
442 |
|
|
// Return requested field as a double (function return value) or as a text
|
443 |
|
|
// string (*pstr) in the units requested (eUnit). Set 'bStrUnits' to true
|
444 |
|
|
// to have units appended to text string.
|
445 |
|
|
//
|
446 |
|
|
// Note: numeric return values are cached; asking for the same field more
|
447 |
|
|
// than once incurs minimal overhead.
|
448 |
|
|
double cTle::getField(eField fld,
|
449 |
|
|
eUnits units, /* = U_NATIVE */
|
450 |
|
|
string *pstr /* = NULL */,
|
451 |
|
|
bool bStrUnits /* = false */) const
|
452 |
|
|
{
|
453 |
|
|
assert((FLD_FIRST <= fld) && (fld < FLD_LAST));
|
454 |
|
|
assert((U_FIRST <= units) && (units < U_LAST));
|
455 |
|
|
|
456 |
|
|
if (pstr)
|
457 |
|
|
{
|
458 |
|
|
// Return requested field in string form.
|
459 |
|
|
*pstr = m_Field[fld];
|
460 |
|
|
|
461 |
|
|
if (bStrUnits)
|
462 |
|
|
*pstr += getUnits(fld);
|
463 |
|
|
|
464 |
|
|
return 0.0;
|
465 |
|
|
}
|
466 |
|
|
else
|
467 |
|
|
{
|
468 |
|
|
// Return requested field in floating-point form.
|
469 |
|
|
// Return cache contents if it exists, else populate cache
|
470 |
|
|
FldKey key = Key(units, fld);
|
471 |
|
|
|
472 |
|
|
if (m_mapCache.find(key) == m_mapCache.end())
|
473 |
|
|
{
|
474 |
|
|
// Value not in cache; add it
|
475 |
|
|
double valNative = atof(m_Field[fld].c_str());
|
476 |
|
|
double valConv = ConvertUnits(valNative, fld, units);
|
477 |
|
|
m_mapCache[key] = valConv;
|
478 |
|
|
|
479 |
|
|
return valConv;
|
480 |
|
|
}
|
481 |
|
|
else
|
482 |
|
|
{
|
483 |
|
|
// return cached value
|
484 |
|
|
return m_mapCache[key];
|
485 |
|
|
}
|
486 |
|
|
}
|
487 |
|
|
}
|
488 |
|
|
|
489 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
490 |
|
|
// Convert the given field into the requested units. It is assumed that
|
491 |
|
|
// the value being converted is in the TLE format's "native" form.
|
492 |
|
|
double cTle::ConvertUnits(double valNative, // value to convert
|
493 |
|
|
eField fld, // what field the value is
|
494 |
|
|
eUnits units) // what units to convert to
|
495 |
|
|
{
|
496 |
|
|
switch (fld)
|
497 |
|
|
{
|
498 |
|
|
case FLD_I:
|
499 |
|
|
case FLD_RAAN:
|
500 |
|
|
case FLD_ARGPER:
|
501 |
|
|
case FLD_M:
|
502 |
|
|
{
|
503 |
|
|
// The native TLE format is DEGREES
|
504 |
|
|
if (units == U_RAD)
|
505 |
|
|
return valNative * RADS_PER_DEG;
|
506 |
|
|
}
|
507 |
|
|
|
508 |
|
|
case FLD_NORADNUM:
|
509 |
|
|
case FLD_INTLDESC:
|
510 |
|
|
case FLD_SET:
|
511 |
|
|
case FLD_EPOCHYEAR:
|
512 |
|
|
case FLD_EPOCHDAY:
|
513 |
|
|
case FLD_ORBITNUM:
|
514 |
|
|
case FLD_E:
|
515 |
|
|
case FLD_MMOTION:
|
516 |
|
|
case FLD_MMOTIONDT:
|
517 |
|
|
case FLD_MMOTIONDT2:
|
518 |
|
|
case FLD_BSTAR:
|
519 |
|
|
case FLD_LAST:
|
520 |
|
|
{ // do nothing
|
521 |
|
|
|
522 |
|
|
}
|
523 |
|
|
|
524 |
|
|
}
|
525 |
|
|
|
526 |
|
|
return valNative; // return value in unconverted native format
|
527 |
|
|
}
|
528 |
|
|
|
529 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
530 |
|
|
string cTle::getUnits(eField fld) const
|
531 |
|
|
{
|
532 |
|
|
static const string strDegrees = " degrees";
|
533 |
|
|
static const string strRevsPerDay = " revs / day";
|
534 |
|
|
static const string strNull;
|
535 |
|
|
|
536 |
|
|
switch (fld)
|
537 |
|
|
{
|
538 |
|
|
case FLD_I:
|
539 |
|
|
case FLD_RAAN:
|
540 |
|
|
case FLD_ARGPER:
|
541 |
|
|
case FLD_M:
|
542 |
|
|
return strDegrees;
|
543 |
|
|
|
544 |
|
|
case FLD_MMOTION:
|
545 |
|
|
return strRevsPerDay;
|
546 |
|
|
|
547 |
|
|
default:
|
548 |
|
|
return strNull;
|
549 |
|
|
}
|
550 |
|
|
}
|
551 |
|
|
|
552 |
|
|
/////////////////////////////////////////////////////////////////////////////
|
553 |
|
|
// ExpToDecimal()
|
554 |
|
|
// Converts TLE-style exponential notation of the form [ |-]00000[+|-]0 to
|
555 |
|
|
// decimal notation. Assumes implied decimal point to the left of the first
|
556 |
|
|
// number in the string, i.e.,
|
557 |
|
|
// " 12345-3" = 0.00012345
|
558 |
|
|
// "-23429-5" = -0.0000023429
|
559 |
|
|
// " 40436+1" = 4.0436
|
560 |
|
|
string cTle::ExpToDecimal(const string &str)
|
561 |
|
|
{
|
562 |
|
|
const int COL_EXP_SIGN = 6;
|
563 |
|
|
const int LEN_EXP = 2;
|
564 |
|
|
|
565 |
|
|
const int LEN_BUFREAL = 32; // max length of buffer to hold floating point
|
566 |
|
|
// representation of input string.
|
567 |
|
|
int nMan;
|
568 |
|
|
int nExp;
|
569 |
|
|
|
570 |
|
|
// sscanf(%d) will read up to the exponent sign
|
571 |
|
|
sscanf(str.c_str(), "%d", &nMan);
|
572 |
|
|
|
573 |
|
|
double dblMan = nMan;
|
574 |
|
|
bool bNeg = (nMan < 0);
|
575 |
|
|
|
576 |
|
|
if (bNeg)
|
577 |
|
|
dblMan *= -1;
|
578 |
|
|
|
579 |
|
|
// Move decimal place to left of first digit
|
580 |
|
|
while (dblMan >= 1.0)
|
581 |
|
|
dblMan /= 10.0;
|
582 |
|
|
|
583 |
|
|
if (bNeg)
|
584 |
|
|
dblMan *= -1;
|
585 |
|
|
|
586 |
|
|
// now read exponent
|
587 |
|
|
sscanf(str.substr(COL_EXP_SIGN, LEN_EXP).c_str(), "%d", &nExp);
|
588 |
|
|
|
589 |
|
|
double dblVal = dblMan * pow(10.0, nExp);
|
590 |
|
|
char szVal[LEN_BUFREAL];
|
591 |
|
|
|
592 |
|
|
snprintf(szVal, sizeof(szVal), "%.9f", dblVal);
|
593 |
|
|
|
594 |
|
|
string strVal = szVal;
|
595 |
|
|
|
596 |
|
|
return strVal;
|
597 |
|
|
|
598 |
|
|
} // ExpToDecimal()
|
599 |
|
|
|
600 |
|
|
/////////////////////////////////////////////////////////////////////////////
|
601 |
|
|
// Initialize()
|
602 |
|
|
// Initialize the string array.
|
603 |
|
|
void cTle::Initialize()
|
604 |
|
|
{
|
605 |
|
|
// Have we already been initialized?
|
606 |
|
|
if (m_Field[FLD_NORADNUM].size())
|
607 |
|
|
return;
|
608 |
|
|
|
609 |
|
|
assert(!m_strName.empty());
|
610 |
|
|
assert(!m_strLine1.empty());
|
611 |
|
|
assert(!m_strLine2.empty());
|
612 |
|
|
|
613 |
|
|
m_Field[FLD_NORADNUM] = m_strLine1.substr(TLE1_COL_SATNUM, TLE1_LEN_SATNUM);
|
614 |
|
|
m_Field[FLD_INTLDESC] = m_strLine1.substr(TLE1_COL_INTLDESC_A,
|
615 |
|
|
TLE1_LEN_INTLDESC_A +
|
616 |
|
|
TLE1_LEN_INTLDESC_B +
|
617 |
|
|
TLE1_LEN_INTLDESC_C);
|
618 |
|
|
m_Field[FLD_EPOCHYEAR] =
|
619 |
|
|
m_strLine1.substr(TLE1_COL_EPOCH_A, TLE1_LEN_EPOCH_A);
|
620 |
|
|
|
621 |
|
|
m_Field[FLD_EPOCHDAY] =
|
622 |
|
|
m_strLine1.substr(TLE1_COL_EPOCH_B, TLE1_LEN_EPOCH_B);
|
623 |
|
|
|
624 |
|
|
if (m_strLine1[TLE1_COL_MEANMOTIONDT] == '-')
|
625 |
|
|
{
|
626 |
|
|
// value is negative
|
627 |
|
|
m_Field[FLD_MMOTIONDT] = "-0";
|
628 |
|
|
}
|
629 |
|
|
else
|
630 |
|
|
m_Field[FLD_MMOTIONDT] = "0";
|
631 |
|
|
|
632 |
|
|
m_Field[FLD_MMOTIONDT] += m_strLine1.substr(TLE1_COL_MEANMOTIONDT + 1,
|
633 |
|
|
TLE1_LEN_MEANMOTIONDT);
|
634 |
|
|
|
635 |
|
|
// decimal point assumed; exponential notation
|
636 |
|
|
m_Field[FLD_MMOTIONDT2] = ExpToDecimal(
|
637 |
|
|
m_strLine1.substr(TLE1_COL_MEANMOTIONDT2,
|
638 |
|
|
TLE1_LEN_MEANMOTIONDT2));
|
639 |
|
|
// decimal point assumed; exponential notation
|
640 |
|
|
m_Field[FLD_BSTAR] = ExpToDecimal(m_strLine1.substr(TLE1_COL_BSTAR,
|
641 |
|
|
TLE1_LEN_BSTAR));
|
642 |
|
|
//TLE1_COL_EPHEMTYPE
|
643 |
|
|
//TLE1_LEN_EPHEMTYPE
|
644 |
|
|
m_Field[FLD_SET] = m_strLine1.substr(TLE1_COL_ELNUM, TLE1_LEN_ELNUM);
|
645 |
|
|
|
646 |
|
|
TrimLeft(m_Field[FLD_SET]);
|
647 |
|
|
|
648 |
|
|
//TLE2_COL_SATNUM
|
649 |
|
|
//TLE2_LEN_SATNUM
|
650 |
|
|
|
651 |
|
|
m_Field[FLD_I] = m_strLine2.substr(TLE2_COL_INCLINATION,
|
652 |
|
|
TLE2_LEN_INCLINATION);
|
653 |
|
|
TrimLeft(m_Field[FLD_I]);
|
654 |
|
|
|
655 |
|
|
m_Field[FLD_RAAN] = m_strLine2.substr(TLE2_COL_RAASCENDNODE,
|
656 |
|
|
TLE2_LEN_RAASCENDNODE);
|
657 |
|
|
TrimLeft(m_Field[FLD_RAAN]);
|
658 |
|
|
|
659 |
|
|
// decimal point is assumed
|
660 |
|
|
m_Field[FLD_E] = "0.";
|
661 |
|
|
m_Field[FLD_E] += m_strLine2.substr(TLE2_COL_ECCENTRICITY,
|
662 |
|
|
TLE2_LEN_ECCENTRICITY);
|
663 |
|
|
|
664 |
|
|
m_Field[FLD_ARGPER] = m_strLine2.substr(TLE2_COL_ARGPERIGEE,
|
665 |
|
|
TLE2_LEN_ARGPERIGEE);
|
666 |
|
|
TrimLeft(m_Field[FLD_ARGPER]);
|
667 |
|
|
|
668 |
|
|
m_Field[FLD_M] = m_strLine2.substr(TLE2_COL_MEANANOMALY,
|
669 |
|
|
TLE2_LEN_MEANANOMALY);
|
670 |
|
|
TrimLeft(m_Field[FLD_M]);
|
671 |
|
|
|
672 |
|
|
m_Field[FLD_MMOTION] = m_strLine2.substr(TLE2_COL_MEANMOTION,
|
673 |
|
|
TLE2_LEN_MEANMOTION);
|
674 |
|
|
TrimLeft(m_Field[FLD_MMOTION]);
|
675 |
|
|
|
676 |
|
|
m_Field[FLD_ORBITNUM] = m_strLine2.substr(TLE2_COL_REVATEPOCH,
|
677 |
|
|
TLE2_LEN_REVATEPOCH);
|
678 |
|
|
TrimLeft(m_Field[FLD_ORBITNUM]);
|
679 |
|
|
|
680 |
|
|
} // InitStrVars()
|
681 |
|
|
|
682 |
|
|
/////////////////////////////////////////////////////////////////////////////
|
683 |
|
|
// IsTleFormat()
|
684 |
|
|
// Returns true if "str" is a valid data line of a two-line element set,
|
685 |
|
|
// else false.
