1 |
pam-rm2 |
1.2 |
/*************************************************************************** |
2 |
|
|
* Copyright (C) 2006 by pamelaprod * |
3 |
|
|
* pamelaprod@P1.pamela * |
4 |
|
|
* * |
5 |
|
|
* This program is free software; you can redistribute it and/or modify * |
6 |
|
|
* it under the terms of the GNU General Public License as published by * |
7 |
|
|
* the Free Software Foundation; either version 2 of the License, or * |
8 |
|
|
* (at your option) any later version. * |
9 |
|
|
* * |
10 |
|
|
* This program is distributed in the hope that it will be useful, * |
11 |
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of * |
12 |
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
13 |
|
|
* GNU General Public License for more details. * |
14 |
|
|
* * |
15 |
|
|
* You should have received a copy of the GNU General Public License * |
16 |
|
|
* along with this program; if not, write to the * |
17 |
|
|
* Free Software Foundation, Inc., * |
18 |
|
|
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * |
19 |
|
|
***************************************************************************/ |
20 |
|
|
#include <InclinationInfo.h> |
21 |
|
|
#include <TMath.h> |
22 |
|
|
#include "TMatrixD.h" |
23 |
|
|
|
24 |
|
|
using namespace std; |
25 |
|
|
|
26 |
|
|
Quaternions::Quaternions() |
27 |
|
|
: InclinationInfoItem() |
28 |
|
|
{ |
29 |
|
|
} |
30 |
|
|
|
31 |
|
|
|
32 |
|
|
Quaternions::~Quaternions() |
33 |
|
|
{ |
34 |
|
|
} |
35 |
|
|
|
36 |
|
|
InclinationInfo::InclinationInfo() |
37 |
|
|
: TObject() |
38 |
|
|
{ |
39 |
|
|
} |
40 |
|
|
|
41 |
|
|
InclinationInfo::~InclinationInfo() |
42 |
|
|
{ |
43 |
|
|
} |
44 |
|
|
|
45 |
|
|
short int Sign_1(double_t a, Int_t b){ |
46 |
|
|
if(a>0){b=1;} |
47 |
|
|
if(a<0){b=-1;} |
48 |
|
|
else{b=0;} |
49 |
|
|
return b; |
50 |
|
|
} |
51 |
|
|
|
52 |
|
|
|
53 |
|
|
/******************************************************************************************************************/ |
54 |
|
|
/******************************************************************************************************************/ |
55 |
|
|
//********************* ***************************************************************/ |
56 |
|
|
//********************* COORDINATE SYSTEMS ***************************************************************/ |
57 |
|
|
//********************* ***************************************************************/ |
58 |
|
|
//*****************************************************************************************************************/ |
59 |
|
|
//*****************************************************************************************************************/ |
60 |
|
|
// |
61 |
|
|
// ZISK |
62 |
|
|
// + |
63 |
|
|
// / \ YOSK ZOSK (Directed by Radius) |
64 |
|
|
// | _ _. |
65 |
|
|
// | |\ /| |
66 |
|
|
// | \ / |
67 |
|
|
// | \ / |
68 |
|
|
// |.__..__ \ / |
69 |
|
|
// Orbit _._.***| **.\/_ XOSK (Directed by velocity) |
70 |
|
|
// .* | (X0,Y0,Z0) **--.___\ |
71 |
|
|
// _** | / *. / |
72 |
|
|
// .* | * * |
73 |
|
|
// * ..****|***.. / R * |
74 |
|
|
// .* | .*. |
75 |
|
|
// .* | / *. |
76 |
|
|
// * EARTH | / * YISK |
77 |
|
|
// * | /_ _ _*_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\ |
78 |
|
|
// * / * / |
79 |
|
|
// * / .* |
