/[PAMELA software]/quicklook/SatelliteInclination/src/InclinationInfo.cpp
ViewVC logotype

Contents of /quicklook/SatelliteInclination/src/InclinationInfo.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.1.1.1 - (show annotations) (download) (vendor branch)
Thu Feb 8 00:49:35 2007 UTC (17 years, 9 months ago) by cafagna
Branch: first
CVS Tags: v1r0
Changes since 1.1: +0 -0 lines
Error occurred while calculating annotation data.
Firse release of the Satellite inclination quicklook

1 /***************************************************************************
2 * Copyright (C) 2006 by pamelaprod *
3 * pamelaprod@P1.pamela *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
19 ***************************************************************************/
20 #include <InclinationInfo.h>
21 #include <TMath.h>
22 #include "TMatrixD.h"
23
24 using namespace std;
25
26 Quaternions::Quaternions()
27 : InclinationInfoItem()
28 {
29 }
30
31
32 Quaternions::~Quaternions()
33 {
34 }
35
36 InclinationInfo::InclinationInfo()
37 : TObject()
38 {
39 }
40
41 InclinationInfo::~InclinationInfo()
42 {
43 }
44
45 short int Sign_1(double_t a, Int_t b){
46 if(a>0){b=1;}
47 if(a<0){b=-1;}
48 else{b=0;}
49 return b;
50 }
51
52 void InclinationInfo::QuaternionstoAngle(Quaternions Qua){
53
54 double_t a11 = pow(Qua.quat[0][0],2.)+pow(Qua.quat[0][1],2.)-pow(Qua.quat[0][2],2.)-pow(Qua.quat[0][3],2.);
55 double_t a12 = 2*(Qua.quat[0][1]*Qua.quat[0][2]+Qua.quat[0][0]*Qua.quat[0][3]);
56 double_t a13 = 2*(Qua.quat[0][1]*Qua.quat[0][3]-Qua.quat[0][0]*Qua.quat[0][2]);
57 double_t a21 = 2*(Qua.quat[0][1]*Qua.quat[0][2]-Qua.quat[0][0]*Qua.quat[0][3]);
58 double_t a22 = pow(Qua.quat[0][0],2.)+pow(Qua.quat[0][2],2.)-pow(Qua.quat[0][1],2.)-pow(Qua.quat[0][3],2.);
59 double_t a23 = 2*(Qua.quat[0][2]*Qua.quat[0][3]+Qua.quat[0][0]*Qua.quat[0][1]);
60 double_t a31 = 2*(Qua.quat[0][1]*Qua.quat[0][3]+Qua.quat[0][0]*Qua.quat[0][2]);
61 double_t a32 = 2*(Qua.quat[0][2]*Qua.quat[0][3]-Qua.quat[0][0]*Qua.quat[0][1]);
62 double_t a33 = pow(Qua.quat[0][0],2.)+pow(Qua.quat[0][3],2.)-pow(Qua.quat[0][1],2.)-pow(Qua.quat[0][2],2.);
63 double_t a = 360/(2*TMath::Pi());
64 double_t eksi = 0.0000001;
65 double_t eteta = 0.0000001;
66 double_t ksteta = a22*a22/(a12*a12+a22*a22);
67 double_t ksksi = a33*a33/(a33*a33+a31*a31);
68
69 Int_t kj1;
70 if (a33<0){kj1=1;
71 } else {kj1=0;};
72 Int_t kj2;
73 if (ksksi>eksi){kj2=1;
74 } else {kj2=0;};
75 Int_t kj3;
76 if (ksksi<=eksi){kj3=1;
77 } else {kj3=0;};
78 Int_t kj4;
79 if (a22<0){kj4=1;
80 } else {kj4=0;};
81 Int_t kj5;
82 if (ksteta>eteta){kj5=1;
83 } else {kj5=0;};
84 Int_t kj6;
85 if (ksteta<=eteta){kj6=1;
86 } else {kj6=0;};
87 if (abs((int)a32)>1){exit(1);};
88 Int_t fr;
89
90 Double_t gamar = -atan(a32/sqrt(1-pow(a32,2.)));
91 Double_t ksir = (-atan(a31/a33)-TMath::Pi()*kj1*Sign_1(a31, fr))*kj2-0.5*TMath::Pi()*kj3*Sign_1(a31, fr);
92 Double_t tetar = -(-atan(a12/a22)-TMath::Pi()*kj4*Sign_1(a12, fr))*kj5+0.5*TMath::Pi()*kj6*Sign_1(a12, fr);
93 // if (gamar<0){A11=gamar*a+360;}else{A11=gamar*a;};
94 // if (ksir<0){A11=ksir*a+360;}else{A11=ksir*a;};
95 // if (tetar<0){A13=tetar*a+360;}else{A13=tetar*a;};
96
97 // gamar = acos(pow(Qua.quat[0][0],2.)+pow(Qua.quat[0][3],2.)-pow(Qua.quat[0][1],2.)-pow(Qua.quat[0][2],2.));
98 // tetar = atan((Qua.quat[0][2]*Qua.quat[0][3]+Qua.quat[0][0]*Qua.quat[0][2])/(Qua.quat[0][2]*Qua.quat[0][3]+Qua.quat[0][1]*Qua.quat[0][0]));
