1 |
/*************************************************************************** |
/*************************************************************************** |
2 |
* Copyright (C) 2006 by pamelaprod * |
* Copyright (C) 2006 by pamelaprod * |
3 |
* pamelaprod@P1.pamela * |
* pamelaprod@P1.pamela * |
4 |
* * |
* * |
5 |
* This program is free software; you can redistribute it and/or modify * |
* This program is free software; you can redistribute it and/or modify * |
6 |
* it under the terms of the GNU General Public License as published by * |
* it under the terms of the GNU General Public License as published by * |
7 |
* the Free Software Foundation; either version 2 of the License, or * |
* the Free Software Foundation; either version 2 of the License, or * |
8 |
* (at your option) any later version. * |
* (at your option) any later version. * |
9 |
* * |
* * |
10 |
* This program is distributed in the hope that it will be useful, * |
* This program is distributed in the hope that it will be useful, * |
11 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of * |
* but WITHOUT ANY WARRANTY; without even the implied warranty of * |
12 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
13 |
* GNU General Public License for more details. * |
* GNU General Public License for more details. * |
14 |
* * |
* * |
15 |
* You should have received a copy of the GNU General Public License * |
* You should have received a copy of the GNU General Public License * |
16 |
* along with this program; if not, write to the * |
* along with this program; if not, write to the * |
17 |
* Free Software Foundation, Inc., * |
* Free Software Foundation, Inc., * |
18 |
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * |
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * |
19 |
***************************************************************************/ |
***************************************************************************/ |
20 |
#include <InclinationInfo.h> |
#include <InclinationInfo.h> |
21 |
#include <TMath.h> |
#include <TMath.h> |
22 |
#include "TMatrixD.h" |
#include "TMatrixD.h" |
23 |
|
|
24 |
using namespace std; |
using namespace std; |
25 |
|
|
26 |
Quaternions::Quaternions() |
Quaternions::Quaternions() |
27 |
: InclinationInfoItem() |
: InclinationInfoItem() |
28 |
{ |
{ |
29 |
} |
} |
30 |
|
|
31 |
|
|
32 |
Quaternions::~Quaternions() |
Quaternions::~Quaternions() |
33 |
{ |
{ |
34 |
} |
} |
35 |
|
|
36 |
InclinationInfo::InclinationInfo() |
InclinationInfo::InclinationInfo() |
37 |
: TObject() |
: TObject() |
38 |
{ |
{ |
39 |
} |
} |
40 |
|
|
41 |
InclinationInfo::~InclinationInfo() |
InclinationInfo::~InclinationInfo() |
42 |
{ |
{ |
43 |
} |
} |
44 |
|
|
45 |
short int Sign_1(double_t a, Int_t b){ |
short int Sign_1(double_t a, Int_t b){ |
46 |
if(a>0){b=1;} |
if(a>0){b=1;} |
47 |
if(a<0){b=-1;} |
if(a<0){b=-1;} |
48 |
else{b=0;} |
else{b=0;} |
49 |
return b; |
return b; |
50 |
} |
} |
51 |
|
|
52 |
void InclinationInfo::QuaternionstoAngle(Quaternions Qua){ |
|
53 |
|
/******************************************************************************************************************/ |
54 |
double_t a11 = pow(Qua.quat[0][0],2.)+pow(Qua.quat[0][1],2.)-pow(Qua.quat[0][2],2.)-pow(Qua.quat[0][3],2.); |
/******************************************************************************************************************/ |
55 |
double_t a12 = 2*(Qua.quat[0][1]*Qua.quat[0][2]+Qua.quat[0][0]*Qua.quat[0][3]); |
//********************* ***************************************************************/ |
56 |
double_t a13 = 2*(Qua.quat[0][1]*Qua.quat[0][3]-Qua.quat[0][0]*Qua.quat[0][2]); |