|
686 |
|
|
//
|
687 |
|
|
// To be valid a line must:
|
688 |
|
|
// Have as the first character the line number
|
689 |
|
|
// Have as the second character a blank
|
690 |
|
|
// Be TLE_LEN_LINE_DATA characters long
|
691 |
|
|
// Have a valid checksum (note: no longer required as of 12/96)
|
692 |
|
|
//
|
693 |
|
|
bool cTle::IsValidLine(string& str, eTleLine line)
|
694 |
|
|
{
|
695 |
|
|
TrimLeft(str);
|
696 |
|
|
TrimRight(str);
|
697 |
|
|
|
698 |
|
|
size_t nLen = str.size();
|
699 |
|
|
|
700 |
|
|
if (nLen != (uint)TLE_LEN_LINE_DATA)
|
701 |
|
|
return false;
|
702 |
|
|
|
703 |
|
|
// First char in string must be line number
|
704 |
|
|
if ((str[0] - '0') != line)
|
705 |
|
|
return false;
|
706 |
|
|
|
707 |
|
|
// Second char in string must be blank
|
708 |
|
|
if (str[1] != ' ')
|
709 |
|
|
return false;
|
710 |
|
|
|
711 |
|
|
/*
|
712 |
|
|
NOTE: 12/96
|
713 |
|
|
The requirement that the last char in the line data must be a valid
|
714 |
|
|
checksum is too restrictive.
|
715 |
|
|
|
716 |
|
|
// Last char in string must be checksum
|
717 |
|
|
int nSum = CheckSum(str);
|
718 |
|
|
|
719 |
|
|
if (nSum != (str[TLE_LEN_LINE_DATA - 1] - '0'))
|
720 |
|
|
return false;
|
721 |
|
|
*/
|
722 |
|
|
|
723 |
|
|
return true;
|
724 |
|
|
|
725 |
|
|
} // IsTleFormat()
|
726 |
|
|
|
727 |
|
|
/////////////////////////////////////////////////////////////////////////////
|
728 |
|
|
// CheckSum()
|
729 |
|
|
// Calculate the check sum for a given line of TLE data, the last character
|
730 |
|
|
// of which is the current checksum. (Although there is no check here,
|
731 |
|
|
// the current checksum should match the one we calculate.)
|
732 |
|
|
// The checksum algorithm:
|
733 |
|
|
// Each number in the data line is summed, modulo 10.
|
734 |
|
|
// Non-numeric characters are zero, except minus signs, which are 1.
|
735 |
|
|
//
|
736 |
|
|
int cTle::CheckSum(const string& str)
|
737 |
|
|
{
|
738 |
|
|
// The length is "- 1" because we don't include the current (existing)
|
739 |
|
|
// checksum character in the checksum calculation.
|
740 |
|
|
size_t len = str.size() - 1;
|
741 |
|
|
int xsum = 0;
|
742 |
|
|
|
743 |
|
|
for (size_t i = 0; i < len; i++)
|
744 |
|
|
{
|
745 |
|
|
char ch = str[i];
|
746 |
|
|
if (isdigit(ch))
|
747 |
|
|
xsum += (ch - '0');
|
748 |
|
|
else if (ch == '-')
|
749 |
|
|
xsum++;
|
750 |
|
|
}
|
751 |
|
|
|
752 |
|
|
return (xsum % 10);
|
753 |
|
|
|
754 |
|
|
} // CheckSum()
|
755 |
|
|
|
756 |
|
|
/////////////////////////////////////////////////////////////////////////////
|
757 |
|
|
void cTle::TrimLeft(string& s)
|
758 |
|
|
{
|
759 |
|
|
while (s[0] == ' ')
|
760 |
|
|
s.erase(0, 1);
|
761 |
|
|
}
|
762 |
|
|
|
763 |
|
|
/////////////////////////////////////////////////////////////////////////////
|
764 |
|
|
void cTle::TrimRight(string& s)
|
765 |
|
|
{
|
766 |
|
|
while (s[s.size() - 1] == ' ')
|
767 |
|
|
s.erase(s.size() - 1);
|
768 |
|
|
}
|
769 |
|
|
|
770 |
|
|
//
|
771 |
|
|
// cEci.cpp
|
772 |
|
|
//
|
773 |
|
|
// Copyright (c) 2002-2003 Michael F. Henry
|
774 |
|
|
//
|
775 |
|
|
//////////////////////////////////////////////////////////////////////
|
776 |
|
|
// cEci Class
|
777 |
|
|
//////////////////////////////////////////////////////////////////////
|
778 |
|
|
cEci::cEci(const cVector &pos,
|
779 |
|
|
const cVector &vel,
|
780 |
|
|
const cJulian &date,
|
781 |
|
|
bool IsAeUnits /* = true */)
|
782 |
|
|
{
|
783 |
|
|
m_pos = pos;
|
784 |
|
|
m_vel = vel;
|
785 |
|
|
m_date = date;
|
786 |
|
|
m_VecUnits = (IsAeUnits ? UNITS_AE : UNITS_NONE);
|
787 |
|
|
}
|
788 |
|
|
|
789 |
|
|
//////////////////////////////////////////////////////////////////////
|
790 |
|
|
// cEci(cCoordGeo&, cJulian&)
|
791 |
|
|
// Calculate the ECI coordinates of the location "geo" at time "date".
|
792 |
|
|
// Assumes geo coordinates are km-based.
|
793 |
|
|
// Assumes the earth is an oblate spheroid as defined in WGS '72.
|
794 |
|
|
// Reference: The 1992 Astronomical Almanac, page K11
|
795 |
|
|
// Reference: www.celestrak.com (Dr. TS Kelso)
|
796 |
|
|
cEci::cEci(const cCoordGeo &geo, const cJulian &date)
|
797 |
|
|
{
|
798 |
|
|
m_VecUnits = UNITS_KM;
|
799 |
|
|
|
800 |
|
|
double mfactor = TWOPI * (OMEGA_E / SEC_PER_DAY);
|
801 |
|
|
double lat = geo.m_Lat;
|
802 |
|
|
double lon = geo.m_Lon;
|
803 |
|
|
double alt = geo.m_Alt;
|
804 |
|
|
|
805 |
|
|
// Calculate Local Mean Sidereal Time (theta)
|
806 |
|
|
double theta = date.toLMST(lon);
|
807 |
|
|
double c = 1.0 / sqrt(1.0 + F * (F - 2.0) * sqr(sin(lat)));
|
808 |
|
|
double s = sqr(1.0 - F) * c;
|
809 |
|
|
double achcp = (XKMPER_WGS72 * c + alt) * cos(lat);
|
810 |
|
|
|
811 |
|
|
m_date = date;
|
812 |
|
|
|
813 |
|
|
m_pos.m_x = achcp * cos(theta); // km
|
814 |
|
|
m_pos.m_y = achcp * sin(theta); // km
|
815 |
|
|
m_pos.m_z = (XKMPER_WGS72 * s + alt) * sin(lat); // km
|
816 |
|
|
m_pos.m_w = sqrt(sqr(m_pos.m_x) +
|
817 |
|
|
sqr(m_pos.m_y) +
|
818 |
|
|
sqr(m_pos.m_z)); // range, km
|
819 |
|
|
|
820 |
|
|
m_vel.m_x = -mfactor * m_pos.m_y; // km / sec
|
821 |
|
|
m_vel.m_y = mfactor * m_pos.m_x;
|
822 |
|
|
m_vel.m_z = 0.0;
|
823 |
|
|
m_vel.m_w = sqrt(sqr(m_vel.m_x) + // range rate km/sec^2
|
824 |
|
|
sqr(m_vel.m_y));
|
825 |
|
|
}
|
826 |
|
|
|
827 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
828 |
|
|
// toGeo()
|
829 |
|
|
// Return the corresponding geodetic position (based on the current ECI
|
830 |
|
|
// coordinates/Julian date).
|
831 |
|
|
// Assumes the earth is an oblate spheroid as defined in WGS '72.
|
832 |
|
|
// Side effects: Converts the position and velocity vectors to km-based units.
|
833 |
|
|
// Reference: The 1992 Astronomical Almanac, page K12.
|
834 |
|
|
// Reference: www.celestrak.com (Dr. TS Kelso)
|
835 |
|
|
cCoordGeo cEci::toGeo()
|
836 |
|
|
{
|
837 |
|
|
ae2km(); // Vectors must be in kilometer-based units
|
838 |
|
|
|
839 |
|
|
double theta = AcTan(m_pos.m_y, m_pos.m_x);
|
840 |
|
|
double lon = fmod(theta - m_date.toGMST(), TWOPI);
|
841 |
|
|
|
842 |
|
|
if (lon < 0.0)
|
843 |
|
|
lon += TWOPI; // "wrap" negative modulo
|
844 |
|
|
|
845 |
|
|
double r = sqrt(sqr(m_pos.m_x) + sqr(m_pos.m_y));
|
846 |
|
|
double e2 = F * (2.0 - F);
|
847 |
|
|
double lat = AcTan(m_pos.m_z, r);
|
848 |
|
|
|
849 |
|
|
const double delta = 1.0e-07;
|
850 |
|
|
double phi;
|
851 |
|
|
double c;
|
852 |
|
|
|
853 |
|
|
do
|
854 |
|
|
{
|
855 |
|
|
phi = lat;
|
856 |
|
|
c = 1.0 / sqrt(1.0 - e2 * sqr(sin(phi)));
|
857 |
|
|
lat = AcTan(m_pos.m_z + XKMPER_WGS72 * c * e2 * sin(phi), r);
|
858 |
|
|
}
|
859 |
|
|
while (fabs(lat - phi) > delta);
|
860 |
|
|
|
861 |
|
|
double alt = r / cos(lat) - XKMPER_WGS72 * c;
|
862 |
|
|
|
863 |
|
|
return cCoordGeo(lat, lon, alt); // radians, radians, kilometers
|
864 |
|
|
}
|
865 |
|
|
|
866 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
867 |
|
|
// ae2km()
|
868 |
|
|
// Convert the position and velocity vector units from AE-based units
|
869 |
|
|
// to kilometer based units.
|
870 |
|
|
void cEci::ae2km()
|
871 |
|
|
{
|
872 |
|
|
if (UnitsAreAe())
|
873 |
|
|
{
|
874 |
|
|
MulPos(XKMPER_WGS72 / AE); // km
|
875 |
|
|
MulVel((XKMPER_WGS72 / AE) * (MIN_PER_DAY / 86400)); // km/sec
|
876 |
|
|
m_VecUnits = UNITS_KM;
|
877 |
|
|
}
|
878 |
|
|
}
|
879 |
|
|
//
|
880 |
|
|
// cNoradBase.cpp
|
881 |
|
|
//
|
882 |
|
|
// Historical Note:
|
883 |
|
|
// The equations used here (and in derived classes) to determine satellite
|
884 |
|
|
// ECI coordinates/velocity come from the December, 1980 NORAD document
|
885 |
|
|
// "Space Track Report No. 3". The report details 6 orbital models and
|
886 |
|
|
// provides FORTRAN IV implementations of each. The classes here
|
887 |
|
|
// implement only two of the orbital models: SGP4 and SDP4. These two models,
|
888 |
|
|
// one for "near-earth" objects and one for "deep space" objects, are widely
|
889 |
|
|
// used in satellite tracking software and can produce very accurate results
|
890 |
|
|
// when used with current NORAD two-line element datum.
|
891 |
|
|
//
|
892 |
|
|
// The NORAD FORTRAN IV SGP4/SDP4 implementations were converted to Pascal by
|
893 |
|
|
// Dr. TS Kelso in 1995. In 1996 these routines were ported in a straight-
|
894 |
|
|
// forward manner to C++ by Varol Okan. The SGP4/SDP4 classes here were
|
895 |
|
|
// written by Michael F. Henry in 2002-03 and are a modern C++ re-write of
|
896 |
|
|
// the work done by Okan. In addition to introducing an object-oriented
|
897 |
|
|
// architecture, the last residues of the original FORTRAN code (such as
|
898 |
|
|
// labels and gotos) were eradicated.
|
899 |
|
|
//
|
900 |
|
|
// For excellent information on the underlying physics of orbits, visible
|
901 |
|
|
// satellite observations, current NORAD TLE data, and other related material,
|
902 |
|
|
// see http://www.celestrak.com which is maintained by Dr. TS Kelso.
|
903 |
|
|
//
|
904 |
|
|
// Copyright (c) 2003 Michael F. Henry
|
905 |
|
|
//
|
906 |
|
|
// mfh 12/07/2003
|
907 |
|
|
//
|
908 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
909 |
|
|
cNoradBase::cNoradBase(const cOrbit &orbit) :
|
910 |
|
|
m_Orbit(orbit)
|
911 |
|
|
{
|
912 |
|
|
Initialize();
|
913 |
|
|
}
|
914 |
|
|
|
915 |
|
|
cNoradBase& cNoradBase::operator=(const cNoradBase &b)
|
916 |
|
|
{
|
917 |
|
|
// m_Orbit is a "const" member var, so cast away its
|
918 |
|
|
// "const-ness" in order to complete the assigment.