99 // ksir = atan((Qua.quat[0][1]*Qua.quat[0][3]-Qua.quat[0][0]*Qua.quat[0][2])/(Qua.quat[0][2]*Qua.quat[0][3]-Qua.quat[0][1]*Qua.quat[0][0]));
100
101
102 A13=tetar*a;
103 A12=ksir*a;
104 A11=gamar*a;
105
106 return ;
107 }
108
109 /******************************************************************************************************************/
110 /******************************************************************************************************************/
111 //********************* ***************************************************************/
112 //********************* COORDINATE SYSTEMS ***************************************************************/
113 //********************* ***************************************************************/
114 //*****************************************************************************************************************/
115 //*****************************************************************************************************************/
116 //
117 // ZISK
118 // +
119 // / \ YOSK ZOSK (Directed by Radius)
120 // | _ _.
121 // | |\ /|
122 // | \ /
123 // | \ /
124 // |.__..__ \ /
125 // Orbit _._.***| **.\/_ XOSK (Directed by velocity)
126 // .* | (X0,Y0,Z0) **--.___\
127 // _** | / *. /
128 // .* | * *
129 // * ..****|***.. / R *
130 // .* | .*.
131 // .* | / *.
132 // * EARTH | / * YISK
133 // * | /_ _ _*_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\
134 // * / * /
135 // * / .*
136 // *. / .*
137 // **/*******
138 // /
139 // /
140 // /
141 // /
142 // /
143 // /
144 // |/
145 // *--
146 // XISK
147 //
148 //****************************************************************************************************/
149 //****************************************************************************************************/
150
151 //void OrbitalInfo::coefplane(Double_t x1,Double_t y1,Double_t z1,Double_t x2, Double_t y2, Double_t z2){
152 // k1 = ((z1/y1)*((x2*y1 - x1*y2)/(z2*y1 - z1*y2)) - x1/y1);
153 // k2 = (x1*y2 - x2*y1)/(z2*y1 - z1*y2);
154 // }
155
156 //Double_t OrbitalInfo::AngBetAxes(Double_t x1,Double_t y1,Double_t z1,Double_t x2, Double_t y2, Double_t z2){
157 // return acos((x1*x2+y1*y2+z1*z2)/sqrt(pow(x1,2)+pow(y1,2)+pow(z1,2))/sqrt(pow(x2,2)+pow(y2,2)+pow(z2,2)));
158 // }
159
160 //Double_t OrbitalInfo::ValueT(Double_t x1, Double_t y1, Double_t z1, Double_t n1, Double_t n2){
161 // return -(x1+n1*y1+n2*z1)/(1+pow(n1,2)+pow(n2,2));
162 // }
163
164 //Double_t OrbitalInfo::AngBetPlan(Double_t x1, Double_t y1, Double_t z1, Double_t n1, Double_t n2){
165 // return asin((x1+n1*y1+n2*z1)/(sqrt(pow(x1,2)+pow(y1,2)+pow(z1,2))*sqrt(1+pow(n1,2)+pow(n2,2))));
166 // }
167
168 void InclinationInfo::TransAngle(Double_t x0, Double_t y0, Double_t z0, Double_t Vx0, Double_t Vy0, Double_t Vz0, Double_t gamar, Double_t ksir, Double_t tetar, Double_t q0, Double_t q1, Double_t q2, Double_t q3){
169
170 double_t a = 360/(2*TMath::Pi());
171
172 // Points on three axes of Resurs' coordinate system (RCS)
173 Int_t XRCS[3]; Int_t YRCS[3]; Int_t ZRCS[3];
174
175 // Angles between our Axes(RCS) and planes of Orbital Coordinate System (OCS);
176 // Double_t AboAa0ZX[3];
177 // Double_t AboAa0XY[3];
178 // Double_t AboAa0YZ[3];
179
180 // Angles between our Axes(RCS) and Axes of OCS
181 // Double_t AboA0X[3];
182 // Double_t AboA0Y[3];
183 // Double_t AboA0Z[3];
184
185 //Angles between Proection of our axes on every plane of OCS and axes of it plane.