//********************* COORDINATE SYSTEMS ***************************************************************/ |
57 |
double_t a21 = 2*(Qua.quat[0][1]*Qua.quat[0][2]-Qua.quat[0][0]*Qua.quat[0][3]); |
//********************* ***************************************************************/ |
58 |
double_t a22 = pow(Qua.quat[0][0],2.)+pow(Qua.quat[0][2],2.)-pow(Qua.quat[0][1],2.)-pow(Qua.quat[0][3],2.); |
//*****************************************************************************************************************/ |
59 |
double_t a23 = 2*(Qua.quat[0][2]*Qua.quat[0][3]+Qua.quat[0][0]*Qua.quat[0][1]); |
//*****************************************************************************************************************/ |
60 |
double_t a31 = 2*(Qua.quat[0][1]*Qua.quat[0][3]+Qua.quat[0][0]*Qua.quat[0][2]); |
// |
61 |
double_t a32 = 2*(Qua.quat[0][2]*Qua.quat[0][3]-Qua.quat[0][0]*Qua.quat[0][1]); |
// ZISK |
62 |
double_t a33 = pow(Qua.quat[0][0],2.)+pow(Qua.quat[0][3],2.)-pow(Qua.quat[0][1],2.)-pow(Qua.quat[0][2],2.); |
// + |
63 |
double_t a = 360/(2*TMath::Pi()); |
// / \ YOSK ZOSK (Directed by Radius) |
64 |
double_t eksi = 0.0000001; |
// | _ _. |
65 |
double_t eteta = 0.0000001; |
// | |\ /| |
66 |
double_t ksteta = a22*a22/(a12*a12+a22*a22); |
// | \ / |
67 |
double_t ksksi = a33*a33/(a33*a33+a31*a31); |
// | \ / |
68 |
|
// |.__..__ \ / |
69 |
Int_t kj1; |
// Orbit _._.***| **.\/_ XOSK (Directed by velocity) |
70 |
if (a33<0){kj1=1; |
// .* | (X0,Y0,Z0) **--.___\ |
71 |
} else {kj1=0;}; |
// _** | / *. / |
72 |
Int_t kj2; |
// .* | * * |
73 |
if (ksksi>eksi){kj2=1; |
// * ..****|***.. / R * |
74 |
} else {kj2=0;}; |
// .* | .*. |
75 |
Int_t kj3; |
// .* | / *. |
76 |
if (ksksi<=eksi){kj3=1; |
// * EARTH | / * YISK |
77 |
} else {kj3=0;}; |
// * | /_ _ _*_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\ |
78 |
Int_t kj4; |
// * / * / |
79 |
if (a22<0){kj4=1; |
// * / .* |
80 |
} else {kj4=0;}; |
// *. / .* |
81 |
Int_t kj5; |
// **/******* |
82 |
if (ksteta>eteta){kj5=1; |
// / |
83 |
} else {kj5=0;}; |
// / |
84 |
Int_t kj6; |
// / |
85 |
if (ksteta<=eteta){kj6=1; |
// / |
86 |
} else {kj6=0;}; |
// / |
87 |
if (abs((int)a32)>1){exit(1);}; |
// / |
88 |
Int_t fr; |
// |/ |
89 |
|
// *-- |
90 |
Double_t gamar = -atan(a32/sqrt(1-pow(a32,2.))); |
// XISK |
91 |
Double_t ksir = (-atan(a31/a33)-TMath::Pi()*kj1*Sign_1(a31, fr))*kj2-0.5*TMath::Pi()*kj3*Sign_1(a31, fr); |
// |
92 |
Double_t tetar = -(-atan(a12/a22)-TMath::Pi()*kj4*Sign_1(a12, fr))*kj5+0.5*TMath::Pi()*kj6*Sign_1(a12, fr); |
//****************************************************************************************************/ |
93 |
// if (gamar<0){A11=gamar*a+360;}else{A11=gamar*a;}; |
//****************************************************************************************************/ |
94 |
// if (ksir<0){A11=ksir*a+360;}else{A11=ksir*a;}; |
|
95 |
// if (tetar<0){A13=tetar*a+360;}else{A13=tetar*a;}; |
|
96 |
|
void InclinationInfo::TransAngle(Double_t x0, Double_t y0, Double_t z0, Double_t Vx0, Double_t Vy0, Double_t Vz0, Double_t q0, Double_t q1, Double_t q2, Double_t q3){ |
97 |
// gamar = acos(pow(Qua.quat[0][0],2.)+pow(Qua.quat[0][3],2.)-pow(Qua.quat[0][1],2.)-pow(Qua.quat[0][2],2.)); |
|
98 |
// tetar = atan((Qua.quat[0][2]*Qua.quat[0][3]+Qua.quat[0][0]*Qua.quat[0][2])/(Qua.quat[0][2]*Qua.quat[0][3]+Qua.quat[0][1]*Qua.quat[0][0])); |
double_t a = 360/(2*TMath::Pi()); |
99 |
// ksir = atan((Qua.quat[0][1]*Qua.quat[0][3]-Qua.quat[0][0]*Qua.quat[0][2])/(Qua.quat[0][2]*Qua.quat[0][3]-Qua.quat[0][1]*Qua.quat[0][0])); |
|
100 |
|
TMatrixD Xij(3,3); |
101 |
|
Xij(0,0) = 1; Xij(0,1) = 0; Xij(0,2) = 0; |
102 |
A13=tetar*a; |
Xij(1,0) = 0; Xij(1,1) = 0; Xij(1,2) = 1; |