|
919 |
|
|
*(const_cast<cOrbit*>(&m_Orbit)) = b.m_Orbit;
|
920 |
|
|
|
921 |
|
|
return *this;
|
922 |
|
|
}
|
923 |
|
|
|
924 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
925 |
|
|
// Initialize()
|
926 |
|
|
// Perform the initialization of member variables, specifically the variables
|
927 |
|
|
// used by derived-class objects to calculate ECI coordinates.
|
928 |
|
|
void cNoradBase::Initialize()
|
929 |
|
|
{
|
930 |
|
|
// Initialize any variables which are time-independent when
|
931 |
|
|
// calculating the ECI coordinates of the satellite.
|
932 |
|
|
m_satInc = m_Orbit.Inclination();
|
933 |
|
|
m_satEcc = m_Orbit.Eccentricity();
|
934 |
|
|
|
935 |
|
|
m_cosio = cos(m_satInc);
|
936 |
|
|
m_theta2 = m_cosio * m_cosio;
|
937 |
|
|
m_x3thm1 = 3.0 * m_theta2 - 1.0;
|
938 |
|
|
m_eosq = m_satEcc * m_satEcc;
|
939 |
|
|
m_betao2 = 1.0 - m_eosq;
|
940 |
|
|
m_betao = sqrt(m_betao2);
|
941 |
|
|
|
942 |
|
|
// The "recovered" semi-minor axis and mean motion.
|
943 |
|
|
m_aodp = m_Orbit.SemiMinor();
|
944 |
|
|
m_xnodp = m_Orbit.mnMotionRec();
|
945 |
|
|
|
946 |
|
|
// For perigee below 156 km, the values of S and QOMS2T are altered.
|
947 |
|
|
m_perigee = XKMPER_WGS72 * (m_aodp * (1.0 - m_satEcc) - AE);
|
948 |
|
|
|
949 |
|
|
m_s4 = S;
|
950 |
|
|
m_qoms24 = QOMS2T;
|
951 |
|
|
|
952 |
|
|
if (m_perigee < 156.0)
|
953 |
|
|
{
|
954 |
|
|
m_s4 = m_perigee - 78.0;
|
955 |
|
|
|
956 |
|
|
if (m_perigee <= 98.0)
|
957 |
|
|
{
|
958 |
|
|
m_s4 = 20.0;
|
959 |
|
|
}
|
960 |
|
|
|
961 |
|
|
m_qoms24 = pow((120.0 - m_s4) * AE / XKMPER_WGS72, 4.0);
|
962 |
|
|
m_s4 = m_s4 / XKMPER_WGS72 + AE;
|
963 |
|
|
}
|
964 |
|
|
|
965 |
|
|
const double pinvsq = 1.0 / (m_aodp * m_aodp * m_betao2 * m_betao2);
|
966 |
|
|
|
967 |
|
|
m_tsi = 1.0 / (m_aodp - m_s4);
|
968 |
|
|
m_eta = m_aodp * m_satEcc * m_tsi;
|
969 |
|
|
m_etasq = m_eta * m_eta;
|
970 |
|
|
m_eeta = m_satEcc * m_eta;
|
971 |
|
|
|
972 |
|
|
const double psisq = fabs(1.0 - m_etasq);
|
973 |
|
|
|
974 |
|
|
m_coef = m_qoms24 * pow(m_tsi,4.0);
|
975 |
|
|
m_coef1 = m_coef / pow(psisq,3.5);
|
976 |
|
|
|
977 |
|
|
const double c2 = m_coef1 * m_xnodp *
|
978 |
|
|
(m_aodp * (1.0 + 1.5 * m_etasq + m_eeta * (4.0 + m_etasq)) +
|
979 |
|
|
0.75 * CK2 * m_tsi / psisq * m_x3thm1 *
|
980 |
|
|
(8.0 + 3.0 * m_etasq * (8.0 + m_etasq)));
|
981 |
|
|
|
982 |
|
|
m_c1 = m_Orbit.BStar() * c2;
|
983 |
|
|
m_sinio = sin(m_satInc);
|
984 |
|
|
|
985 |
|
|
const double a3ovk2 = -XJ3 / CK2 * pow(AE,3.0);
|
986 |
|
|
|
987 |
|
|
m_c3 = m_coef * m_tsi * a3ovk2 * m_xnodp * AE * m_sinio / m_satEcc;
|
988 |
|
|
m_x1mth2 = 1.0 - m_theta2;
|
989 |
|
|
m_c4 = 2.0 * m_xnodp * m_coef1 * m_aodp * m_betao2 *
|
990 |
|
|
(m_eta * (2.0 + 0.5 * m_etasq) +
|
991 |
|
|
m_satEcc * (0.5 + 2.0 * m_etasq) -
|
992 |
|
|
2.0 * CK2 * m_tsi / (m_aodp * psisq) *
|
993 |
|
|
(-3.0 * m_x3thm1 * (1.0 - 2.0 * m_eeta + m_etasq * (1.5 - 0.5 * m_eeta)) +
|
994 |
|
|
0.75 * m_x1mth2 *
|
995 |
|
|
(2.0 * m_etasq - m_eeta * (1.0 + m_etasq)) *
|
996 |
|
|
cos(2.0 * m_Orbit.ArgPerigee())));
|
997 |
|
|
|
998 |
|
|
const double theta4 = m_theta2 * m_theta2;
|
999 |
|
|
const double temp1 = 3.0 * CK2 * pinvsq * m_xnodp;
|
1000 |
|
|
const double temp2 = temp1 * CK2 * pinvsq;
|
1001 |
|
|
const double temp3 = 1.25 * CK4 * pinvsq * pinvsq * m_xnodp;
|
1002 |
|
|
|
1003 |
|
|
m_xmdot = m_xnodp + 0.5 * temp1 * m_betao * m_x3thm1 +
|
1004 |
|
|
0.0625 * temp2 * m_betao *
|
1005 |
|
|
(13.0 - 78.0 * m_theta2 + 137.0 * theta4);
|
1006 |
|
|
|
1007 |
|
|
const double x1m5th = 1.0 - 5.0 * m_theta2;
|
1008 |
|
|
|
1009 |
|
|
m_omgdot = -0.5 * temp1 * x1m5th + 0.0625 * temp2 *
|
1010 |
|
|
(7.0 - 114.0 * m_theta2 + 395.0 * theta4) +
|
1011 |
|
|
temp3 * (3.0 - 36.0 * m_theta2 + 49.0 * theta4);
|
1012 |
|
|
|
1013 |
|
|
const double xhdot1 = -temp1 * m_cosio;
|
1014 |
|
|
|
1015 |
|
|
m_xnodot = xhdot1 + (0.5 * temp2 * (4.0 - 19.0 * m_theta2) +
|
1016 |
|
|
2.0 * temp3 * (3.0 - 7.0 * m_theta2)) * m_cosio;
|
1017 |
|
|
m_xnodcf = 3.5 * m_betao2 * xhdot1 * m_c1;
|
1018 |
|
|
m_t2cof = 1.5 * m_c1;
|
1019 |
|
|
m_xlcof = 0.125 * a3ovk2 * m_sinio *
|
1020 |
|
|
(3.0 + 5.0 * m_cosio) / (1.0 + m_cosio);
|
1021 |
|
|
m_aycof = 0.25 * a3ovk2 * m_sinio;
|
1022 |
|
|
m_x7thm1 = 7.0 * m_theta2 - 1.0;
|
1023 |
|
|
}
|
1024 |
|
|
|
1025 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
1026 |
|
|
bool cNoradBase::FinalPosition(double incl, double omega,
|
1027 |
|
|
double e, double a,
|
1028 |
|
|
double xl, double xnode,
|
1029 |
|
|
double xn, double tsince,
|
1030 |
|
|
cEci &eci)
|
1031 |
|
|
{
|
1032 |
|
|
if ((e * e) > 1.0)
|
1033 |
|
|
{
|
1034 |
|
|
// error in satellite data
|
1035 |
|
|
return false;
|
1036 |
|
|
}
|
1037 |
|
|
|
1038 |
|
|
double beta = sqrt(1.0 - e * e);
|
1039 |
|
|
|
1040 |
|
|
// Long period periodics
|
1041 |
|
|
double axn = e * cos(omega);
|
1042 |
|
|
double temp = 1.0 / (a * beta * beta);
|
1043 |
|
|
double xll = temp * m_xlcof * axn;
|
1044 |
|
|
double aynl = temp * m_aycof;
|
1045 |
|
|
double xlt = xl + xll;
|
1046 |
|
|
double ayn = e * sin(omega) + aynl;
|
1047 |
|
|
|
1048 |
|
|
// Solve Kepler's Equation
|
1049 |
|
|
|
1050 |
|
|
double capu = Fmod2p(xlt - xnode);
|
1051 |
|
|
double temp2 = capu;
|
1052 |
|
|
double temp3 = 0.0;
|
1053 |
|
|
double temp4 = 0.0;
|
1054 |
|
|
double temp5 = 0.0;
|
1055 |
|
|
double temp6 = 0.0;
|
1056 |
|
|
double sinepw = 0.0;
|
1057 |
|
|
double cosepw = 0.0;
|
1058 |
|
|
bool fDone = false;
|
1059 |
|
|
|
1060 |
|
|
for (int i = 1; (i <= 10) && !fDone; i++)
|
1061 |
|
|
{
|
1062 |
|
|
sinepw = sin(temp2);
|
1063 |
|
|
cosepw = cos(temp2);
|
1064 |
|
|
temp3 = axn * sinepw;
|
1065 |
|
|
temp4 = ayn * cosepw;
|
1066 |
|
|
temp5 = axn * cosepw;
|
1067 |
|
|
temp6 = ayn * sinepw;
|
1068 |
|
|
|
1069 |
|
|
double epw = (capu - temp4 + temp3 - temp2) /
|
1070 |
|
|
(1.0 - temp5 - temp6) + temp2;
|
1071 |
|
|
|
1072 |
|
|
if (fabs(epw - temp2) <= E6A)
|
1073 |
|
|
fDone = true;
|
1074 |
|
|
else
|
1075 |
|
|
temp2 = epw;
|
1076 |
|
|
}
|
1077 |
|
|
|
1078 |
|
|
// Short period preliminary quantities
|
1079 |
|
|
double ecose = temp5 + temp6;
|
1080 |
|
|
double esine = temp3 - temp4;
|
1081 |
|
|
double elsq = axn * axn + ayn * ayn;
|
1082 |
|
|
temp = 1.0 - elsq;
|
1083 |
|
|
double pl = a * temp;
|
1084 |
|
|
double r = a * (1.0 - ecose);
|
1085 |
|
|
double temp1 = 1.0 / r;
|
1086 |
|
|
double rdot = XKE * sqrt(a) * esine * temp1;
|
1087 |
|
|
double rfdot = XKE * sqrt(pl) * temp1;
|
1088 |
|
|
temp2 = a * temp1;
|
1089 |
|
|
double betal = sqrt(temp);
|
1090 |
|
|
temp3 = 1.0 / (1.0 + betal);
|
1091 |
|
|
double cosu = temp2 * (cosepw - axn + ayn * esine * temp3);
|
1092 |
|
|
double sinu = temp2 * (sinepw - ayn - axn * esine * temp3);
|
1093 |
|
|
double u = AcTan(sinu, cosu);
|
1094 |
|
|
double sin2u = 2.0 * sinu * cosu;
|
1095 |
|
|
double cos2u = 2.0 * cosu * cosu - 1.0;
|
1096 |
|
|
|
1097 |
|
|
temp = 1.0 / pl;
|
1098 |
|
|
temp1 = CK2 * temp;
|
1099 |
|
|
temp2 = temp1 * temp;
|
1100 |
|
|
|
1101 |
|
|
// Update for short periodics
|
1102 |
|
|
double rk = r * (1.0 - 1.5 * temp2 * betal * m_x3thm1) +
|
1103 |
|
|
0.5 * temp1 * m_x1mth2 * cos2u;
|
1104 |
|
|
double uk = u - 0.25 * temp2 * m_x7thm1 * sin2u;
|
1105 |
|
|
double xnodek = xnode + 1.5 * temp2 * m_cosio * sin2u;
|
1106 |
|
|
double xinck = incl + 1.5 * temp2 * m_cosio * m_sinio * cos2u;
|
1107 |
|
|
double rdotk = rdot - xn * temp1 * m_x1mth2 * sin2u;
|
1108 |
|
|
double rfdotk = rfdot + xn * temp1 * (m_x1mth2 * cos2u + 1.5 * m_x3thm1);
|
1109 |
|
|
|
1110 |
|
|
// Orientation vectors
|
1111 |
|
|
double sinuk = sin(uk);
|
1112 |
|
|
double cosuk = cos(uk);
|
1113 |
|
|
double sinik = sin(xinck);
|
1114 |
|
|
double cosik = cos(xinck);
|
1115 |
|
|
double sinnok = sin(xnodek);
|
1116 |
|
|
double cosnok = cos(xnodek);
|
1117 |
|
|
double xmx = -sinnok * cosik;
|
1118 |
|
|
double xmy = cosnok * cosik;
|
1119 |
|
|
double ux = xmx * sinuk + cosnok * cosuk;
|
1120 |
|
|
double uy = xmy * sinuk + sinnok * cosuk;
|
1121 |
|
|
double uz = sinik * sinuk;
|
1122 |
|
|
double vx = xmx * cosuk - cosnok * sinuk;
|
1123 |
|
|
double vy = xmy * cosuk - sinnok * sinuk;
|
1124 |
|
|
double vz = sinik * cosuk;
|
1125 |
|
|
|
1126 |
|
|
// Position
|
1127 |
|
|
double x = rk * ux;
|
1128 |
|
|
double y = rk * uy;
|
1129 |
|
|
double z = rk * uz;
|
1130 |
|
|
|
1131 |
|
|
cVector vecPos(x, y, z);
|
1132 |
|
|
|
1133 |
|
|
// Validate on altitude
|
1134 |
|
|
double altKm = (vecPos.Magnitude() * (XKMPER_WGS72 / AE));
|
1135 |
|
|
|
1136 |
|
|
if ((altKm < XKMPER_WGS72) || (altKm > (2 * GEOSYNC_ALT)))
|
1137 |
|
|
return false;
|
1138 |
|
|
|
1139 |
|
|
// Velocity
|
1140 |
|
|
double xdot = rdotk * ux + rfdotk * vx;
|
1141 |
|
|
double ydot = rdotk * uy + rfdotk * vy;
|
1142 |
|
|
double zdot = rdotk * uz + rfdotk * vz;
|
1143 |
|
|
|
1144 |
|
|
cVector vecVel(xdot, ydot, zdot);
|
1145 |
|
|
|
1146 |
|
|
cJulian gmt = m_Orbit.Epoch();
|
1147 |
|
|
gmt.addMin(tsince);
|
1148 |
|
|
|
1149 |
|
|
eci = cEci(vecPos, vecVel, gmt);
|
1150 |
|
|
|
1151 |
|
|
return true;
|
1152 |
|
|
}
|
1153 |
|
|
|
1154 |
|
|
//
|
1155 |
|
|
// cNoradSGP4.cpp
|
1156 |
|
|
//
|
1157 |
|
|
// NORAD SGP4 implementation. See historical note in cNoradBase.cpp
|
1158 |
|
|
// Copyright (c) 2003 Michael F. Henry
|
1159 |
|
|
//
|
1160 |
|
|
// mfh 12/07/2003
|
1161 |
|
|
//
|
1162 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
1163 |
|
|
cNoradSGP4::cNoradSGP4(const cOrbit &orbit) :
|
1164 |
|
|
cNoradBase(orbit)
|
1165 |
|
|
{
|
1166 |
|
|
m_c5 = 2.0 * m_coef1 * m_aodp * m_betao2 *
|
1167 |
|
|
(1.0 + 2.75 * (m_etasq + m_eeta) + m_eeta * m_etasq);
|
1168 |
|
|
m_omgcof = m_Orbit.BStar() * m_c3 * cos(m_Orbit.ArgPerigee());
|
1169 |
|
|
m_xmcof = -TWOTHRD * m_coef * m_Orbit.BStar() * AE / m_eeta;
|
1170 |
|
|
m_delmo = pow(1.0 + m_eta * cos(m_Orbit.mnAnomaly()), 3.0);
|
1171 |
|
|
m_sinmo = sin(m_Orbit.mnAnomaly());
|
1172 |
|
|
}
|
1173 |
|
|
|
1174 |
|
|
|
1175 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
1176 |
|
|
// getPosition()
|
1177 |
|
|
// This procedure returns the ECI position and velocity for the satellite
|
1178 |
|
|
// in the orbit at the given number of minutes since the TLE epoch time
|
1179 |
|
|
// using the NORAD Simplified General Perturbation 4, near earth orbit
|
1180 |
|
|
// model.