186 // Double_t AbPoAaAoP0ZX[3];
187 // Double_t AbPoAaAoP0XY[3];
188 // Double_t AbPoAaAoP0YZ[3];
189
190 XRCS[0] = 1; YRCS[0] = 0; ZRCS[0] = 0; // Points on X-axis RCS.
191 XRCS[1] = 0; YRCS[1] = 1; ZRCS[1] = 0; // Points on Y-axis RCS.
192 XRCS[2] = 0; YRCS[2] = 0; ZRCS[2] = 1; // Points on Z-axis
193
194 // Transition matrix RCS -> Inertial Coordinate System (ICS)
195 TMatrixD Bij(3,3);
196 Bij(0,0) = cos(tetar)*cos(ksir)-sin(tetar)*sin(gamar)*sin(ksir);
197 Bij(0,1) = -sin(tetar)*cos(gamar);
198 Bij(0,2) = cos(tetar)*sin(ksir)+sin(tetar)*sin(gamar)*cos(ksir);
199 Bij(1,0) = sin(tetar)*cos(ksir)+cos(tetar)*sin(gamar)*sin(ksir);
200 Bij(1,1) = cos(tetar)*cos(gamar);
201 Bij(1,2) = sin(tetar)*sin(ksir)-cos(tetar)*sin(gamar)*cos(ksir);
202 Bij(2,0) = -sin(ksir)*cos(gamar);
203 Bij(2,1) = sin(gamar);
204 Bij(2,2) = cos(ksir)*cos(gamar);
205
206 //********************************************************************************************/
207 //*********************** OTHER METHOD OF GETING COORDINATE IN OCS****************************/
208 //********************************************************************************************/
209
210 TMatrixD Pij(3,3);
211 Pij(0,0) = pow(q0,2)+pow(q1,2)-pow(q2,2)-pow(q3,2);
212 Pij(0,1) = 2*(q1*q2+q0*q3);
213 Pij(0,2) = 2*(q1*q3-q0*q2);
214 Pij(1,0) = 2*(q1*q2-q0*q3);
215 Pij(1,1) = pow(q0,2)-pow(q1,2)+pow(q2,2)-pow(q3,2);
216 Pij(1,2) = 2*(q2*q3+q0*q1);
217 Pij(2,0) = 2*(q1*q3+q0*q2);
218 Pij(2,1) = 2*(q2*q3-q0*q1);
219 Pij(2,2) = pow(q0,2)-pow(q1,2)-pow(q2,2)+pow(q3,2);
220
221 TMatrixD Aij(3,3);
222 // Double_t AbPoAaAoP0ZX_2m[3]; Double_t AboAa0ZX_2m[3];
223 // Double_t AbPoAaAoP0XY_2m[3]; Double_t AboAa0XY_2m[3];
224 // Double_t AbPoAaAoP0YZ_2m[3]; Double_t AboAa0YZ_2m[3];
225
226 Double_t C1 = y0*Vz0 - z0*Vy0;
227 Double_t C2 = z0*Vx0 - x0*Vz0;
228 Double_t C3 = x0*Vy0 - y0*Vx0;
229 Double_t C = sqrt(pow(C1,2) + pow(C2,2) + pow(C3,2));
230 Double_t V0 = sqrt(pow(Vx0,2)+pow(Vy0,2) + pow(Vz0,2));
231 //cout<<"C1= "<<(Vy0*C3-Vz0*C2)/(V0*C)<<", C2= "<<(Vz0*C1-Vx0*C3)/(V0*C)<<", C3="<<(Vx0*C2-Vy0*C1)/(V0*C)<<"\n";
232 Double_t R0 = sqrt(pow(x0,2)+pow(y0,2) + pow(z0,2));
233 Aij(0,0) = /*(C2*z0-C3*y0)/(C*R0);/*/Vx0/V0;