103 |
A12=ksir*a; |
Xij(2,0) = 0; Xij(2,1) = -1; Xij(2,2) = 0; |
104 |
A11=gamar*a; |
|
105 |
|
TMatrixD Zij(3,3); |
106 |
return ; |
Zij(0,0) = 0; Zij(0,1) = 0; Zij(0,2) = -1; |
107 |
} |
Zij(1,0) = -1; Zij(1,1) = 0; Zij(1,2) = 0; |
108 |
|
Zij(2,0) = 0; Zij(2,1) = 1; Zij(2,2) = 0; |
109 |
/******************************************************************************************************************/ |
|
110 |
/******************************************************************************************************************/ |
TMatrixD Pij(3,3); |
111 |
//********************* ***************************************************************/ |
Pij(0,0) = pow(q0,2)+pow(q1,2)-pow(q2,2)-pow(q3,2); |
112 |
//********************* COORDINATE SYSTEMS ***************************************************************/ |
Pij(0,1) = /*2*(q1*q2+q0*q3);/*/ 2*(q1*q2-q0*q3); |
113 |
//********************* ***************************************************************/ |
Pij(0,2) = /*2*(q1*q3-q0*q2);/*/ 2*(q1*q3+q0*q2); |
114 |
//*****************************************************************************************************************/ |
Pij(1,0) = /*2*(q1*q2-q0*q3);/*/ 2*(q1*q2+q0*q3); |
115 |
//*****************************************************************************************************************/ |
Pij(1,1) = pow(q0,2)-pow(q1,2)+pow(q2,2)-pow(q3,2); |
116 |
// |
Pij(1,2) = /*2*(q2*q3+q0*q1);/*/ 2*(q2*q3-q0*q1); |
117 |
// ZISK |
Pij(2,0) = /*2*(q1*q3+q0*q2);/*/ 2*(q1*q3-q0*q2); |
118 |
// + |
Pij(2,1) = /*2*(q2*q3-q0*q1);/*/ 2*(q2*q3+q0*q1); |
119 |
// / \ YOSK ZOSK (Directed by Radius) |
Pij(2,2) = pow(q0,2)-pow(q1,2)-pow(q2,2)+pow(q3,2); |
120 |
// | _ _. |
|
121 |
// | |\ /| |
TMatrixD Aij(3,3); |
122 |
// | \ / |
|
123 |
// | \ / |
Double_t C1 = y0*Vz0 - z0*Vy0; |
124 |
// |.__..__ \ / |
Double_t C2 = z0*Vx0 - x0*Vz0; |
125 |
// Orbit _._.***| **.\/_ XOSK (Directed by velocity) |
Double_t C3 = x0*Vy0 - y0*Vx0; |
126 |
// .* | (X0,Y0,Z0) **--.___\ |
Double_t C = sqrt(pow(C1,2) + pow(C2,2) + pow(C3,2)); |
127 |
// _** | / *. / |
Double_t V0 = sqrt(pow(Vx0,2)+pow(Vy0,2) + pow(Vz0,2)); |
128 |
// .* | * * |
Double_t R0 = sqrt(pow(x0,2)+pow(y0,2) + pow(z0,2)); |
129 |
// * ..****|***.. / R * |
Aij(0,0) = /*(C2*z0-C3*y0)/(C*R0);/*/Vx0/V0; |
130 |
// .* | .*. |
Aij(0,1) = C1/C; |
131 |
// .* | / *. |
Aij(0,2) = /*x0/R0;/*/(Vy0*C3-Vz0*C2)/(V0*C); |
132 |
// * EARTH | / * YISK |
Aij(1,0) = /*(C3*x0-C1*z0)/(C*R0);/*/Vy0/V0; |
133 |
// * | /_ _ _*_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\ |
Aij(1,1) = C2/C; |
134 |
// * / * / |
Aij(1,2) = /*y0/R0;/*/(Vz0*C1-Vx0*C3)/(V0*C); |
135 |
// * / .* |
Aij(2,0) = /*(C1*y0-C2*x0)/(C*R0);/*/Vz0/V0; |
136 |
// *. / .* |
Aij(2,1) = C3/C; |
137 |
// **/******* |
Aij(2,2) = /*x0/R0;/*/(Vx0*C2-Vy0*C1)/(V0*C); |
138 |
// / |
Aij.Invert(); |
139 |
// / |
|
140 |
// / |
TMatrixD Full_(3,3); |
141 |
// / |
|
142 |
// / |
Full_ = Aij*(Pij*Zij); |
143 |
// / |
|
144 |
// |/ |
//Double_t u13 = Full_(0,2); |
145 |
// *-- |
//Double_t u23 = Full_(1,2); |
146 |
// XISK |
//Double_t u22 = Full_(1,1); |
147 |
// |
//Double_t u33 = Full_(2,2); |
148 |
//****************************************************************************************************/ |
//Double_t u21 = Full_(1,0); |
149 |
//****************************************************************************************************/ |
|
150 |
|
Double_t u13 = Full_(0,0); |
151 |
//void OrbitalInfo::coefplane(Double_t x1,Double_t y1,Double_t z1,Double_t x2, Double_t y2, Double_t z2){ |
Double_t u23 = -Full_(1,0); |
152 |
// k1 = ((z1/y1)*((x2*y1 - x1*y2)/(z2*y1 - z1*y2)) - x1/y1); |
Double_t u22 = Full_(1,1); |