|
1181 |
|
|
//
|
1182 |
|
|
// tsince - Time in minutes since the TLE epoch (GMT).
|
1183 |
|
|
// eci - ECI object to hold position information.
|
1184 |
|
|
// To convert the returned ECI position vector to km,
|
1185 |
|
|
// multiply each component by:
|
1186 |
|
|
// (XKMPER_WGS72 / AE).
|
1187 |
|
|
// To convert the returned ECI velocity vector to km/sec,
|
1188 |
|
|
// multiply each component by:
|
1189 |
|
|
// (XKMPER_WGS72 / AE) * (MIN_PER_DAY / 86400).
|
1190 |
|
|
|
1191 |
|
|
bool cNoradSGP4::getPosition(double tsince, cEci &eci)
|
1192 |
|
|
{
|
1193 |
|
|
// For m_perigee less than 220 kilometers, the isimp flag is set and
|
1194 |
|
|
// the equations are truncated to linear variation in sqrt a and
|
1195 |
|
|
// quadratic variation in mean anomaly. Also, the m_c3 term, the
|
1196 |
|
|
// delta omega term, and the delta m term are dropped.
|
1197 |
|
|
bool isimp = false;
|
1198 |
|
|
if ((m_aodp * (1.0 - m_satEcc) / AE) < (220.0 / XKMPER_WGS72 + AE))
|
1199 |
|
|
{
|
1200 |
|
|
isimp = true;
|
1201 |
|
|
}
|
1202 |
|
|
|
1203 |
|
|
double d2 = 0.0;
|
1204 |
|
|
double d3 = 0.0;
|
1205 |
|
|
double d4 = 0.0;
|
1206 |
|
|
|
1207 |
|
|
double t3cof = 0.0;
|
1208 |
|
|
double t4cof = 0.0;
|
1209 |
|
|
double t5cof = 0.0;
|
1210 |
|
|
|
1211 |
|
|
if (!isimp)
|
1212 |
|
|
{
|
1213 |
|
|
double c1sq = m_c1 * m_c1;
|
1214 |
|
|
|
1215 |
|
|
d2 = 4.0 * m_aodp * m_tsi * c1sq;
|
1216 |
|
|
|
1217 |
|
|
double temp = d2 * m_tsi * m_c1 / 3.0;
|
1218 |
|
|
|
1219 |
|
|
d3 = (17.0 * m_aodp + m_s4) * temp;
|
1220 |
|
|
d4 = 0.5 * temp * m_aodp * m_tsi *
|
1221 |
|
|
(221.0 * m_aodp + 31.0 * m_s4) * m_c1;
|
1222 |
|
|
t3cof = d2 + 2.0 * c1sq;
|
1223 |
|
|
t4cof = 0.25 * (3.0 * d3 + m_c1 * (12.0 * d2 + 10.0 * c1sq));
|
1224 |
|
|
t5cof = 0.2 * (3.0 * d4 + 12.0 * m_c1 * d3 + 6.0 *
|
1225 |
|
|
d2 * d2 + 15.0 * c1sq * (2.0 * d2 + c1sq));
|
1226 |
|
|
}
|
1227 |
|
|
|
1228 |
|
|
// Update for secular gravity and atmospheric drag.
|
1229 |
|
|
double xmdf = m_Orbit.mnAnomaly() + m_xmdot * tsince;
|
1230 |
|
|
double omgadf = m_Orbit.ArgPerigee() + m_omgdot * tsince;
|
1231 |
|
|
double xnoddf = m_Orbit.RAAN() + m_xnodot * tsince;
|
1232 |
|
|
double omega = omgadf;
|
1233 |
|
|
double xmp = xmdf;
|
1234 |
|
|
double tsq = tsince * tsince;
|
1235 |
|
|
double xnode = xnoddf + m_xnodcf * tsq;
|
1236 |
|
|
double tempa = 1.0 - m_c1 * tsince;
|
1237 |
|
|
double tempe = m_Orbit.BStar() * m_c4 * tsince;
|
1238 |
|
|
double templ = m_t2cof * tsq;
|
1239 |
|
|
|
1240 |
|
|
if (!isimp)
|
1241 |
|
|
{
|
1242 |
|
|
double delomg = m_omgcof * tsince;
|
1243 |
|
|
double delm = m_xmcof * (pow(1.0 + m_eta * cos(xmdf), 3.0) - m_delmo);
|
1244 |
|
|
double temp = delomg + delm;
|
1245 |
|
|
|
1246 |
|
|
xmp = xmdf + temp;
|
1247 |
|
|
omega = omgadf - temp;
|
1248 |
|
|
|
1249 |
|
|
double tcube = tsq * tsince;
|
1250 |
|
|
double tfour = tsince * tcube;
|
1251 |
|
|
|
1252 |
|
|
tempa = tempa - d2 * tsq - d3 * tcube - d4 * tfour;
|
1253 |
|
|
tempe = tempe + m_Orbit.BStar() * m_c5 * (sin(xmp) - m_sinmo);
|
1254 |
|
|
templ = templ + t3cof * tcube + tfour * (t4cof + tsince * t5cof);
|
1255 |
|
|
}
|
1256 |
|
|
|
1257 |
|
|
double a = m_aodp * sqr(tempa);
|
1258 |
|
|
double e = m_satEcc - tempe;
|
1259 |
|
|
|
1260 |
|
|
|
1261 |
|
|
double xl = xmp + omega + xnode + m_xnodp * templ;
|
1262 |
|
|
double xn = XKE / pow(a, 1.5);
|
1263 |
|
|
|
1264 |
|
|
return FinalPosition(m_satInc, omgadf, e, a, xl, xnode, xn, tsince, eci);
|
1265 |
|
|
}
|
1266 |
|
|
|
1267 |
|
|
//
|
1268 |
|
|
// cNoradSDP4.cpp
|
1269 |
|
|
//
|
1270 |
|
|
// NORAD SDP4 implementation. See historical note in cNoradBase.cpp
|
1271 |
|
|
// Copyright (c) 2003 Michael F. Henry
|
1272 |
|
|
//
|
1273 |
|
|
// mfh 12/07/2003
|
1274 |
|
|
//
|
1275 |
|
|
|
1276 |
|
|
const double zns = 1.19459E-5; const double c1ss = 2.9864797E-6;
|
1277 |
|
|
const double zes = 0.01675; const double znl = 1.5835218E-4;
|
1278 |
|
|
const double c1l = 4.7968065E-7; const double zel = 0.05490;
|
1279 |
|
|
const double zcosis = 0.91744867; const double zsinis = 0.39785416;
|
1280 |
|
|
const double zsings = -0.98088458; const double zcosgs = 0.1945905;
|
1281 |
|
|
const double q22 = 1.7891679E-6; const double q31 = 2.1460748E-6;
|
1282 |
|
|
const double q33 = 2.2123015E-7; const double g22 = 5.7686396;
|
1283 |
|
|
const double g32 = 0.95240898; const double g44 = 1.8014998;
|
1284 |
|
|
const double g52 = 1.0508330; const double g54 = 4.4108898;
|
1285 |
|
|
const double root22 = 1.7891679E-6; const double root32 = 3.7393792E-7;
|
1286 |
|
|
const double root44 = 7.3636953E-9; const double root52 = 1.1428639E-7;
|
1287 |
|
|
const double root54 = 2.1765803E-9; const double thdt = 4.3752691E-3;
|
1288 |
|
|
|
1289 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
1290 |
|
|
cNoradSDP4::cNoradSDP4(const cOrbit &orbit) :
|
1291 |
|
|
cNoradBase(orbit)
|
1292 |
|
|
{
|
1293 |
|
|
m_sing = sin(m_Orbit.ArgPerigee());
|
1294 |
|
|
m_cosg = cos(m_Orbit.ArgPerigee());
|
1295 |
|
|
|
1296 |
|
|
dp_savtsn = 0.0;
|
1297 |
|
|
dp_zmos = 0.0;
|
1298 |
|
|
dp_se2 = 0.0;
|
1299 |
|
|
dp_se3 = 0.0;
|
1300 |
|
|
dp_si2 = 0.0;
|
1301 |
|
|
dp_si3 = 0.0;
|
1302 |
|
|
dp_sl2 = 0.0;
|
1303 |
|
|
dp_sl3 = 0.0;
|
1304 |
|
|
dp_sl4 = 0.0;
|
1305 |
|
|
dp_sghs = 0.0;
|
1306 |
|
|
dp_sgh2 = 0.0;
|
1307 |
|
|
dp_sgh3 = 0.0;
|
1308 |
|
|
dp_sgh4 = 0.0;
|
1309 |
|
|
dp_sh2 = 0.0;
|
1310 |
|
|
dp_sh3 = 0.0;
|
1311 |
|
|
dp_zmol = 0.0;
|
1312 |
|
|
dp_ee2 = 0.0;
|
1313 |
|
|
dp_e3 = 0.0;
|
1314 |
|
|
dp_xi2 = 0.0;
|
1315 |
|
|
dp_xi3 = 0.0;
|
1316 |
|
|
dp_xl2 = 0.0;
|
1317 |
|
|
dp_xl3 = 0.0;
|
1318 |
|
|
dp_xl4 = 0.0;
|
1319 |
|
|
dp_xgh2 = 0.0;
|
1320 |
|
|
dp_xgh3 = 0.0;
|
1321 |
|
|
dp_xgh4 = 0.0;
|
1322 |
|
|
dp_xh2 = 0.0;
|
1323 |
|
|
dp_xh3 = 0.0;
|
1324 |
|
|
dp_xqncl = 0.0;
|
1325 |
|
|
dp_thgr = 0.0;
|
1326 |
|
|
dp_omegaq = 0.0;
|
1327 |
|
|
dp_sse = 0.0;
|
1328 |
|
|
dp_ssi = 0.0;
|
1329 |
|
|
dp_ssl = 0.0;
|
1330 |
|
|
dp_ssh = 0.0;
|
1331 |
|
|
dp_ssg = 0.0;
|
1332 |
|
|
dp_d2201 = 0.0;
|
1333 |
|
|
dp_d2211 = 0.0;
|
1334 |
|
|
dp_d3210 = 0.0;
|
1335 |
|
|
dp_d3222 = 0.0;
|
1336 |
|
|
dp_d4410 = 0.0;
|
1337 |
|
|
dp_d4422 = 0.0;
|
1338 |
|
|
dp_d5220 = 0.0;
|
1339 |
|
|
dp_d5232 = 0.0;
|
1340 |
|
|
dp_d5421 = 0.0;
|
1341 |
|
|
dp_d5433 = 0.0;
|
1342 |
|
|
dp_xlamo = 0.0;
|
1343 |
|
|
dp_del1 = 0.0;
|
1344 |
|
|
dp_del2 = 0.0;
|
1345 |
|
|
dp_del3 = 0.0;
|
1346 |
|
|
dp_fasx2 = 0.0;
|
1347 |
|
|
dp_fasx4 = 0.0;
|
1348 |
|
|
dp_fasx6 = 0.0;
|
1349 |
|
|
dp_xfact = 0.0;
|
1350 |
|
|
dp_xli = 0.0;
|
1351 |
|
|
dp_xni = 0.0;
|
1352 |
|
|
dp_atime = 0.0;
|
1353 |
|
|
dp_stepp = 0.0;
|
1354 |
|
|
dp_stepn = 0.0;
|
1355 |
|
|
dp_step2 = 0.0;
|
1356 |
|
|
|
1357 |
|
|
dp_iresfl = false;
|
1358 |
|
|
dp_isynfl = false;
|
1359 |
|
|
|
1360 |
|
|
}
|
1361 |
|
|
|
1362 |
|
|
|
1363 |
|
|
/////////////////////////////////////////////////////////////////////////////
|
1364 |
|
|
bool cNoradSDP4::DeepInit(double *eosq, double *sinio, double *cosio,
|
1365 |
|
|
double *betao, double *aodp, double *theta2,
|
1366 |
|
|
double *sing, double *cosg, double *betao2,
|
1367 |
|
|
double *xmdot, double *omgdot, double *xnodott)
|
1368 |
|
|
{
|
1369 |
|
|
eqsq = *eosq;
|
1370 |
|
|
siniq = *sinio;
|
1371 |
|
|
cosiq = *cosio;
|
1372 |
|
|
rteqsq = *betao;
|
1373 |
|
|
ao = *aodp;
|
1374 |
|
|
cosq2 = *theta2;
|
1375 |
|
|
sinomo = *sing;
|
1376 |
|
|
cosomo = *cosg;
|
1377 |
|
|
bsq = *betao2;
|
1378 |
|
|
xlldot = *xmdot;
|
1379 |
|
|
omgdt = *omgdot;
|
1380 |
|
|
xnodot = *xnodott;
|
1381 |
|
|
|
1382 |
|
|
// Deep space initialization
|
1383 |
|
|
cJulian jd = m_Orbit.Epoch();
|
1384 |