234 Aij(0,1) = C1/C;
235 Aij(0,2) = /*x0/R0;/*/(Vy0*C3-Vz0*C2)/(V0*C);
236 Aij(1,0) = /*(C3*x0-C1*z0)/(C*R0);/*/Vy0/V0;
237 Aij(1,1) = C2/C;
238 Aij(1,2) = /*y0/R0;/*/(Vz0*C1-Vx0*C3)/(V0*C);
239 Aij(2,0) = /*(C1*y0-C2*x0)/(C*R0);/*/Vz0/V0;
240 Aij(2,1) = C3/C;
241 Aij(2,2) = /*x0/R0;/*/(Vx0*C2-Vy0*C1)/(V0*C);
242 Aij.Invert();
243 // Double_t Xnew = Aij(0,0)*(X-x0)+Aij(0,1)*(Y-y0)+Aij(0,2)*(Z-z0);
244 // Double_t Ynew = Aij(1,0)*(X-x0)+Aij(1,1)*(Y-y0)+Aij(1,2)*(Z-z0);
245 // Double_t Znew = Aij(2,0)*(X-x0)+Aij(2,1)*(Y-y0)+Aij(2,2)*(Z-z0);
246
247 /*********************************************************************************************/
248
249 Double_t Azim = atan(R0*C3/(y0*C1-x0*C2));
250 Double_t Sa = sin(Azim); Double_t Ca = cos(Azim);
251 Double_t R1 = sqrt(pow(x0,2)+pow(y0,2));
252 Double_t Sb = z0/R0; Double_t Cb = R1/R0;
253 Double_t Sl = y0/R1; Double_t Cl = x0/R1;
254
255 TMatrixD Tij(3,3);
256 Tij(0,0) = -Cl*Sb*Ca-Sa*Sl;
257 Tij(0,1) = Sa*Cl-Ca*Sl*Sb;
258 Tij(0,2) = Ca*Cb;
259 Tij(1,0) = Ca*Sl-Sa*Sb*Cl;
260 Tij(1,1) = -Sa*Sl*Sb-Ca*Cl;
261 Tij(1,2) = Sa*Cb;
262 Tij(2,0) = Cb*Cl;
263 Tij(2,1) = Cb*Sl;
264 Tij(2,2) = Sb;
265 //cout<<"Tij\n";
266 //cout<<Tij(0,0)<<" "<<Tij(0,1)<<" "<<Tij(0,2)<<"\n";
267 //cout<<Tij(1,0)<<" "<<Tij(1,1)<<" "<<Tij(1,2)<<"\n";
268 //cout<<Tij(2,0)<<" "<<Tij(2,1)<<" "<<Tij(2,2)<<"\n";
269 //cout<<"Aij\n";
270
271
272 //TMatrixD Mij = new TMatrixD(Otestij,TMatrixD::kMult,Oij);
273 //Mij=Pij*Bij;
274 //Mij=Otestij*Oij;
275 //Mij*=Tij;
276
277 //cout<<Mij(0,0)<<" "<<Mij(0,1)<<" "<<Mij(0,2)<<"\n";
278 //cout<<Mij(1,0)<<" "<<Mij(1,1)<<" "<<Mij(1,2)<<"\n";
279 //cout<<Mij(2,0)<<" "<<Mij(2,1)<<" "<<Mij(2,2)<<"\n";
280 // Generaly idea is to Get orientation of Satellite as angles between RCS axes and all axes and planes of OCS
281 // We will get equations of RCS axes in ICS
282
283 // equation of line in space is (X-X0)/(X1-X0)=(Y-Y0)/(Y1-Y0)=(Z-Z0)/(Z1-Z0), where
284 // (X0,Y0,Z0)=(0,0,0) and (X1,Y1,Z1)=(XRCS[i],YRCS[i],ZRCS[i]) here i is may be x, y or z
285 // for us this equation is X/X1=Y/Y1=Z/Z1;
286
287 // We need in equation of line in spase for OCS also. For it take next points (Vx0,Vy0,Vz0) on X-axis
288 // and (x0,y0,z0) on Z-axis.