153 |
// k2 = (x1*y2 - x2*y1)/(z2*y1 - z1*y2); |
Double_t u33 = Full_(2,0); |
154 |
// } |
Double_t u21 = Full_(1,2); |
155 |
|
|
156 |
//Double_t OrbitalInfo::AngBetAxes(Double_t x1,Double_t y1,Double_t z1,Double_t x2, Double_t y2, Double_t z2){ |
Tangazh = a*atan(-u13/u33); |
157 |
// return acos((x1*x2+y1*y2+z1*z2)/sqrt(pow(x1,2)+pow(y1,2)+pow(z1,2))/sqrt(pow(x2,2)+pow(y2,2)+pow(z2,2))); |
Kren = a*atan(-u23/sqrt(1 - pow(u23,2))); |
158 |
// } |
Ryskanie = a*atan(u21/u22); |
159 |
|
|
160 |
//Double_t OrbitalInfo::ValueT(Double_t x1, Double_t y1, Double_t z1, Double_t n1, Double_t n2){ |
return ; |
161 |
// return -(x1+n1*y1+n2*z1)/(1+pow(n1,2)+pow(n2,2)); |
} |
162 |
// } |
|
|
|
|
|
//Double_t OrbitalInfo::AngBetPlan(Double_t x1, Double_t y1, Double_t z1, Double_t n1, Double_t n2){ |
|
|
// return asin((x1+n1*y1+n2*z1)/(sqrt(pow(x1,2)+pow(y1,2)+pow(z1,2))*sqrt(1+pow(n1,2)+pow(n2,2)))); |
|
|
// } |
|
|
|
|
|
void InclinationInfo::TransAngle(Double_t x0, Double_t y0, Double_t z0, Double_t Vx0, Double_t Vy0, Double_t Vz0, Double_t gamar, Double_t ksir, Double_t tetar, Double_t q0, Double_t q1, Double_t q2, Double_t q3){ |
|
|
|
|
|
double_t a = 360/(2*TMath::Pi()); |
|
|
|
|
|
// Points on three axes of Resurs' coordinate system (RCS) |
|
|
Int_t XRCS[3]; Int_t YRCS[3]; Int_t ZRCS[3]; |
|
|
|
|
|
// Angles between our Axes(RCS) and planes of Orbital Coordinate System (OCS); |
|
|
// Double_t AboAa0ZX[3]; |
|
|
// Double_t AboAa0XY[3]; |
|
|
// Double_t AboAa0YZ[3]; |
|
|
|
|
|
// Angles between our Axes(RCS) and Axes of OCS |
|
|
// Double_t AboA0X[3]; |
|
|
// Double_t AboA0Y[3]; |
|
|
// Double_t AboA0Z[3]; |
|
|
|
|
|
//Angles between Proection of our axes on every plane of OCS and axes of it plane. |
|
|
// Double_t AbPoAaAoP0ZX[3]; |
|
|
// Double_t AbPoAaAoP0XY[3]; |
|
|
// Double_t AbPoAaAoP0YZ[3]; |
|
|
|
|
|
XRCS[0] = 1; YRCS[0] = 0; ZRCS[0] = 0; // Points on X-axis RCS. |
|
|
XRCS[1] = 0; YRCS[1] = 1; ZRCS[1] = 0; // Points on Y-axis RCS. |
|
|
XRCS[2] = 0; YRCS[2] = 0; ZRCS[2] = 1; // Points on Z-axis |
|
|
|
|
|
// Transition matrix RCS -> Inertial Coordinate System (ICS) |
|
|
TMatrixD Bij(3,3); |
|
|
Bij(0,0) = cos(tetar)*cos(ksir)-sin(tetar)*sin(gamar)*sin(ksir); |
|
|
Bij(0,1) = -sin(tetar)*cos(gamar); |
|
|
Bij(0,2) = cos(tetar)*sin(ksir)+sin(tetar)*sin(gamar)*cos(ksir); |
|
|
Bij(1,0) = sin(tetar)*cos(ksir)+cos(tetar)*sin(gamar)*sin(ksir); |
|
|
Bij(1,1) = cos(tetar)*cos(gamar); |
|
|
Bij(1,2) = sin(tetar)*sin(ksir)-cos(tetar)*sin(gamar)*cos(ksir); |
|
|
Bij(2,0) = -sin(ksir)*cos(gamar); |
|
|
Bij(2,1) = sin(gamar); |
|
|
Bij(2,2) = cos(ksir)*cos(gamar); |
|
|
|
|
|
//********************************************************************************************/ |
|
|
//*********************** OTHER METHOD OF GETING COORDINATE IN OCS****************************/ |
|
|
//********************************************************************************************/ |
|
|
|
|
|
TMatrixD Pij(3,3); |
|
|
Pij(0,0) = pow(q0,2)+pow(q1,2)-pow(q2,2)-pow(q3,2); |
|
|
Pij(0,1) = 2*(q1*q2+q0*q3); |
|
|
Pij(0,2) = 2*(q1*q3-q0*q2); |
|
|
Pij(1,0) = 2*(q1*q2-q0*q3); |
|
|
Pij(1,1) = pow(q0,2)-pow(q1,2)+pow(q2,2)-pow(q3,2); |
|
|
Pij(1,2) = 2*(q2*q3+q0*q1); |
|
|
Pij(2,0) = 2*(q1*q3+q0*q2); |
|
|
Pij(2,1) = 2*(q2*q3-q0*q1); |
|
|
Pij(2,2) = pow(q0,2)-pow(q1,2)-pow(q2,2)+pow(q3,2); |
|
|
|
|
|
TMatrixD Aij(3,3); |
|
|
// Double_t AbPoAaAoP0ZX_2m[3]; Double_t AboAa0ZX_2m[3]; |
|
|
// Double_t AbPoAaAoP0XY_2m[3]; Double_t AboAa0XY_2m[3]; |
|
|
// Double_t AbPoAaAoP0YZ_2m[3]; Double_t AboAa0YZ_2m[3]; |
|
|
|
|
|
Double_t C1 = y0*Vz0 - z0*Vy0; |
|
|
Double_t C2 = z0*Vx0 - x0*Vz0; |
|
|
Double_t C3 = x0*Vy0 - y0*Vx0; |