|
|
|
1385 |
|
|
dp_thgr = jd.toGMST();
|
1386 |
|
|
|
1387 |
|
|
double eq = m_Orbit.Eccentricity();
|
1388 |
|
|
double aqnv = 1.0 / ao;
|
1389 |
|
|
|
1390 |
|
|
dp_xqncl = m_Orbit.Inclination();
|
1391 |
|
|
|
1392 |
|
|
double xmao = m_Orbit.mnAnomaly();
|
1393 |
|
|
double xpidot = omgdt + xnodot;
|
1394 |
|
|
double sinq = sin(m_Orbit.RAAN());
|
1395 |
|
|
double cosq = cos(m_Orbit.RAAN());
|
1396 |
|
|
|
1397 |
|
|
dp_omegaq = m_Orbit.ArgPerigee();
|
1398 |
|
|
|
1399 |
|
|
// Initialize lunar solar terms
|
1400 |
|
|
double day = jd.FromJan1_12h_1900();
|
1401 |
|
|
|
1402 |
|
|
if (day != dpi_day)
|
1403 |
|
|
{
|
1404 |
|
|
dpi_day = day;
|
1405 |
|
|
dpi_xnodce = 4.5236020 - 9.2422029E-4 * day;
|
1406 |
|
|
dpi_stem = sin(dpi_xnodce);
|
1407 |
|
|
dpi_ctem = cos(dpi_xnodce);
|
1408 |
|
|
dpi_zcosil = 0.91375164 - 0.03568096 * dpi_ctem;
|
1409 |
|
|
dpi_zsinil = sqrt(1.0 - dpi_zcosil * dpi_zcosil);
|
1410 |
|
|
dpi_zsinhl = 0.089683511 *dpi_stem / dpi_zsinil;
|
1411 |
|
|
dpi_zcoshl = sqrt(1.0 - dpi_zsinhl * dpi_zsinhl);
|
1412 |
|
|
dpi_c = 4.7199672 + 0.22997150 * day;
|
1413 |
|
|
dpi_gam = 5.8351514 + 0.0019443680 * day;
|
1414 |
|
|
dp_zmol = Fmod2p(dpi_c - dpi_gam);
|
1415 |
|
|
dpi_zx = 0.39785416 * dpi_stem / dpi_zsinil;
|
1416 |
|
|
dpi_zy = dpi_zcoshl * dpi_ctem + 0.91744867 * dpi_zsinhl * dpi_stem;
|
1417 |
|
|
dpi_zx = AcTan(dpi_zx,dpi_zy) + dpi_gam - dpi_xnodce;
|
1418 |
|
|
dpi_zcosgl = cos(dpi_zx);
|
1419 |
|
|
dpi_zsingl = sin(dpi_zx);
|
1420 |
|
|
dp_zmos = 6.2565837 + 0.017201977 * day;
|
1421 |
|
|
dp_zmos = Fmod2p(dp_zmos);
|
1422 |
|
|
}
|
1423 |
|
|
|
1424 |
|
|
dp_savtsn = 1.0e20;
|
1425 |
|
|
|
1426 |
|
|
double zcosg = zcosgs;
|
1427 |
|
|
double zsing = zsings;
|
1428 |
|
|
double zcosi = zcosis;
|
1429 |
|
|
double zsini = zsinis;
|
1430 |
|
|
double zcosh = cosq;
|
1431 |
|
|
double zsinh = sinq;
|
1432 |
|
|
double cc = c1ss;
|
1433 |
|
|
double zn = zns;
|
1434 |
|
|
double ze = zes;
|
1435 |
|
|
double zmo = dp_zmos;
|
1436 |
|
|
double xnoi = 1.0 / m_xnodp;
|
1437 |
|
|
|
1438 |
|
|
double a1; double a3; double a7; double a8; double a9; double a10;
|
1439 |
|
|
double a2; double a4; double a5; double a6; double x1; double x2;
|
1440 |
|
|
double x3; double x4; double x5; double x6; double x7; double x8;
|
1441 |
|
|
double z31; double z32; double z33; double z1; double z2; double z3;
|
1442 |
|
|
double z11; double z12; double z13; double z21; double z22; double z23;
|
1443 |
|
|
double s3; double s2; double s4; double s1; double s5; double s6;
|
1444 |
|
|
double s7;
|
1445 |
|
|
double se = 0.0; double si = 0.0; double sl = 0.0;
|
1446 |
|
|
double sgh = 0.0; double sh = 0.0;
|
1447 |
|
|
|
1448 |
|
|
// Apply the solar and lunar terms on the first pass, then re-apply the
|
1449 |
|
|
// solar terms again on the second pass.
|
1450 |
|
|
|
1451 |
|
|
for (int pass = 1; pass <= 2; pass++)
|
1452 |
|
|
{
|
1453 |
|
|
// Do solar terms
|
1454 |
|
|
a1 = zcosg * zcosh + zsing * zcosi * zsinh;
|
1455 |
|
|
a3 = -zsing * zcosh + zcosg * zcosi * zsinh;
|
1456 |
|
|
a7 = -zcosg * zsinh + zsing * zcosi * zcosh;
|
1457 |
|
|
a8 = zsing * zsini;
|
1458 |
|
|
a9 = zsing * zsinh + zcosg * zcosi * zcosh;
|
1459 |
|
|
a10 = zcosg * zsini;
|
1460 |
|
|
a2 = cosiq * a7 + siniq * a8;
|
1461 |
|
|
a4 = cosiq * a9 + siniq * a10;
|
1462 |
|
|
a5 = -siniq * a7 + cosiq * a8;
|
1463 |
|
|
a6 = -siniq * a9 + cosiq * a10;
|
1464 |
|
|
x1 = a1 * cosomo + a2 * sinomo;
|
1465 |
|
|
x2 = a3 * cosomo + a4 * sinomo;
|
1466 |
|
|
x3 = -a1 * sinomo + a2 * cosomo;
|
1467 |
|
|
x4 = -a3 * sinomo + a4 * cosomo;
|
1468 |
|
|
x5 = a5 * sinomo;
|
1469 |
|
|
x6 = a6 * sinomo;
|
1470 |
|
|
x7 = a5 * cosomo;
|
1471 |
|
|
x8 = a6 * cosomo;
|
1472 |
|
|
z31 = 12.0 * x1 * x1 - 3.0 * x3 * x3;
|
1473 |
|
|
z32 = 24.0 * x1 * x2 - 6.0 * x3 * x4;
|
1474 |
|
|
z33 = 12.0 * x2 * x2 - 3.0 * x4 * x4;
|
1475 |
|
|
z1 = 3.0 * (a1 * a1 + a2 * a2) + z31 * eqsq;
|
1476 |
|
|
z2 = 6.0 * (a1 * a3 + a2 * a4) + z32 * eqsq;
|
1477 |
|
|
z3 = 3.0 * (a3 * a3 + a4 * a4) + z33 * eqsq;
|
1478 |
|
|
z11 = -6.0 * a1 * a5 + eqsq*(-24.0 * x1 * x7 - 6.0 * x3 * x5);
|
1479 |
|
|
z12 = -6.0 * (a1 * a6 + a3 * a5) +
|
1480 |
|
|
eqsq * (-24.0 * (x2 * x7 + x1 * x8) - 6.0 * (x3 * x6 + x4 * x5));
|
1481 |
|
|
z13 = -6.0 * a3 * a6 + eqsq * (-24.0 * x2 * x8 - 6.0 * x4 * x6);
|
1482 |
|
|
z21 = 6.0 * a2 * a5 + eqsq * (24.0 * x1 * x5 - 6.0 * x3 * x7);
|
1483 |
|
|
z22 = 6.0*(a4 * a5 + a2 * a6) +
|
1484 |
|
|
eqsq * (24.0 * (x2 * x5 + x1 * x6) - 6.0 * (x4 * x7 + x3 * x8));
|
1485 |
|
|
z23 = 6.0 * a4 * a6 + eqsq*(24.0 * x2 * x6 - 6.0 * x4 * x8);
|
1486 |
|
|
z1 = z1 + z1 + bsq * z31;
|
1487 |
|
|
z2 = z2 + z2 + bsq * z32;
|
1488 |
|
|
z3 = z3 + z3 + bsq * z33;
|
1489 |
|
|
s3 = cc * xnoi;
|
1490 |
|
|
s2 = -0.5 * s3/rteqsq;
|
1491 |
|
|
s4 = s3 * rteqsq;
|
1492 |
|
|
s1 = -15.0 * eq * s4;
|
1493 |
|
|
s5 = x1 * x3 + x2 * x4;
|
1494 |
|
|
s6 = x2 * x3 + x1 * x4;
|
1495 |
|
|
s7 = x2 * x4 - x1 * x3;
|
1496 |
|
|
se = s1 * zn * s5;
|
1497 |
|
|
si = s2 * zn * (z11 + z13);
|
1498 |
|
|
sl = -zn * s3 * (z1 + z3 - 14.0 - 6.0 * eqsq);
|
1499 |
|
|
sgh = s4 * zn * (z31 + z33 - 6.0);
|
1500 |
|
|
sh = -zn * s2 * (z21 + z23);
|
1501 |
|
|
|
1502 |
|
|
if (dp_xqncl < 5.2359877E-2)
|
1503 |
|
|
sh = 0.0;
|
1504 |
|
|
|
1505 |
|
|
dp_ee2 = 2.0 * s1 * s6;
|
1506 |
|
|
dp_e3 = 2.0 * s1 * s7;
|
1507 |
|
|
dp_xi2 = 2.0 * s2 * z12;
|
1508 |
|
|
dp_xi3 = 2.0 * s2 * (z13 - z11);
|
1509 |
|
|
dp_xl2 = -2.0 * s3 * z2;
|
1510 |
|
|
dp_xl3 = -2.0 * s3 * (z3 - z1);
|
1511 |
|
|
dp_xl4 = -2.0 * s3 * (-21.0 - 9.0 * eqsq) * ze;
|
1512 |
|
|
dp_xgh2 = 2.0 * s4 * z32;
|
1513 |
|
|
dp_xgh3 = 2.0 * s4 * (z33 - z31);
|
1514 |
|
|
dp_xgh4 = -18.0 * s4 * ze;
|
1515 |
|
|
dp_xh2 = -2.0 * s2 * z22;
|
1516 |
|
|
dp_xh3 = -2.0 * s2 * (z23 - z21);
|
1517 |
|
|
|
1518 |
|
|
if (pass == 1)
|
1519 |
|
|
{
|
1520 |
|
|
// Do lunar terms
|
1521 |
|
|
dp_sse = se;
|
1522 |
|
|
dp_ssi = si;
|
1523 |
|
|
dp_ssl = sl;
|
1524 |
|
|
dp_ssh = sh / siniq;
|
1525 |
|
|
dp_ssg = sgh - cosiq * dp_ssh;
|
1526 |
|
|
dp_se2 = dp_ee2;
|
1527 |
|
|
dp_si2 = dp_xi2;
|
1528 |
|
|
dp_sl2 = dp_xl2;
|
1529 |
|
|
dp_sgh2 = dp_xgh2;
|
1530 |
|
|
dp_sh2 = dp_xh2;
|
1531 |
|
|
dp_se3 = dp_e3;
|
1532 |
|
|
dp_si3 = dp_xi3;
|
1533 |
|
|
dp_sl3 = dp_xl3;
|
1534 |
|
|
dp_sgh3 = dp_xgh3;
|
1535 |
|
|
dp_sh3 = dp_xh3;
|
1536 |
|
|
dp_sl4 = dp_xl4;
|
1537 |
|
|
dp_sgh4 = dp_xgh4;
|
1538 |
|
|
zcosg = dpi_zcosgl;
|
1539 |
|
|
zsing = dpi_zsingl;
|
1540 |
|
|
zcosi = dpi_zcosil;
|
1541 |
|
|
zsini = dpi_zsinil;
|
1542 |
|
|
zcosh = dpi_zcoshl * cosq + dpi_zsinhl * sinq;
|
1543 |
|
|
zsinh = sinq * dpi_zcoshl - cosq * dpi_zsinhl;
|
1544 |
|
|
zn = znl;
|
1545 |
|
|
cc = c1l;
|
1546 |
|
|
ze = zel;
|
1547 |
|
|
zmo = dp_zmol;
|
1548 |
|
|
}
|
1549 |
|
|
}
|
1550 |
|
|
|
1551 |
|
|
dp_sse = dp_sse + se;
|
1552 |
|
|
dp_ssi = dp_ssi + si;
|
1553 |
|
|
dp_ssl = dp_ssl + sl;
|
1554 |
|
|
dp_ssg = dp_ssg + sgh - cosiq / siniq * sh;
|
1555 |
|
|
dp_ssh = dp_ssh + sh / siniq;
|
1556 |
|
|
|
1557 |
|
|
// Geopotential resonance initialization for 12 hour orbits
|
1558 |
|
|
dp_iresfl = false;
|
1559 |
|
|
dp_isynfl = false;
|
1560 |
|
|
|
1561 |
|
|
bool bInitOnExit = true;
|
1562 |
|
|
double g310;
|
1563 |
|
|
double f220;
|
1564 |
|
|
double bfact = 0.0;
|
1565 |
|
|
|
1566 |
|
|
if ((m_xnodp >= 0.0052359877) || (m_xnodp <= 0.0034906585))
|
1567 |
|
|
{
|
1568 |
|
|
if ((m_xnodp < 8.26E-3) || (m_xnodp > 9.24E-3) || (eq < 0.5))
|
1569 |
|
|
{
|
1570 |
|
|
bInitOnExit = false;
|
1571 |
|
|
}
|
1572 |
|
|
else
|
1573 |
|
|
{
|
1574 |
|
|
dp_iresfl = true;
|
1575 |
|
|
|
1576 |
|
|
double eoc = eq * eqsq;
|
1577 |