289 // Double_t XonX = Vx0; Double_t YonX = Vy0; Double_t ZonX = Vz0;
290 // Double_t XonZ = x0; Double_t YonZ = y0; Double_t ZonZ = z0;
291 //after this we have equations for Z- and X axis OCS it's
292 // X/XonX=Y/YonX=Z/ZonX for X-axis and X/XonZ=Y/YonZ=Z/ZonZ for Z-axis
293
294 // Next we need in equation of plane 0xz of OCS: Generaly equation is Ax+By+Cz+D=0;
295 // But all our plan pass through (0,0,0) and D=0 then we can write equation in naxt kind:
296 // x+(B/A)y+(C/A)z=0; => x+k1*y+k2*z=0;
297 // Double_t k1y;
298 // Double_t k2y;
299 //cout<<YonX<<" "<<ZonX*YonZ<<" "<<ZonZ*YonX<<"\n";
300 // if ((YonZ != 0) && (ZonX*YonZ != ZonZ*YonX)){
301 // coefplane(XonX,YonX,ZonX,XonZ,YonZ,ZonZ);
302 //coefplane(1,0.00001,0.00001,0,0,1);
303 // k1y = k1; k2y = k2;
304 // } else {k1y = 1; k2y = YonX/ZonX; cout<<"ELSE";}
305 //cout<<"P1= "<<(Vx0+k1y*Vy0+k2y*Vz0)<<"\n";
306 //cout<<"P2= "<<(x0+k1y*y0+k2y*z0)<<"\n";
307 //cout<<"P3= "<<(Vx0+k1y*Vy0+k2y*Vz0)<<"\n";
308 //cout<<"k1y= "<<k1y<<", k2y= "<<k2y<<"\n";
309 // int uchu;
310 // cin>>uchu;
311
312 // Next we must find equation of Y-axis of OCS. For it we must find equation of line passing through
313 // point (0,0,0) perpendicularly by 0ZX plane of OCS
314 // generaly equation is:
315 // x = x0 + At;
316 // y = y0 + Bt;
317 // z = z0 + Ct;
318 // But we have point (x0,y0,z0) is (0,0,0) and other plane equation. For us it's:
319 // x = t;
320 // y = (B/A)*t => y = (B/A)*x; or x/x1=y/y1=z/z1 where
321 // z = (C/A)*t z = (C/A)*x; y1=B/A,z1=C/A and x1 we must find
322
323 // if ((YonX<0 && ZonZ>0)||(YonX>0 && ZonZ<0)) XonY = 1;
324 // if ((YonX>0 && ZonZ>0)||(YonX>0 && ZonZ<0)) XonY = 1;
325 // Double_t XonY = 1; Double_t YonY = -k1; Double_t ZonY = k2;
326
327 // coefficients for equations of 0XY plane of OCS.
328 // coefplane(XonX,YonX,ZonX,XonY,YonY,ZonY);
329 // Double_t k1XY = k1; Double_t k2XY = k2;
330 //cout<<"P3= "<<(XonY+k1XY*YonY+k2XY*ZonY)<<"\n";
331 //cout<<"P3= "<<(XonX+k1XY*YonX+k2XY*ZonX)<<"\n";
332 //cout<<"k1XY= "<<k1XY<<", k2XY= "<<k2XY<<"\n";
333 // coefficients for equations of 0XY plane of OCS.