|
|
Double_t C = sqrt(pow(C1,2) + pow(C2,2) + pow(C3,2)); |
|
|
Double_t V0 = sqrt(pow(Vx0,2)+pow(Vy0,2) + pow(Vz0,2)); |
|
|
//cout<<"C1= "<<(Vy0*C3-Vz0*C2)/(V0*C)<<", C2= "<<(Vz0*C1-Vx0*C3)/(V0*C)<<", C3="<<(Vx0*C2-Vy0*C1)/(V0*C)<<"\n"; |
|
|
Double_t R0 = sqrt(pow(x0,2)+pow(y0,2) + pow(z0,2)); |
|
|
Aij(0,0) = /*(C2*z0-C3*y0)/(C*R0);/*/Vx0/V0; |
|
|
Aij(0,1) = C1/C; |
|
|
Aij(0,2) = /*x0/R0;/*/(Vy0*C3-Vz0*C2)/(V0*C); |
|
|
Aij(1,0) = /*(C3*x0-C1*z0)/(C*R0);/*/Vy0/V0; |
|
|
Aij(1,1) = C2/C; |
|
|
Aij(1,2) = /*y0/R0;/*/(Vz0*C1-Vx0*C3)/(V0*C); |
|
|
Aij(2,0) = /*(C1*y0-C2*x0)/(C*R0);/*/Vz0/V0; |
|
|
Aij(2,1) = C3/C; |
|
|
Aij(2,2) = /*x0/R0;/*/(Vx0*C2-Vy0*C1)/(V0*C); |
|
|
Aij.Invert(); |
|
|
// Double_t Xnew = Aij(0,0)*(X-x0)+Aij(0,1)*(Y-y0)+Aij(0,2)*(Z-z0); |
|
|
// Double_t Ynew = Aij(1,0)*(X-x0)+Aij(1,1)*(Y-y0)+Aij(1,2)*(Z-z0); |
|
|
// Double_t Znew = Aij(2,0)*(X-x0)+Aij(2,1)*(Y-y0)+Aij(2,2)*(Z-z0); |
|
|
|
|
|
/*********************************************************************************************/ |
|
|
|
|
|
Double_t Azim = atan(R0*C3/(y0*C1-x0*C2)); |
|
|
Double_t Sa = sin(Azim); Double_t Ca = cos(Azim); |
|
|
Double_t R1 = sqrt(pow(x0,2)+pow(y0,2)); |
|
|
Double_t Sb = z0/R0; Double_t Cb = R1/R0; |
|
|
Double_t Sl = y0/R1; Double_t Cl = x0/R1; |
|
|
|
|
|
TMatrixD Tij(3,3); |
|
|
Tij(0,0) = -Cl*Sb*Ca-Sa*Sl; |
|
|
Tij(0,1) = Sa*Cl-Ca*Sl*Sb; |
|
|
Tij(0,2) = Ca*Cb; |
|
|
Tij(1,0) = Ca*Sl-Sa*Sb*Cl; |
|
|
Tij(1,1) = -Sa*Sl*Sb-Ca*Cl; |
|
|
Tij(1,2) = Sa*Cb; |
|
|
Tij(2,0) = Cb*Cl; |
|
|
Tij(2,1) = Cb*Sl; |
|
|
Tij(2,2) = Sb; |
|
|
//cout<<"Tij\n"; |
|
|
//cout<<Tij(0,0)<<" "<<Tij(0,1)<<" "<<Tij(0,2)<<"\n"; |
|
|
//cout<<Tij(1,0)<<" "<<Tij(1,1)<<" "<<Tij(1,2)<<"\n"; |
|
|
//cout<<Tij(2,0)<<" "<<Tij(2,1)<<" "<<Tij(2,2)<<"\n"; |
|
|
//cout<<"Aij\n"; |
|
|
|
|
|
|
|
|
//TMatrixD Mij = new TMatrixD(Otestij,TMatrixD::kMult,Oij); |
|
|
//Mij=Pij*Bij; |
|
|
//Mij=Otestij*Oij; |
|
|
//Mij*=Tij; |
|
|
|
|
|
//cout<<Mij(0,0)<<" "<<Mij(0,1)<<" "<<Mij(0,2)<<"\n"; |
|
|
//cout<<Mij(1,0)<<" "<<Mij(1,1)<<" "<<Mij(1,2)<<"\n"; |
|
|
//cout<<Mij(2,0)<<" "<<Mij(2,1)<<" "<<Mij(2,2)<<"\n"; |
|
|
// Generaly idea is to Get orientation of Satellite as angles between RCS axes and all axes and planes of OCS |
|
|
// We will get equations of RCS axes in ICS |
|
|
|
|
|
// equation of line in space is (X-X0)/(X1-X0)=(Y-Y0)/(Y1-Y0)=(Z-Z0)/(Z1-Z0), where |
|
|
// (X0,Y0,Z0)=(0,0,0) and (X1,Y1,Z1)=(XRCS[i],YRCS[i],ZRCS[i]) here i is may be x, y or z |
|
|
// for us this equation is X/X1=Y/Y1=Z/Z1; |
|
|
|
|
|
// We need in equation of line in spase for OCS also. For it take next points (Vx0,Vy0,Vz0) on X-axis |
|
|
// and (x0,y0,z0) on Z-axis. |
|
|
// Double_t XonX = Vx0; Double_t YonX = Vy0; Double_t ZonX = Vz0; |
|
|
// Double_t XonZ = x0; Double_t YonZ = y0; Double_t ZonZ = z0; |
|
|
//after this we have equations for Z- and X axis OCS it's |
|
|
// X/XonX=Y/YonX=Z/ZonX for X-axis and X/XonZ=Y/YonZ=Z/ZonZ for Z-axis |
|
|
|
|
|
// Next we need in equation of plane 0xz of OCS: Generaly equation is Ax+By+Cz+D=0; |
|
|
// But all our plan pass through (0,0,0) and D=0 then we can write equation in naxt kind: |
|
|
// x+(B/A)y+(C/A)z=0; => x+k1*y+k2*z=0; |
|
|
// Double_t k1y; |
|
|
// Double_t k2y; |
|
|
//cout<<YonX<<" "<<ZonX*YonZ<<" "<<ZonZ*YonX<<"\n"; |
|
|
// if ((YonZ != 0) && (ZonX*YonZ != ZonZ*YonX)){ |
|
|
// coefplane(XonX,YonX,ZonX,XonZ,YonZ,ZonZ); |
|
|
//coefplane(1,0.00001,0.00001,0,0,1); |
|
|
// k1y = k1; k2y = k2; |
|
|
// } else {k1y = 1; k2y = YonX/ZonX; cout<<"ELSE";} |
|
|
//cout<<"P1= "<<(Vx0+k1y*Vy0+k2y*Vz0)<<"\n"; |
|
|
//cout<<"P2= "<<(x0+k1y*y0+k2y*z0)<<"\n"; |
|
|
//cout<<"P3= "<<(Vx0+k1y*Vy0+k2y*Vz0)<<"\n"; |