|
|
double g201 = -0.306 - (eq - 0.64) * 0.440;
|
1578 |
|
|
|
1579 |
|
|
double g211; double g322;
|
1580 |
|
|
|
1581 |
|
|
double g410; double g422;
|
1582 |
|
|
double g520;
|
1583 |
|
|
|
1584 |
|
|
if (eq <= 0.65)
|
1585 |
|
|
{
|
1586 |
|
|
g211 = 3.616 - 13.247 * eq + 16.290 * eqsq;
|
1587 |
|
|
g310 = -19.302 + 117.390 * eq - 228.419 * eqsq + 156.591 * eoc;
|
1588 |
|
|
g322 = -18.9068 + 109.7927 * eq - 214.6334 * eqsq + 146.5816 * eoc;
|
1589 |
|
|
g410 = -41.122 + 242.694 * eq - 471.094 * eqsq + 313.953 * eoc;
|
1590 |
|
|
g422 = -146.407 + 841.880 * eq - 1629.014 * eqsq + 1083.435 * eoc;
|
1591 |
|
|
g520 = -532.114 + 3017.977 * eq - 5740.0 * eqsq + 3708.276 * eoc;
|
1592 |
|
|
}
|
1593 |
|
|
else
|
1594 |
|
|
{
|
1595 |
|
|
g211 = -72.099 + 331.819 * eq - 508.738 * eqsq + 266.724 * eoc;
|
1596 |
|
|
g310 = -346.844 + 1582.851 * eq - 2415.925 * eqsq + 1246.113 * eoc;
|
1597 |
|
|
g322 = -342.585 + 1554.908 * eq - 2366.899 * eqsq + 1215.972 * eoc;
|
1598 |
|
|
g410 = -1052.797 + 4758.686 * eq - 7193.992 * eqsq + 3651.957 * eoc;
|
1599 |
|
|
g422 = -3581.69 + 16178.11 * eq - 24462.77 * eqsq + 12422.52 * eoc;
|
1600 |
|
|
|
1601 |
|
|
if (eq <= 0.715)
|
1602 |
|
|
g520 = 1464.74 - 4664.75 * eq + 3763.64 * eqsq;
|
1603 |
|
|
else
|
1604 |
|
|
g520 = -5149.66 + 29936.92 * eq - 54087.36 * eqsq + 31324.56 * eoc;
|
1605 |
|
|
}
|
1606 |
|
|
|
1607 |
|
|
double g533;
|
1608 |
|
|
double g521;
|
1609 |
|
|
double g532;
|
1610 |
|
|
|
1611 |
|
|
if (eq < 0.7)
|
1612 |
|
|
{
|
1613 |
|
|
g533 = -919.2277 + 4988.61 * eq - 9064.77 * eqsq + 5542.21 * eoc;
|
1614 |
|
|
g521 = -822.71072 + 4568.6173 * eq - 8491.4146 * eqsq + 5337.524 * eoc;
|
1615 |
|
|
g532 = -853.666 + 4690.25 * eq - 8624.77 * eqsq + 5341.4 * eoc;
|
1616 |
|
|
}
|
1617 |
|
|
else
|
1618 |
|
|
{
|
1619 |
|
|
g533 = -37995.78 + 161616.52 * eq - 229838.2 * eqsq + 109377.94 * eoc;
|
1620 |
|
|
g521 = -51752.104 + 218913.95 * eq - 309468.16 * eqsq + 146349.42 * eoc;
|
1621 |
|
|
g532 = -40023.88 + 170470.89 * eq - 242699.48 * eqsq + 115605.82 * eoc;
|
1622 |
|
|
}
|
1623 |
|
|
|
1624 |
|
|
double sini2 = siniq * siniq;
|
1625 |
|
|
f220 = 0.75*(1.0 + 2.0 * cosiq + cosq2);
|
1626 |
|
|
double f221 = 1.5 * sini2;
|
1627 |
|
|
double f321 = 1.875 * siniq*(1.0 - 2.0 * cosiq - 3.0 * cosq2);
|
1628 |
|
|
double f322 = -1.875 * siniq*(1.0 + 2.0 * cosiq - 3.0 * cosq2);
|
1629 |
|
|
double f441 = 35.0 * sini2 * f220;
|
1630 |
|
|
double f442 = 39.3750 * sini2 * sini2;
|
1631 |
|
|
double f522 = 9.84375 * siniq*(sini2*(1.0 - 2.0 * cosiq - 5.0 * cosq2) +
|
1632 |
|
|
0.33333333*(-2.0 + 4.0 * cosiq + 6.0 * cosq2));
|
1633 |
|
|
double f523 = siniq*(4.92187512 * sini2*(-2.0 - 4.0 * cosiq + 10.0 * cosq2) +
|
1634 |
|
|
6.56250012 * (1.0 + 2.0 * cosiq - 3.0 * cosq2));
|
1635 |
|
|
double f542 = 29.53125 * siniq*(2.0 - 8.0 * cosiq + cosq2 * (-12.0 + 8.0 * cosiq + 10.0 * cosq2));
|
1636 |
|
|
double f543 = 29.53125 * siniq*(-2.0 - 8.0 * cosiq + cosq2 * (12.0 + 8.0 * cosiq - 10.0 * cosq2));
|
1637 |
|
|
double xno2 = m_xnodp * m_xnodp;
|
1638 |
|
|
double ainv2 = aqnv * aqnv;
|
1639 |
|
|
double temp1 = 3.0 * xno2 * ainv2;
|
1640 |
|
|
double temp = temp1 * root22;
|
1641 |
|
|
|
1642 |
|
|
dp_d2201 = temp * f220 * g201;
|
1643 |
|
|
dp_d2211 = temp * f221 * g211;
|
1644 |
|
|
temp1 = temp1 * aqnv;
|
1645 |
|
|
temp = temp1 * root32;
|
1646 |
|
|
dp_d3210 = temp * f321 * g310;
|
1647 |
|
|
dp_d3222 = temp * f322 * g322;
|
1648 |
|
|
temp1 = temp1 * aqnv;
|
1649 |
|
|
temp = 2.0 * temp1 * root44;
|
1650 |
|
|
dp_d4410 = temp * f441 * g410;
|
1651 |
|
|
dp_d4422 = temp * f442 * g422;
|
1652 |
|
|
temp1 = temp1 * aqnv;
|
1653 |
|
|
temp = temp1 * root52;
|
1654 |
|
|
dp_d5220 = temp * f522 * g520;
|
1655 |
|
|
dp_d5232 = temp * f523 * g532;
|
1656 |
|
|
temp = 2.0 * temp1 * root54;
|
1657 |
|
|
dp_d5421 = temp * f542 * g521;
|
1658 |
|
|
dp_d5433 = temp * f543 * g533;
|
1659 |
|
|
dp_xlamo = xmao + m_Orbit.RAAN() + m_Orbit.RAAN() - dp_thgr - dp_thgr;
|
1660 |
|
|
bfact = xlldot + xnodot + xnodot - thdt - thdt;
|
1661 |
|
|
bfact = bfact + dp_ssl + dp_ssh + dp_ssh;
|
1662 |
|
|
}
|
1663 |
|
|
}
|
1664 |
|
|
else
|
1665 |
|
|
{
|
1666 |
|
|
// Synchronous resonance terms initialization
|
1667 |
|
|
dp_iresfl = true;
|
1668 |
|
|
dp_isynfl = true;
|
1669 |
|
|
double g200 = 1.0 + eqsq * (-2.5 + 0.8125 * eqsq);
|
1670 |
|
|
g310 = 1.0 + 2.0 * eqsq;
|
1671 |
|
|
double g300 = 1.0 + eqsq * (-6.0 + 6.60937 * eqsq);
|
1672 |
|
|
f220 = 0.75 * (1.0 + cosiq) * (1.0 + cosiq);
|
1673 |
|
|
double f311 = 0.9375 * siniq * siniq * (1.0 + 3 * cosiq) - 0.75 * (1.0 + cosiq);
|
1674 |
|
|
double f330 = 1.0 + cosiq;
|
1675 |
|
|
f330 = 1.875 * f330 * f330 * f330;
|
1676 |
|
|
dp_del1 = 3.0 * m_xnodp * m_xnodp * aqnv * aqnv;
|
1677 |
|
|
dp_del2 = 2.0 * dp_del1 * f220 * g200 * q22;
|
1678 |
|
|
dp_del3 = 3.0 * dp_del1 * f330 * g300 * q33 * aqnv;
|
1679 |
|
|
dp_del1 = dp_del1 * f311 * g310 * q31 * aqnv;
|
1680 |
|
|
dp_fasx2 = 0.13130908;
|
1681 |
|
|
dp_fasx4 = 2.8843198;
|
1682 |
|
|
dp_fasx6 = 0.37448087;
|
1683 |
|
|
dp_xlamo = xmao + m_Orbit.RAAN() + m_Orbit.ArgPerigee() - dp_thgr;
|
1684 |
|
|
bfact = xlldot + xpidot - thdt;
|
1685 |
|
|
bfact = bfact + dp_ssl + dp_ssg + dp_ssh;
|
1686 |
|
|
}
|
1687 |
|
|
|
1688 |
|
|
if (bInitOnExit)
|
1689 |
|
|
{
|
1690 |
|
|
dp_xfact = bfact - m_xnodp;
|
1691 |
|
|
|
1692 |
|
|
// Initialize integrator
|
1693 |
|
|
dp_xli = dp_xlamo;
|
1694 |
|
|
dp_xni = m_xnodp;
|
1695 |
|
|
dp_atime = 0.0;
|
1696 |
|
|
dp_stepp = 720.0;
|
1697 |
|
|
dp_stepn = -720.0;
|
1698 |
|
|
dp_step2 = 259200.0;
|
1699 |
|
|
}
|
1700 |
|
|
|
1701 |
|
|
*eosq = eqsq;
|
1702 |
|
|
*sinio = siniq;
|
1703 |
|
|
*cosio = cosiq;
|
1704 |
|
|
*betao = rteqsq;
|
1705 |
|
|
*aodp = ao;
|
1706 |
|
|
*theta2 = cosq2;
|
1707 |
|
|
*sing = sinomo;
|
1708 |
|
|
*cosg = cosomo;
|
1709 |
|
|
*betao2 = bsq;
|
1710 |
|
|
*xmdot = xlldot;
|
1711 |
|
|
*omgdot = omgdt;
|
1712 |
|
|
*xnodott = xnodot;
|
1713 |
|
|
|
1714 |
|
|
return true;
|
1715 |
|
|
}
|
1716 |
|
|
|
1717 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
1718 |
|
|
bool cNoradSDP4::DeepCalcDotTerms(double *pxndot, double *pxnddt, double *pxldot)
|
1719 |
|
|
{
|
1720 |
|
|
// Dot terms calculated
|
1721 |
|
|
if (dp_isynfl)
|
1722 |
|
|
{
|
1723 |
|
|
*pxndot = dp_del1 * sin(dp_xli - dp_fasx2) +
|
1724 |
|
|
dp_del2 * sin(2.0 * (dp_xli - dp_fasx4)) +
|
1725 |
|
|
dp_del3 * sin(3.0 * (dp_xli - dp_fasx6));
|
1726 |
|
|
*pxnddt = dp_del1 * cos(dp_xli - dp_fasx2) +
|
1727 |
|
|
2.0 * dp_del2 * cos(2.0 * (dp_xli - dp_fasx4)) +
|
1728 |
|
|
3.0 * dp_del3 * cos(3.0 * (dp_xli - dp_fasx6));
|
1729 |
|
|
}
|
1730 |
|
|
else
|
1731 |
|
|
{
|
1732 |
|
|
double xomi = dp_omegaq + omgdt * dp_atime;
|
1733 |
|
|
double x2omi = xomi + xomi;
|
1734 |
|
|
double x2li = dp_xli + dp_xli;
|
1735 |
|
|
|
1736 |
|
|
*pxndot = dp_d2201 * sin(x2omi + dp_xli - g22) +
|
1737 |
|
|
dp_d2211 * sin(dp_xli - g22) +
|
1738 |
|
|
dp_d3210 * sin(xomi + dp_xli - g32) +
|
1739 |
|
|
dp_d3222 * sin(-xomi + dp_xli - g32) +
|
1740 |
|
|
dp_d4410 * sin(x2omi + x2li - g44) +
|
1741 |
|
|
dp_d4422 * sin(x2li - g44) +
|
1742 |
|
|
dp_d5220 * sin(xomi + dp_xli - g52) +
|
1743 |
|
|
dp_d5232 * sin(-xomi + dp_xli - g52) +
|
1744 |
|
|
dp_d5421 * sin(xomi + x2li - g54) +
|
1745 |
|
|
dp_d5433 * sin(-xomi + x2li - g54);
|
1746 |
|
|
|
1747 |
|
|
*pxnddt = dp_d2201 * cos(x2omi + dp_xli - g22) +
|
1748 |
|
|
dp_d2211 * cos(dp_xli - g22) +
|
1749 |
|
|
dp_d3210 * cos(xomi + dp_xli - g32) +
|
1750 |
|
|
dp_d3222 * cos(-xomi + dp_xli - g32) +
|
1751 |
|
|
dp_d5220 * cos(xomi + dp_xli - g52) +
|
1752 |
|
|
dp_d5232 * cos(-xomi + dp_xli - g52) +
|
1753 |