334 // coefplane(XonY,YonY,ZonY,XonZ,YonZ,ZonZ);
335 // Double_t k1YZ = k1; Double_t k2YZ = k2;
336 //cout<<"P4= "<<(XonY+k1YZ*YonY+k2YZ*ZonY)<<"\n";
337 //cout<<"P4= "<<(XonZ+k1YZ*YonZ+k2YZ*ZonZ)<<"\n";
338 //cout<<"k1YZ= "<<k1YZ<<", k2YZ= "<<k2YZ<<"\n";
339
340 // TMatrixD Gij(3,3);
341 Pij.Invert();
342 // Gij=Pij*Aij;
343 //Gij.Invert();
344 //XXRCS = Gij(0,0); XYRCS = Gij(0,1); XZRCS = Gij(2,0);
345 //YXRCS = Gij(1,0); YYRCS = Gij(1,1); YZRCS = Gij(2,1);
346 //ZXRCS = Gij(2,0); ZYRCS = Gij(1,2); ZZRCS = Gij(2,2);
347
348 //cout<<"XXRCS= "<<XXRCS<<", YXRCS= "<<YXRCS<<", ZXRCS= "<<ZXRCS<<"\n";
349 //cout<<"XYRCS= "<<XYRCS<<", YYRCS= "<<YYRCS<<", ZYRCS= "<<ZYRCS<<"\n";
350 //cout<<"XZRCS= "<<XZRCS<<", YZRCS= "<<YZRCS<<", ZZRCS= "<<ZZRCS<<"\n";
351 //int yuip;
352 //cin>>yuip;
353
354 for (Int_t i = 0; i<3; i++) {
355 // Values of points on axes of RCS in ICS
356 Double_t XICS = Pij(0,0)*XRCS[i] + Pij(0,1)*YRCS[i] + Pij(0,2)*ZRCS[i];// + x0;
357 Double_t YICS = Pij(1,0)*XRCS[i] + Pij(1,1)*YRCS[i] + Pij(1,2)*ZRCS[i];// + y0;
358 Double_t ZICS = Pij(2,0)*XRCS[i] + Pij(2,1)*YRCS[i] + Pij(2,2)*ZRCS[i];// + z0;
359 //cout<<"XICS= "<<XICS<<", YICS= "<<YICS<<", ZICS= "<<ZICS<<"\n";
360 //cout<<"XICS= "<<XICS<<", YICS= "<<YICS<<", ZICS= "<<ZICS<<"\n";
361 //int oiu;
362 //cin>>oiu;
363
364 // Angles between our Axis and Z,Y,X-axes of OCS
365 // AboA0Z[i] = AngBetAxes(XICS,YICS,ZICS,XonZ,YonZ,ZonZ);
366 // AboA0Y[i] = AngBetAxes(XICS,YICS,ZICS,XonY,YonY,ZonY);
367 // AboA0X[i] = AngBetAxes(XICS,YICS,ZICS,XonX,YonX,ZonX);
368
369 //Find coordinate of our point in OCS
370 // Double_t XOCS;
371 // Double_t YOCS;
372 // Double_t ZOCS;
373 // Double_t T = ValueT(XICS,YICS,ZICS,k1y,k2y);
374 // Double_t XonXZ = XICS + T;
375 // Double_t YonXZ = YICS + k1y*T;
376 // Double_t ZonXZ = ZICS + k2y*T;
377 // Double_t R = T*sqrt(1+pow(k1y,2)+pow(k2y,2));
378 // YOCS = R;
379 //cout<<"CHECK= "<<XonXZ+k1y*YonXZ+k2y*ZonXZ<<"\n";
380 // T = ValueT(XICS,YICS,ZICS,k1XY,k2XY);
381 // Double_t XonXY = XICS + T;
382 // Double_t YonXY = YICS + k1XY*T;
383 // Double_t ZonXY = ZICS + k2XY*T;
384 // R = T*sqrt(1+pow(k1XY,2)+pow(k2XY,2));
385 // ZOCS = R;
386 //cout<<"CHECK= "<<XonXY+k1XY*YonXY+k2XY*ZonXY<<"\n";
387 // T = ValueT(XICS,YICS,ZICS,k1YZ,k2YZ);
388 // Double_t XonYZ = XICS + T;
389 // Double_t YonYZ = YICS + k1YZ*T;
390 // Double_t ZonYZ = ZICS + k2YZ*T;