|
|
//cout<<"k1y= "<<k1y<<", k2y= "<<k2y<<"\n"; |
|
|
// int uchu; |
|
|
// cin>>uchu; |
|
|
|
|
|
// Next we must find equation of Y-axis of OCS. For it we must find equation of line passing through |
|
|
// point (0,0,0) perpendicularly by 0ZX plane of OCS |
|
|
// generaly equation is: |
|
|
// x = x0 + At; |
|
|
// y = y0 + Bt; |
|
|
// z = z0 + Ct; |
|
|
// But we have point (x0,y0,z0) is (0,0,0) and other plane equation. For us it's: |
|
|
// x = t; |
|
|
// y = (B/A)*t => y = (B/A)*x; or x/x1=y/y1=z/z1 where |
|
|
// z = (C/A)*t z = (C/A)*x; y1=B/A,z1=C/A and x1 we must find |
|
|
|
|
|
// if ((YonX<0 && ZonZ>0)||(YonX>0 && ZonZ<0)) XonY = 1; |
|
|
// if ((YonX>0 && ZonZ>0)||(YonX>0 && ZonZ<0)) XonY = 1; |
|
|
// Double_t XonY = 1; Double_t YonY = -k1; Double_t ZonY = k2; |
|
|
|
|
|
// coefficients for equations of 0XY plane of OCS. |
|
|
// coefplane(XonX,YonX,ZonX,XonY,YonY,ZonY); |
|
|
// Double_t k1XY = k1; Double_t k2XY = k2; |
|
|
//cout<<"P3= "<<(XonY+k1XY*YonY+k2XY*ZonY)<<"\n"; |
|
|
//cout<<"P3= "<<(XonX+k1XY*YonX+k2XY*ZonX)<<"\n"; |
|
|
//cout<<"k1XY= "<<k1XY<<", k2XY= "<<k2XY<<"\n"; |
|
|
// coefficients for equations of 0XY plane of OCS. |
|
|
// coefplane(XonY,YonY,ZonY,XonZ,YonZ,ZonZ); |
|
|
// Double_t k1YZ = k1; Double_t k2YZ = k2; |
|
|
//cout<<"P4= "<<(XonY+k1YZ*YonY+k2YZ*ZonY)<<"\n"; |
|
|
//cout<<"P4= "<<(XonZ+k1YZ*YonZ+k2YZ*ZonZ)<<"\n"; |
|
|
//cout<<"k1YZ= "<<k1YZ<<", k2YZ= "<<k2YZ<<"\n"; |
|
|
|
|
|
// TMatrixD Gij(3,3); |
|
|
Pij.Invert(); |
|
|
// Gij=Pij*Aij; |
|
|
//Gij.Invert(); |
|
|
//XXRCS = Gij(0,0); XYRCS = Gij(0,1); XZRCS = Gij(2,0); |
|
|
//YXRCS = Gij(1,0); YYRCS = Gij(1,1); YZRCS = Gij(2,1); |
|
|
//ZXRCS = Gij(2,0); ZYRCS = Gij(1,2); ZZRCS = Gij(2,2); |
|
|
|
|
|
//cout<<"XXRCS= "<<XXRCS<<", YXRCS= "<<YXRCS<<", ZXRCS= "<<ZXRCS<<"\n"; |
|
|
//cout<<"XYRCS= "<<XYRCS<<", YYRCS= "<<YYRCS<<", ZYRCS= "<<ZYRCS<<"\n"; |
|
|
//cout<<"XZRCS= "<<XZRCS<<", YZRCS= "<<YZRCS<<", ZZRCS= "<<ZZRCS<<"\n"; |
|
|
//int yuip; |
|
|
//cin>>yuip; |
|
|
|
|
|
for (Int_t i = 0; i<3; i++) { |
|
|
// Values of points on axes of RCS in ICS |
|
|
Double_t XICS = Pij(0,0)*XRCS[i] + Pij(0,1)*YRCS[i] + Pij(0,2)*ZRCS[i];// + x0; |
|
|
Double_t YICS = Pij(1,0)*XRCS[i] + Pij(1,1)*YRCS[i] + Pij(1,2)*ZRCS[i];// + y0; |
|
|
Double_t ZICS = Pij(2,0)*XRCS[i] + Pij(2,1)*YRCS[i] + Pij(2,2)*ZRCS[i];// + z0; |
|
|
//cout<<"XICS= "<<XICS<<", YICS= "<<YICS<<", ZICS= "<<ZICS<<"\n"; |
|
|
//cout<<"XICS= "<<XICS<<", YICS= "<<YICS<<", ZICS= "<<ZICS<<"\n"; |
|
|
//int oiu; |
|
|
//cin>>oiu; |
|
|
|
|
|
// Angles between our Axis and Z,Y,X-axes of OCS |
|
|
// AboA0Z[i] = AngBetAxes(XICS,YICS,ZICS,XonZ,YonZ,ZonZ); |
|
|
// AboA0Y[i] = AngBetAxes(XICS,YICS,ZICS,XonY,YonY,ZonY); |
|
|
// AboA0X[i] = AngBetAxes(XICS,YICS,ZICS,XonX,YonX,ZonX); |
|
|
|
|
|
//Find coordinate of our point in OCS |
|
|
// Double_t XOCS; |
|
|
// Double_t YOCS; |
|
|
// Double_t ZOCS; |
|
|
// Double_t T = ValueT(XICS,YICS,ZICS,k1y,k2y); |
|
|
// Double_t XonXZ = XICS + T; |
|
|
// Double_t YonXZ = YICS + k1y*T; |
|
|
// Double_t ZonXZ = ZICS + k2y*T; |
|
|
// Double_t R = T*sqrt(1+pow(k1y,2)+pow(k2y,2)); |
|
|
// YOCS = R; |
|
|
//cout<<"CHECK= "<<XonXZ+k1y*YonXZ+k2y*ZonXZ<<"\n"; |
|
|
// T = ValueT(XICS,YICS,ZICS,k1XY,k2XY); |
|
|
// Double_t XonXY = XICS + T; |
|
|
// Double_t YonXY = YICS + k1XY*T; |
|
|
// Double_t ZonXY = ZICS + k2XY*T; |
|
|
// R = T*sqrt(1+pow(k1XY,2)+pow(k2XY,2)); |
|
|
// ZOCS = R; |
|
|
//cout<<"CHECK= "<<XonXY+k1XY*YonXY+k2XY*ZonXY<<"\n"; |
|
|
// T = ValueT(XICS,YICS,ZICS,k1YZ,k2YZ); |
|
|
// Double_t XonYZ = XICS + T; |
|
|
// Double_t YonYZ = YICS + k1YZ*T; |
|
|
// Double_t ZonYZ = ZICS + k2YZ*T; |