|
|
2.0 * (dp_d4410 * cos(x2omi + x2li - g44) +
|
1754 |
|
|
dp_d4422 * cos(x2li - g44) +
|
1755 |
|
|
dp_d5421 * cos(xomi + x2li - g54) +
|
1756 |
|
|
dp_d5433 * cos(-xomi + x2li - g54));
|
1757 |
|
|
}
|
1758 |
|
|
|
1759 |
|
|
*pxldot = dp_xni + dp_xfact;
|
1760 |
|
|
*pxnddt = (*pxnddt) * (*pxldot);
|
1761 |
|
|
|
1762 |
|
|
return true;
|
1763 |
|
|
}
|
1764 |
|
|
|
1765 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
1766 |
|
|
void cNoradSDP4::DeepCalcIntegrator(double *pxndot, double *pxnddt,
|
1767 |
|
|
double *pxldot, const double &delt)
|
1768 |
|
|
{
|
1769 |
|
|
DeepCalcDotTerms(pxndot, pxnddt, pxldot);
|
1770 |
|
|
|
1771 |
|
|
dp_xli = dp_xli + (*pxldot) * delt + (*pxndot) * dp_step2;
|
1772 |
|
|
dp_xni = dp_xni + (*pxndot) * delt + (*pxnddt) * dp_step2;
|
1773 |
|
|
dp_atime = dp_atime + delt;
|
1774 |
|
|
}
|
1775 |
|
|
|
1776 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
1777 |
|
|
bool cNoradSDP4::DeepSecular(double *xmdf, double *omgadf, double *xnode,
|
1778 |
|
|
double *emm, double *xincc, double *xnn,
|
1779 |
|
|
double *tsince)
|
1780 |
|
|
{
|
1781 |
|
|
xll = *xmdf;
|
1782 |
|
|
omgasm = *omgadf;
|
1783 |
|
|
xnodes = *xnode;
|
1784 |
|
|
xn = *xnn;
|
1785 |
|
|
t = *tsince;
|
1786 |
|
|
|
1787 |
|
|
// Deep space secular effects
|
1788 |
|
|
xll = xll + dp_ssl * t;
|
1789 |
|
|
omgasm = omgasm + dp_ssg * t;
|
1790 |
|
|
xnodes = xnodes + dp_ssh * t;
|
1791 |
|
|
_em = m_Orbit.Eccentricity() + dp_sse * t;
|
1792 |
|
|
xinc = m_Orbit.Inclination() + dp_ssi * t;
|
1793 |
|
|
|
1794 |
|
|
if (xinc < 0.0)
|
1795 |
|
|
{
|
1796 |
|
|
xinc = -xinc;
|
1797 |
|
|
xnodes = xnodes + PI;
|
1798 |
|
|
omgasm = omgasm - PI;
|
1799 |
|
|
}
|
1800 |
|
|
|
1801 |
|
|
double xnddt = 0.0;
|
1802 |
|
|
double xndot = 0.0;
|
1803 |
|
|
double xldot = 0.0;
|
1804 |
|
|
double ft = 0.0;
|
1805 |
|
|
double delt = 0.0;
|
1806 |
|
|
|
1807 |
|
|
bool fDone = false;
|
1808 |
|
|
|
1809 |
|
|
if (dp_iresfl)
|
1810 |
|
|
{
|
1811 |
|
|
while (!fDone)
|
1812 |
|
|
{
|
1813 |
|
|
if ((dp_atime == 0.0) ||
|
1814 |
|
|
((t >= 0.0) && (dp_atime < 0.0)) ||
|
1815 |
|
|
((t < 0.0) && (dp_atime >= 0.0)))
|
1816 |
|
|
{
|
1817 |
|
|
if (t < 0)
|
1818 |
|
|
delt = dp_stepn;
|
1819 |
|
|
else
|
1820 |
|
|
delt = dp_stepp;
|
1821 |
|
|
|
1822 |
|
|
// Epoch restart
|
1823 |
|
|
dp_atime = 0.0;
|
1824 |
|
|
dp_xni = m_xnodp;
|
1825 |
|
|
dp_xli = dp_xlamo;
|
1826 |
|
|
|
1827 |
|
|
fDone = true;
|
1828 |
|
|
}
|
1829 |
|
|
else
|
1830 |
|
|
{
|
1831 |
|
|
if (fabs(t) < fabs(dp_atime))
|
1832 |
|
|
{
|
1833 |
|
|
delt = dp_stepp;
|
1834 |
|
|
|
1835 |
|
|
if (t >= 0.0)
|
1836 |
|
|
delt = dp_stepn;
|
1837 |
|
|
|
1838 |
|
|
DeepCalcIntegrator(&xndot, &xnddt, &xldot, delt);
|
1839 |
|
|
}
|
1840 |
|
|
else
|
1841 |
|
|
{
|
1842 |
|
|
delt = dp_stepn;
|
1843 |
|
|
|
1844 |
|
|
delt = dp_stepp;
|
1845 |
|
|
|
1846 |
|
|
fDone = true;
|
1847 |
|
|
}
|
1848 |
|
|
}
|
1849 |
|
|
}
|
1850 |
|
|
|
1851 |
|
|
while (fabs(t - dp_atime) >= dp_stepp)
|
1852 |
|
|
{
|
1853 |
|
|
DeepCalcIntegrator(&xndot, &xnddt, &xldot, delt);
|
1854 |
|
|
}
|
1855 |
|
|
|
1856 |
|
|
ft = t - dp_atime;
|
1857 |
|
|
|
1858 |
|
|
DeepCalcDotTerms(&xndot, &xnddt, &xldot);
|
1859 |
|
|
|
1860 |
|
|
xn = dp_xni + xndot * ft + xnddt * ft * ft * 0.5;
|
1861 |
|
|
|
1862 |
|
|
double xl = dp_xli + xldot * ft + xndot * ft * ft * 0.5;
|
1863 |
|
|
double temp = -xnodes + dp_thgr + t * thdt;
|
1864 |
|
|
|
1865 |
|
|
xll = xl - omgasm + temp;
|
1866 |
|
|
|
1867 |
|
|
if (!dp_isynfl)
|
1868 |
|
|
xll = xl + temp + temp;
|
1869 |
|
|
}
|
1870 |
|
|
|
1871 |
|
|
*xmdf = xll;
|
1872 |
|
|
*omgadf = omgasm;
|
1873 |
|
|
*xnode = xnodes;
|
1874 |
|
|
*emm = _em;
|
1875 |
|
|
*xincc = xinc;
|
1876 |
|
|
*xnn = xn;
|
1877 |
|
|
*tsince = t;
|
1878 |
|
|
|
1879 |
|
|
return true;
|
1880 |
|
|
}
|
1881 |
|
|
|
1882 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
1883 |
|
|
bool cNoradSDP4::DeepPeriodics(double *e, double *xincc,
|
1884 |
|
|
double *omgadf, double *xnode,
|
1885 |
|
|
double *xmam)
|
1886 |
|
|
{
|
1887 |
|
|
_em = *e;
|
1888 |
|
|
xinc = *xincc;
|
1889 |
|
|
omgasm = *omgadf;
|
1890 |
|
|
xnodes = *xnode;
|
1891 |
|
|
xll = *xmam;
|
1892 |
|
|
|
1893 |
|
|
// Lunar-solar periodics
|
1894 |
|
|
double sinis = sin(xinc);
|
1895 |
|
|
double cosis = cos(xinc);
|
1896 |
|
|
|
1897 |
|
|
double sghs = 0.0;
|
1898 |
|
|
double shs = 0.0;
|
1899 |
|
|
double sh1 = 0.0;
|
1900 |
|
|
double pe = 0.0;
|
1901 |
|
|
double pinc = 0.0;
|
1902 |
|
|
double pl = 0.0;
|
1903 |
|
|
double sghl = 0.0;
|
1904 |
|
|
|
1905 |
|
|
if (fabs(dp_savtsn - t) >= 30.0)
|
1906 |
|
|
{
|
1907 |
|
|
dp_savtsn = t;
|
1908 |
|
|
|
1909 |
|
|
double zm = dp_zmos + zns * t;
|
1910 |
|
|
double zf = zm + 2.0 * zes * sin(zm);
|
1911 |
|
|
double sinzf = sin(zf);
|
1912 |
|
|
double f2 = 0.5 * sinzf * sinzf - 0.25;
|
1913 |
|
|
double f3 = -0.5 * sinzf * cos(zf);
|
1914 |
|
|
double ses = dp_se2 * f2 + dp_se3 * f3;
|
1915 |
|
|
double sis = dp_si2 * f2 + dp_si3 * f3;
|
1916 |
|
|
double sls = dp_sl2 * f2 + dp_sl3 * f3 + dp_sl4 * sinzf;
|
1917 |
|
|
|
1918 |
|
|
sghs = dp_sgh2 * f2 + dp_sgh3 * f3 + dp_sgh4 * sinzf;
|
1919 |
|
|
shs = dp_sh2 * f2 + dp_sh3 * f3;
|
1920 |
|
|
zm = dp_zmol + znl * t;
|
1921 |
|
|
zf = zm + 2.0 * zel * sin(zm);
|
1922 |
|
|
sinzf = sin(zf);
|
1923 |
|
|
f2 = 0.5 * sinzf * sinzf - 0.25;
|
1924 |
|
|
f3 = -0.5 * sinzf * cos(zf);
|
1925 |
|
|
|
1926 |
|
|
double sel = dp_ee2 * f2 + dp_e3 * f3;
|
1927 |
|
|
double sil = dp_xi2 * f2 + dp_xi3 * f3;
|
1928 |
|
|
double sll = dp_xl2 * f2 + dp_xl3 * f3 + dp_xl4 * sinzf;
|
1929 |
|
|
|
1930 |
|
|
sghl = dp_xgh2 * f2 + dp_xgh3 * f3 + dp_xgh4 * sinzf;
|
1931 |
|
|
sh1 = dp_xh2 * f2 + dp_xh3 * f3;
|
1932 |
|
|
pe = ses + sel;
|
1933 |
|
|
pinc = sis + sil;
|
1934 |
|
|
pl = sls + sll;
|
1935 |
|
|
}
|
1936 |
|
|
|
1937 |
|
|
double pgh = sghs + sghl;
|
1938 |
|
|
double ph = shs + sh1;
|
1939 |
|
|
xinc = xinc + pinc;
|
1940 |
|
|
_em = _em + pe;
|
1941 |
|
|
|
1942 |
|
|
if (dp_xqncl >= 0.2)
|
1943 |
|
|
{
|
1944 |
|
|
// Apply periodics directly
|
1945 |
|
|
ph = ph / siniq;
|
1946 |
|
|
pgh = pgh - cosiq * ph;
|
1947 |
|
|
omgasm = omgasm + pgh;
|
1948 |
|
|
xnodes = xnodes + ph;
|
1949 |
|
|
xll = xll + pl;
|
1950 |
|
|
}
|
1951 |
|
|
else
|
1952 |
|
|
{
|
1953 |
|
|
// Apply periodics with Lyddane modification
|
1954 |
|
|
double sinok = sin(xnodes);
|
1955 |
|
|
double cosok = cos(xnodes);
|
1956 |
|
|
double alfdp = sinis * sinok;
|
1957 |
|
|
double betdp = sinis * cosok;
|
1958 |
|
|
double dalf = ph * cosok + pinc * cosis * sinok;
|
1959 |
|
|
double dbet = -ph * sinok + pinc * cosis * cosok;
|
1960 |
|
|
|
1961 |
|
|
alfdp = alfdp + dalf;
|
1962 |
|
|
betdp = betdp + dbet;
|
1963 |
|
|
|
1964 |
|
|
double xls = xll + omgasm + cosis * xnodes;
|
1965 |
|
|
double dls = pl + pgh - pinc * xnodes * sinis;
|
1966 |
|
|
|
1967 |
|
|
xls = xls + dls;
|
1968 |
|
|
xnodes = AcTan(alfdp, betdp);
|
1969 |
|
|
xll = xll + pl;
|
1970 |
|
|
omgasm = xls - xll - cos(xinc) * xnodes;
|
1971 |
|
|
}
|
1972 |
|
|
|
1973 |
|
|
*e = _em;
|
1974 |
|
|
*xincc = xinc;
|
1975 |
|
|
*omgadf = omgasm;
|
1976 |
|
|
|
1977 |
|
|
*xnode = xnodes;
|
1978 |
|
|
*xmam = xll;
|
1979 |
|
|
|
1980 |
|
|
return true;
|
1981 |
|
|
}
|
1982 |
|
|
|
1983 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
1984 |
|
|
// getPosition()
|
1985 |
|
|
// This procedure returns the ECI position and velocity for the satellite
|
1986 |
|
|
// in the orbit at the given number of minutes since the TLE epoch time
|
1987 |
|
|
// using the NORAD Simplified General Perturbation 4, "deep space" orbit
|
1988 |
|
|
// model.