80 |
|
|
// *. / .* |
81 |
|
|
// **/******* |
82 |
|
|
// / |
83 |
|
|
// / |
84 |
|
|
// / |
85 |
|
|
// / |
86 |
|
|
// / |
87 |
|
|
// / |
88 |
|
|
// |/ |
89 |
|
|
// *-- |
90 |
|
|
// XISK |
91 |
|
|
// |
92 |
|
|
//****************************************************************************************************/ |
93 |
|
|
//****************************************************************************************************/ |
94 |
|
|
|
95 |
|
|
|
96 |
|
|
void InclinationInfo::TransAngle(Double_t x0, Double_t y0, Double_t z0, Double_t Vx0, Double_t Vy0, Double_t Vz0, Double_t q0, Double_t q1, Double_t q2, Double_t q3){ |
97 |
|
|
|
98 |
|
|
double_t a = 360/(2*TMath::Pi()); |
99 |
|
|
|
100 |
|
|
TMatrixD Xij(3,3); |
101 |
|
|
Xij(0,0) = 1; Xij(0,1) = 0; Xij(0,2) = 0; |
102 |
|
|
Xij(1,0) = 0; Xij(1,1) = 0; Xij(1,2) = 1; |
103 |
|
|
Xij(2,0) = 0; Xij(2,1) = -1; Xij(2,2) = 0; |
104 |
|
|
|
105 |
|
|
TMatrixD Zij(3,3); |
106 |
|
|
Zij(0,0) = 0; Zij(0,1) = 0; Zij(0,2) = -1; |
107 |
|
|
Zij(1,0) = -1; Zij(1,1) = 0; Zij(1,2) = 0; |
108 |
|
|
Zij(2,0) = 0; Zij(2,1) = 1; Zij(2,2) = 0; |
109 |
|
|
|
110 |
|
|
TMatrixD Pij(3,3); |
111 |
|
|
Pij(0,0) = pow(q0,2)+pow(q1,2)-pow(q2,2)-pow(q3,2); |
112 |
|
|
Pij(0,1) = /*2*(q1*q2+q0*q3);/*/ 2*(q1*q2-q0*q3); |
113 |
|
|
Pij(0,2) = /*2*(q1*q3-q0*q2);/*/ 2*(q1*q3+q0*q2); |
114 |
|
|
Pij(1,0) = /*2*(q1*q2-q0*q3);/*/ 2*(q1*q2+q0*q3); |
115 |
|
|
Pij(1,1) = pow(q0,2)-pow(q1,2)+pow(q2,2)-pow(q3,2); |
116 |
|
|
Pij(1,2) = /*2*(q2*q3+q0*q1);/*/ 2*(q2*q3-q0*q1); |
117 |
|
|
Pij(2,0) = /*2*(q1*q3+q0*q2);/*/ 2*(q1*q3-q0*q2); |
118 |
|
|
Pij(2,1) = /*2*(q2*q3-q0*q1);/*/ 2*(q2*q3+q0*q1); |
119 |
|
|
Pij(2,2) = pow(q0,2)-pow(q1,2)-pow(q2,2)+pow(q3,2); |
120 |
|
|
|
121 |
|
|
TMatrixD Aij(3,3); |
122 |
|
|
|
123 |
|
|
Double_t C1 = y0*Vz0 - z0*Vy0; |
124 |
|
|
Double_t C2 = z0*Vx0 - x0*Vz0; |
125 |
|
|
Double_t C3 = x0*Vy0 - y0*Vx0; |
126 |
|
|
Double_t C = sqrt(pow(C1,2) + pow(C2,2) + pow(C3,2)); |
127 |
|
|
Double_t V0 = sqrt(pow(Vx0,2)+pow(Vy0,2) + pow(Vz0,2)); |
128 |
|
|
Double_t R0 = sqrt(pow(x0,2)+pow(y0,2) + pow(z0,2)); |
129 |
|
|
Aij(0,0) = /*(C2*z0-C3*y0)/(C*R0);/*/Vx0/V0; |
130 |
|
|
Aij(0,1) = C1/C; |
131 |
|
|
Aij(0,2) = /*x0/R0;/*/(Vy0*C3-Vz0*C2)/(V0*C); |
132 |
|
|
Aij(1,0) = /*(C3*x0-C1*z0)/(C*R0);/*/Vy0/V0; |
133 |
|
|
Aij(1,1) = C2/C; |
134 |
|
|
Aij(1,2) = /*y0/R0;/*/(Vz0*C1-Vx0*C3)/(V0*C); |
135 |
|
|
Aij(2,0) = /*(C1*y0-C2*x0)/(C*R0);/*/Vz0/V0; |
136 |
|
|
Aij(2,1) = C3/C; |
137 |
|
|
Aij(2,2) = /*x0/R0;/*/(Vx0*C2-Vy0*C1)/(V0*C); |
138 |
|
|
Aij.Invert(); |
139 |
|
|
|
140 |
|
|
TMatrixD Full_(3,3); |
141 |
|
|
|
142 |
|
|
Full_ = Aij*(Pij*Zij); |
143 |
|
|
|
144 |
|
|
//Double_t u13 = Full_(0,2); |
145 |
|
|
//Double_t u23 = Full_(1,2); |
146 |
|
|
//Double_t u22 = Full_(1,1); |
147 |
|
|
//Double_t u33 = Full_(2,2); |
148 |
|
|
//Double_t u21 = Full_(1,0); |
149 |
|
|
|
150 |
|
|
Double_t u13 = Full_(0,0); |
151 |
|
|
Double_t u23 = -Full_(1,0); |
152 |
|
|
Double_t u22 = Full_(1,1); |
153 |
|
|
Double_t u33 = Full_(2,0); |
154 |
|
|
Double_t u21 = Full_(1,2); |
155 |
|
|
|
156 |
|
|
Tangazh = a*atan(-u13/u33); |
157 |
|
|
Kren = a*atan(-u23/sqrt(1 - pow(u23,2))); |
158 |
|
|
Ryskanie = a*atan(u21/u22); |
159 |
|
|
|
160 |
|
|
return ; |
161 |
|
|
} |
162 |
|
|
|