|
|
// R = T*sqrt(1+pow(k1YZ,2)+pow(k2YZ,2)); |
|
|
// XOCS = R; |
|
|
//cout<<"CHECK= "<<XonYZ+k1YZ*YonYZ+k2YZ*ZonYZ<<"\n"; |
|
|
//cout<<"XOCS= "<<XOCS<<", YOCS= "<<YOCS<<", ZOCS="<<ZOCS<<"\n"; |
|
|
|
|
|
//Double_t AbPoAaAoP0ZX_2m[3]; Double_t AboAa0ZX_2m[3]; |
|
|
//Double_t AbPoAaAoP0XY_2m[3]; Double_t AboAa0XY_2m[3]; |
|
|
//Double_t AbPoAaAoP0YZ_2m[3]; Double_t AboAa0YZ_2m[3]; |
|
|
|
|
|
/* C1 = YICS*Vz0 - ZICS*Vy0; |
|
|
C2 = ZICS*Vx0 - XICS*Vz0; |
|
|
C3 = XICS*Vy0 - YICS*Vx0; |
|
|
C = sqrt(pow(C1,2) + pow(C2,2) + pow(C3,2)); |
|
|
V0 = sqrt(pow(Vx0,2)+pow(Vy0,2) + pow(Vz0,2)); |
|
|
Aij(0,0) = Vx0/V0; |
|
|
Aij(0,1) = C1/C; |
|
|
Aij(0,2) = (Vy0*C3-Vz0*C2)/(V0*C); |
|
|
Aij(1,0) = Vy0/V0; |
|
|
Aij(1,1) = C2/C; |
|
|
Aij(1,2) = (Vz0*C1-Vx0*C3)/(V0*C); |
|
|
Aij(2,0) = Vz0/V0; |
|
|
Aij(2,1) = C3/C; |
|
|
Aij(2,2) = (Vx0*C2-Vy0*C1)/(V0*C); |
|
|
Aij.Invert(); |
|
|
*/ |
|
|
//2th method of getting XOCS,YOCS,ZOCS |
|
|
Double_t XOCS_2m = Aij(0,0)*(XICS)+Aij(0,1)*(YICS)+Aij(0,2)*(ZICS); |
|
|
Double_t YOCS_2m = Aij(1,0)*(XICS)+Aij(1,1)*(YICS)+Aij(1,2)*(ZICS); |
|
|
Double_t ZOCS_2m = Aij(2,0)*(XICS)+Aij(2,1)*(YICS)+Aij(2,2)*(ZICS); |
|
|
|
|
|
if (i == 0) {XXRCS = XOCS_2m; YXRCS = YOCS_2m; ZXRCS = ZOCS_2m;} |
|
|
if (i == 1) {XYRCS = XOCS_2m; YYRCS = YOCS_2m; ZYRCS = ZOCS_2m;} |
|
|
if (i == 2) {XZRCS = XOCS_2m; YZRCS = YOCS_2m; ZZRCS = ZOCS_2m;} |
|
|
|
|
|
//cout<<"XOCS_2m= "<<XOCS_2m<<", YOCS_2m= "<<YOCS_2m<<", ZOCS= "<<ZOCS_2m<<"\n"; |
|
|
//int alsdj; |
|
|
//cin>>alsdj; |
|
|
|
|
|
//Find Angles between RCS-axes and OCS-planes; |
|
|
// AboAa0ZX[i] = AngBetPlan(XICS,YICS,ZICS,k1y,k2y); |
|
|
// AboAa0XY[i] = AngBetPlan(XICS,YICS,ZICS,k1XY,k2XY); |
|
|
// AboAa0YZ[i] = AngBetPlan(XICS,YICS,ZICS,k1YZ,k2YZ); |
|
|
//AbPoAaAoP0ZX[i] = atan(ZOCS/XOCS); AbPoAaAoP0ZX_2m[i] = atan(ZOCS_2m/XOCS_2m); |
|
|
//AbPoAaAoP0XY[i] = atan(XOCS/YOCS); AbPoAaAoP0XY_2m[i] = atan(YOCS_2m/XOCS_2m); |
|
|
//AbPoAaAoP0YZ[i] = atan(ZOCS/YOCS); AbPoAaAoP0YZ_2m[i] = atan(ZOCS_2m/YOCS_2m); |
|
|
|
|
|
// if (XOCS_2m>0) AbPoAaAoP0ZX_2m[i] = atan(ZOCS_2m/XOCS_2m); |
|
|
// if ((XOCS_2m<0)&&(ZOCS_2m>=0)) AbPoAaAoP0ZX_2m[i] = 180/a + atan(ZOCS_2m/XOCS_2m); |
|
|
// if ((XOCS_2m<0)&&(ZOCS_2m<0)) AbPoAaAoP0ZX_2m[i] = atan(ZOCS_2m/XOCS_2m) - 180/a; |
|
|
// if ((XOCS_2m=0)&&(ZOCS_2m>0)) AbPoAaAoP0ZX_2m[i] = 90/a; |
|
|
// if ((XOCS_2m=0)&&(ZOCS_2m<0)) AbPoAaAoP0ZX_2m[i] = -90/a; |
|
|
// if ((XOCS_2m=0)&&(ZOCS_2m=0)) AbPoAaAoP0ZX_2m[i] = 0; |
|
|
|
|
|
// if (XOCS_2m>0) AbPoAaAoP0XY_2m[i] = atan(YOCS_2m/XOCS_2m); |
|
|
// if ((XOCS_2m<0)&&(YOCS_2m>=0)) AbPoAaAoP0XY_2m[i] = 180/a + atan(YOCS_2m/XOCS_2m); |
|
|
// if ((XOCS_2m<0)&&(YOCS_2m<0)) AbPoAaAoP0XY_2m[i] = atan(YOCS_2m/XOCS_2m) - 180/a; |
|
|
// if ((XOCS_2m=0)&&(YOCS_2m>0)) AbPoAaAoP0XY_2m[i] = 90/a; |
|
|
// if ((XOCS_2m=0)&&(YOCS_2m<0)) AbPoAaAoP0XY_2m[i] = -90/a; |
|
|
// if ((XOCS_2m=0)&&(YOCS_2m=0)) AbPoAaAoP0XY_2m[i] = 0; |
|
|
|
|
|
// if (YOCS_2m>0) AbPoAaAoP0YZ_2m[i] = atan(ZOCS_2m/YOCS_2m); |
|
|
// if ((YOCS_2m<0)&&(ZOCS_2m>=0)) AbPoAaAoP0YZ_2m[i] = 180/a + atan(ZOCS_2m/YOCS_2m); |
|
|
// if ((YOCS_2m<0)&&(ZOCS_2m<0)) AbPoAaAoP0YZ_2m[i] = atan(ZOCS_2m/YOCS_2m) - 180/a; |
|
|
// if ((YOCS_2m=0)&&(ZOCS_2m>0)) AbPoAaAoP0YZ_2m[i] = 90/a; |
|
|
// if ((YOCS_2m=0)&&(ZOCS_2m<0)) AbPoAaAoP0YZ_2m[i] = -90/a; |
|
|
// if ((YOCS_2m=0)&&(ZOCS_2m=0)) AbPoAaAoP0YZ_2m[i] = 0; |
|
|
|
|
|
//if (i==0) cout<<"AbPoAaAoP0ZX_2m[i]"<<AbPoAaAoP0ZX_2m[i]<<"\n"; |
|
|
//cout<<"XOCS/ZOCS= "<<XOCS_2m/ZOCS_2m<<"\n"; |
|
|
//cout<<"Atan= "<<AbPoAaAoP0ZX_2m[i]<<"\n"; |
|
|
//cout<<"atan= "<<a*atan(0.2); |
|
|
//int GJH; |
|
|
//cin>>GJH; |
|
|
|
|
|
} |
|
|