|
1989 |
|
|
//
|
1990 |
|
|
// tsince - Time in minutes since the TLE epoch (GMT).
|
1991 |
|
|
// pECI - pointer to location to store the ECI data.
|
1992 |
|
|
// To convert the returned ECI position vector to km,
|
1993 |
|
|
// multiply each component by:
|
1994 |
|
|
// (XKMPER_WGS72 / AE).
|
1995 |
|
|
// To convert the returned ECI velocity vector to km/sec,
|
1996 |
|
|
// multiply each component by:
|
1997 |
|
|
// (XKMPER_WGS72 / AE) * (MIN_PER_DAY / 86400).
|
1998 |
|
|
bool cNoradSDP4::getPosition(double tsince, cEci &eci)
|
1999 |
|
|
{
|
2000 |
|
|
DeepInit(&m_eosq, &m_sinio, &m_cosio, &m_betao, &m_aodp, &m_theta2,
|
2001 |
|
|
&m_sing, &m_cosg, &m_betao2, &m_xmdot, &m_omgdot, &m_xnodot);
|
2002 |
|
|
|
2003 |
|
|
// Update for secular gravity and atmospheric drag
|
2004 |
|
|
double xmdf = m_Orbit.mnAnomaly() + m_xmdot * tsince;
|
2005 |
|
|
double omgadf = m_Orbit.ArgPerigee() + m_omgdot * tsince;
|
2006 |
|
|
double xnoddf = m_Orbit.RAAN() + m_xnodot * tsince;
|
2007 |
|
|
double tsq = tsince * tsince;
|
2008 |
|
|
double xnode = xnoddf + m_xnodcf * tsq;
|
2009 |
|
|
double tempa = 1.0 - m_c1 * tsince;
|
2010 |
|
|
double tempe = m_Orbit.BStar() * m_c4 * tsince;
|
2011 |
|
|
double templ = m_t2cof * tsq;
|
2012 |
|
|
double xn = m_xnodp;
|
2013 |
|
|
double em;
|
2014 |
|
|
double xinc;
|
2015 |
|
|
|
2016 |
|
|
DeepSecular(&xmdf, &omgadf, &xnode, &em, &xinc, &xn, &tsince);
|
2017 |
|
|
|
2018 |
|
|
double a = pow(XKE / xn, TWOTHRD) * sqr(tempa);
|
2019 |
|
|
double e = em - tempe;
|
2020 |
|
|
double xmam = xmdf + m_xnodp * templ;
|
2021 |
|
|
|
2022 |
|
|
DeepPeriodics(&e, &xinc, &omgadf, &xnode, &xmam);
|
2023 |
|
|
|
2024 |
|
|
double xl = xmam + omgadf + xnode;
|
2025 |
|
|
|
2026 |
|
|
xn = XKE / pow(a, 1.5);
|
2027 |
|
|
|
2028 |
|
|
return FinalPosition(xinc, omgadf, e, a, xl, xnode, xn, tsince, eci);
|
2029 |
|
|
}
|
2030 |
|
|
|
2031 |
|
|
|
2032 |
|
|
// cOrbit.cpp
|
2033 |
|
|
//
|
2034 |
|
|
// Copyright (c) 2002-2003 Michael F. Henry
|
2035 |
|
|
//
|
2036 |
|
|
// mfh 11/15/2003
|
2037 |
|
|
//
|
2038 |
|
|
//////////////////////////////////////////////////////////////////////
|
2039 |
|
|
cOrbit::cOrbit(const cTle &tle) :
|
2040 |
|
|
m_tle(tle),
|
2041 |
|
|
m_pNoradModel(NULL)
|
2042 |
|
|
{
|
2043 |
|
|
m_tle.Initialize();
|
2044 |
|
|
|
2045 |
|
|
int epochYear = (int)m_tle.getField(cTle::FLD_EPOCHYEAR);
|
2046 |
|
|
double epochDay = m_tle.getField(cTle::FLD_EPOCHDAY );
|
2047 |
|
|
|
2048 |
|
|
if (epochYear < 57)
|
2049 |
|
|
epochYear += 2000;
|
2050 |
|
|
else
|
2051 |
|
|
epochYear += 1900;
|
2052 |
|
|
|
2053 |
|
|
m_jdEpoch = cJulian(epochYear, epochDay);
|
2054 |
|
|
|
2055 |
|
|
m_secPeriod = -1.0;
|
2056 |
|
|
|
2057 |
|
|
// Recover the original mean motion and semimajor axis from the
|
2058 |
|
|
// input elements.
|
2059 |
|
|
double mm = mnMotion();
|
2060 |
|
|
double rpmin = mm * 2 * PI / MIN_PER_DAY; // rads per minute
|
2061 |
|
|
|
2062 |
|
|
double a1 = pow(XKE / rpmin, TWOTHRD);
|
2063 |
|
|
double e = Eccentricity();
|
2064 |
|
|
double i = Inclination();
|
2065 |
|
|
double temp = (1.5 * CK2 * (3.0 * sqr(cos(i)) - 1.0) /
|
2066 |
|
|
pow(1.0 - e * e, 1.5));
|
2067 |
|
|
double delta1 = temp / (a1 * a1);
|
2068 |
|
|
double a0 = a1 *
|
2069 |
|
|
(1.0 - delta1 *
|
2070 |
|
|
((1.0 / 3.0) + delta1 *
|
2071 |
|
|
(1.0 + 134.0 / 81.0 * delta1)));
|
2072 |
|
|
|
2073 |
|
|
double delta0 = temp / (a0 * a0);
|
2074 |
|
|
|
2075 |
|
|
m_mnMotionRec = rpmin / (1.0 + delta0);
|
2076 |
|
|
m_aeAxisSemiMinorRec = a0 / (1.0 - delta0);
|
2077 |
|
|
m_aeAxisSemiMajorRec = m_aeAxisSemiMinorRec / sqrt(1.0 - (e * e));
|
2078 |
|
|
m_kmPerigeeRec = XKMPER_WGS72 * (m_aeAxisSemiMajorRec * (1.0 - e) - AE);
|
2079 |
|
|
m_kmApogeeRec = XKMPER_WGS72 * (m_aeAxisSemiMajorRec * (1.0 + e) - AE);
|
2080 |
|
|
|
2081 |
|
|
if (2.0 * PI / m_mnMotionRec >= 225.0)
|
2082 |
|
|
{
|
2083 |
|
|
// SDP4 - period >= 225 minutes.
|
2084 |
|
|
m_pNoradModel = new cNoradSDP4(*this);
|
2085 |
|
|
}
|
2086 |
|
|
else
|
2087 |
|
|
{
|
2088 |
|
|
// SGP4 - period < 225 minutes
|
2089 |
|
|
m_pNoradModel = new cNoradSGP4(*this);
|
2090 |
|
|
}
|
2091 |
|
|
}
|
2092 |
|
|
|
2093 |
|
|
/////////////////////////////////////////////////////////////////////////////
|
2094 |
|
|
cOrbit::~cOrbit()
|
2095 |
|
|
{
|
2096 |
|
|
delete m_pNoradModel;
|
2097 |
|
|
}
|
2098 |
|
|
|
2099 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
2100 |
|
|
// Return the period in seconds
|
2101 |
|
|
double cOrbit::Period() const
|
2102 |
|
|
{
|
2103 |
|
|
if (m_secPeriod < 0.0)
|
2104 |
|
|
{
|
2105 |
|
|
// Calculate the period using the recovered mean motion.
|
2106 |
|
|
if (m_mnMotionRec == 0)
|
2107 |
|
|
m_secPeriod = 0.0;
|
2108 |
|
|
else
|
2109 |
|
|
m_secPeriod = (2 * PI) / m_mnMotionRec * 60.0;
|
2110 |
|
|
}
|
2111 |
|
|
|
2112 |
|
|
return m_secPeriod;
|
2113 |
|
|
}
|
2114 |
|
|
|
2115 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
2116 |
|
|
// Returns elapsed number of seconds from epoch to given time.
|
2117 |
|
|
// Note: "Predicted" TLEs can have epochs in the future.
|
2118 |
|
|
double cOrbit::TPlusEpoch(const cJulian &gmt) const
|
2119 |
|
|
{
|
2120 |
|
|
return gmt.spanSec(Epoch());
|
2121 |
|
|
}
|
2122 |
|
|
|
2123 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
2124 |
|
|
// Returns the mean anomaly in radians at given GMT.
|
2125 |
|
|
// At epoch, the mean anomaly is given by the elements data.
|
2126 |
|
|
double cOrbit::mnAnomaly(cJulian gmt) const
|
2127 |
|
|
{
|
2128 |
|
|
double span = TPlusEpoch(gmt);
|
2129 |
|
|
double P = Period();
|
2130 |
|
|
|
2131 |
|
|
assert(P != 0.0);
|
2132 |
|
|
|
2133 |
|
|
return fmod(mnAnomaly() + (TWOPI * (span / P)), TWOPI);
|
2134 |
|
|
}
|
2135 |
|
|
|
2136 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
2137 |
|
|
// getPosition()
|
2138 |
|
|
// This procedure returns the ECI position and velocity for the satellite
|
2139 |
|
|
// at "tsince" minutes from the (GMT) TLE epoch. The vectors returned in
|
2140 |
|
|
// the ECI object are kilometer-based.
|
2141 |
|
|
// tsince - Time in minutes since the TLE epoch (GMT).
|
2142 |
|
|
bool cOrbit::getPosition(double tsince, cEci *pEci) const
|
2143 |
|
|
{
|
2144 |
|
|
bool rc;
|
2145 |
|
|
|
2146 |
|
|
rc = m_pNoradModel->getPosition(tsince, *pEci);
|
2147 |
|
|
|
2148 |
|
|
pEci->ae2km();
|
2149 |
|
|
|
2150 |
|
|
return rc;
|
2151 |
|
|
}
|
2152 |
|
|
|
2153 |
|
|
//////////////////////////////////////////////////////////////////////////////
|
2154 |
|
|
// SatName()
|
2155 |
|
|
// Return the name of the satellite. If requested, the NORAD number is
|
2156 |
|
|
// appended to the end of the name, i.e., "ISS (ZARYA) #25544".
|
2157 |
|
|
// The name of the satellite with the NORAD number appended is important
|
2158 |
|
|
// because many satellites, especially debris, have the same name and
|
2159 |
|
|
// would otherwise appear to be the same satellite in ouput data.
|
2160 |
|
|
string cOrbit::SatName(bool fAppendId /* = false */) const
|
2161 |
|
|
{
|
2162 |
|
|
string str = m_tle.getName();
|
2163 |
|
|
|
2164 |
|
|
if (fAppendId)
|
2165 |
|
|
{
|
2166 |
|
|
string strId;
|
2167 |
|
|
|
2168 |
|
|
m_tle.getField(cTle::FLD_NORADNUM, cTle::U_NATIVE, &strId);
|
2169 |
|
|
str = str + " #" + strId;
|
2170 |
|
|
}
|
2171 |
|
|
|
2172 |
|
|
return str;
|
2173 |
|
|
}
|
2174 |
|
|
|