Double_t u13 = XYRCS/*Gij(0,2)*/; Double_t u33 = ZYRCS/*Gij(2,2)*/; |
|
|
Double_t u23 = YYRCS/*Gij(1,2)*/; Double_t u21 = YZRCS/*Gij(1,0)*/; |
|
|
Double_t u22 = YXRCS/*Gij(1,1)*/; |
|
|
Tangazh = a*atan(-u13/u33); |
|
|
//cout<<"u13= "<<u13<<", u33= "<<u33<<"\n"; |
|
|
Kren = a*atan(-u23/sqrt(1 - pow(u23,2))); |
|
|
//Ryskanie = a*atan(u21/u22); |
|
|
|
|
|
if (u22>0) Ryskanie = a*atan(u21/u22); |
|
|
if ((u22<0)&&(u21>=0)) Ryskanie = 180 + a*atan(u21/u22); |
|
|
if ((u22<0)&&(u21<0)) Ryskanie = a*atan(u21/u22) - 180; |
|
|
if ((u22=0)&&(u21>0)) Ryskanie = 90; |
|
|
if ((u22=0)&&(u21<0)) Ryskanie = -90; |
|
|
if ((u22=0)&&(u21=0)) Ryskanie = 0; |
|
|
|
|
|
// AXrXo = AboA0X[0]*a; AXrZXo = AboAa0ZX[0]*a; ApXrZXoZ = AbPoAaAoP0ZX[0]*a; |
|
|
// AXrYo = AboA0Y[0]*a; AXrXYo = AboAa0XY[0]*a; ApXrXYoZ = AbPoAaAoP0XY[0]*a; |
|
|
// AXrZo = AboA0Z[0]*a; AXrYZo = AboAa0YZ[0]*a; ApXrYZoZ = AbPoAaAoP0YZ[0]*a; |
|
|
// AYrXo = AboA0X[1]*a; AYrZXo = AboAa0ZX[1]*a; ApYrZXoZ = AbPoAaAoP0ZX[1]*a; |
|
|
// AYrYo = AboA0Y[1]*a; AYrXYo = AboAa0XY[1]*a; ApYrXYoZ = AbPoAaAoP0XY[1]*a; |
|
|
// AYrZo = AboA0Z[1]*a; AYrYZo = AboAa0YZ[1]*a; ApYrYZoZ = AbPoAaAoP0YZ[1]*a; |
|
|
// AZrXo = AboA0X[2]*a; AZrZXo = AboAa0ZX[2]*a; ApZrZXoZ = AbPoAaAoP0ZX[2]*a; |
|
|
// AZrYo = AboA0Y[2]*a; AZrXYo = AboAa0XY[2]*a; ApZrXYoZ = AbPoAaAoP0XY[2]*a; |
|
|
// AZrZo = AboA0Z[2]*a; AZrYZo = AboAa0YZ[2]*a; ApZrYZoZ = AbPoAaAoP0YZ[2]*a; |
|
|
|
|
|
// AXrZXo_2m = AboAa0ZX_2m[0]*a; ApXrZXoZ_2m = AbPoAaAoP0ZX_2m[0]*a; |
|
|
// AXrXYo_2m = AboAa0XY_2m[0]*a; ApXrXYoZ_2m = AbPoAaAoP0XY_2m[0]*a; |
|
|
// AXrYZo_2m = AboAa0YZ_2m[0]*a; ApXrYZoZ_2m = AbPoAaAoP0YZ_2m[0]*a; |
|
|
// AYrZXo_2m = AboAa0ZX_2m[1]*a; ApYrZXoZ_2m = AbPoAaAoP0ZX_2m[1]*a; |
|
|
// AYrXYo_2m = AboAa0XY_2m[1]*a; ApYrXYoZ_2m = AbPoAaAoP0XY_2m[1]*a; |
|
|
// AYrYZo_2m = AboAa0YZ_2m[1]*a; ApYrYZoZ_2m = AbPoAaAoP0YZ_2m[1]*a; |
|
|
// AZrZXo_2m = AboAa0ZX_2m[2]*a; ApZrZXoZ_2m = AbPoAaAoP0ZX_2m[2]*a; |
|
|
// AZrXYo_2m = AboAa0XY_2m[2]*a; ApZrXYoZ_2m = AbPoAaAoP0XY_2m[2]*a; |
|
|
// AZrYZo_2m = AboAa0YZ_2m[2]*a; ApZrYZoZ_2m = AbPoAaAoP0YZ_2m[2]*a; |
|
|
|
|
|
/* |
|
|
//Int_t Y=2;Int_t X=2;Int_t Z=4;Int_t Vx=5;Int_t Vz=9;Int_t Vy=5; |
|
|
|
|
|
Double_t X[2]; Double_t Y[2]; Double_t Z[2]; Double_t Vx[2]; Double_t Vy[2]; Double_t Vz[2]; |
|
|
|
|
|
TMatrixD Aij(3,3); |
|
|
TMatrixD Bij(3,3); |
|
|
|
|
|
Bij(0,0) = cos(tetar)*cos(ksir)-sin(tetar)*sin(gamar)*sin(ksir); |
|
|
Bij(0,1) = -sin(tetar)*cos(gamar); |
|
|
Bij(0,2) = cos(tetar)*sin(ksir)+sin(tetar)*sin(gamar)*cos(ksir); |
|
|
Bij(1,0) = sin(tetar)*cos(ksir)+cos(tetar)*sin(gamar)*sin(ksir); |
|
|
Bij(1,1) = cos(tetar)*cos(gamar); |
|
|
Bij(1,2) = sin(tetar)*sin(ksir)-cos(tetar)*sin(gamar)*cos(ksir); |
|
|
Bij(2,0) = -sin(ksir)*cos(gamar); |
|
|
Bij(2,1) = sin(gamar); |
|
|
Bij(2,2) = cos(ksir)*cos(gamar); |
|
|
|
|
|
Double_t C1 = Y[0]*Vz[0] - Z[0]*Vy[0]; |
|
|
Double_t C2 = Z[0]*Vx[0] - X[0]*Vz[0]; |
|
|
Double_t C3 = X[0]*Vy[0] - Y[0]*Vx[0]; |
|
|
Double_t C = sqrt(pow(C1,2) + pow(C2,2) + pow(C3,2)); |
|
|
Double_t V0 = sqrt(pow(Vx0,2)+pow(Vy0,2) + pow(Vz0,2)); |
|
|
Aij(0,0) = Vx0/V0; |
|
|
Aij(0,1) = C1/C; |
|
|
Aij(0,2) = (Vy0*C3-Vz0*C2)/(V0*C); |
|
|
Aij(1,0) = Vy0/V0; |
|
|
Aij(1,1) = C2/C; |
|
|
Aij(1,2) = (Vz0*C1-Vx0*C3)/(V0*C); |
|
|
Aij(2,0) = Vz0/V0; |
|
|
Aij(2,1) = C3/C; |
|
|
Aij(2,2) = (Vx0*C2-Vy0*C1)/(V0*C); |
|
|
Aij.Invert(); |
|
|
Double_t Xnew = Aij(0,0)*(X-x0)+Aij(0,1)*(Y-y0)+Aij(0,2)*(Z-z0); |
|
|
Double_t Ynew = Aij(1,0)*(X-x0)+Aij(1,1)*(Y-y0)+Aij(1,2)*(Z-z0); |
|
|
Double_t Znew = Aij(2,0)*(X-x0)+Aij(2,1)*(Y-y0)+Aij(2,2)*(Z-z0); |
|
|
*/ |
|
|
//A21 = NewTetar; |
|
|
//A22 = NewGamar; |
|
|
//A23 = NewKsir; |
|
|
|
|
|
return ; |
|
|
} |
|
|
|
|