391 // R = T*sqrt(1+pow(k1YZ,2)+pow(k2YZ,2));
392 // XOCS = R;
393 //cout<<"CHECK= "<<XonYZ+k1YZ*YonYZ+k2YZ*ZonYZ<<"\n";
394 //cout<<"XOCS= "<<XOCS<<", YOCS= "<<YOCS<<", ZOCS="<<ZOCS<<"\n";
395
396 //Double_t AbPoAaAoP0ZX_2m[3]; Double_t AboAa0ZX_2m[3];
397 //Double_t AbPoAaAoP0XY_2m[3]; Double_t AboAa0XY_2m[3];
398 //Double_t AbPoAaAoP0YZ_2m[3]; Double_t AboAa0YZ_2m[3];
399
400 /* C1 = YICS*Vz0 - ZICS*Vy0;
401 C2 = ZICS*Vx0 - XICS*Vz0;
402 C3 = XICS*Vy0 - YICS*Vx0;
403 C = sqrt(pow(C1,2) + pow(C2,2) + pow(C3,2));
404 V0 = sqrt(pow(Vx0,2)+pow(Vy0,2) + pow(Vz0,2));
405 Aij(0,0) = Vx0/V0;
406 Aij(0,1) = C1/C;
407 Aij(0,2) = (Vy0*C3-Vz0*C2)/(V0*C);
408 Aij(1,0) = Vy0/V0;
409 Aij(1,1) = C2/C;
410 Aij(1,2) = (Vz0*C1-Vx0*C3)/(V0*C);
411 Aij(2,0) = Vz0/V0;
412 Aij(2,1) = C3/C;
413 Aij(2,2) = (Vx0*C2-Vy0*C1)/(V0*C);
414 Aij.Invert();
415 */
416 //2th method of getting XOCS,YOCS,ZOCS
417 Double_t XOCS_2m = Aij(0,0)*(XICS)+Aij(0,1)*(YICS)+Aij(0,2)*(ZICS);
418 Double_t YOCS_2m = Aij(1,0)*(XICS)+Aij(1,1)*(YICS)+Aij(1,2)*(ZICS);
419 Double_t ZOCS_2m = Aij(2,0)*(XICS)+Aij(2,1)*(YICS)+Aij(2,2)*(ZICS);
420
421 if (i == 0) {XXRCS = XOCS_2m; YXRCS = YOCS_2m; ZXRCS = ZOCS_2m;}
422 if (i == 1) {XYRCS = XOCS_2m; YYRCS = YOCS_2m; ZYRCS = ZOCS_2m;}
423 if (i == 2) {XZRCS = XOCS_2m; YZRCS = YOCS_2m; ZZRCS = ZOCS_2m;}
424
425 //cout<<"XOCS_2m= "<<XOCS_2m<<", YOCS_2m= "<<YOCS_2m<<", ZOCS= "<<ZOCS_2m<<"\n";
426 //int alsdj;
427 //cin>>alsdj;
428
429 //Find Angles between RCS-axes and OCS-planes;
430 // AboAa0ZX[i] = AngBetPlan(XICS,YICS,ZICS,k1y,k2y);
431 // AboAa0XY[i] = AngBetPlan(XICS,YICS,ZICS,k1XY,k2XY);
432 // AboAa0YZ[i] = AngBetPlan(XICS,YICS,ZICS,k1YZ,k2YZ);
433 //AbPoAaAoP0ZX[i] = atan(ZOCS/XOCS); AbPoAaAoP0ZX_2m[i] = atan(ZOCS_2m/XOCS_2m);
434 //AbPoAaAoP0XY[i] = atan(XOCS/YOCS); AbPoAaAoP0XY_2m[i] = atan(YOCS_2m/XOCS_2m);
435 //AbPoAaAoP0YZ[i] = atan(ZOCS/YOCS); AbPoAaAoP0YZ_2m[i] = atan(ZOCS_2m/YOCS_2m);
436
437 // if (XOCS_2m>0) AbPoAaAoP0ZX_2m[i] = atan(ZOCS_2m/XOCS_2m);
438 // if ((XOCS_2m<0)&&(ZOCS_2m>=0)) AbPoAaAoP0ZX_2m[i] = 180/a + atan(ZOCS_2m/XOCS_2m);
439 // if ((XOCS_2m<0)&&(ZOCS_2m<0)) AbPoAaAoP0ZX_2m[i] = atan(ZOCS_2m/XOCS_2m) - 180/a;
440 // if ((XOCS_2m=0)&&(ZOCS_2m>0)) AbPoAaAoP0ZX_2m[i] = 90/a;
441 // if ((XOCS_2m=0)&&(ZOCS_2m<0)) AbPoAaAoP0ZX_2m[i] = -90/a;
442 // if ((XOCS_2m=0)&&(ZOCS_2m=0)) AbPoAaAoP0ZX_2m[i] = 0;
443
444 // if (XOCS_2m>0) AbPoAaAoP0XY_2m[i] = atan(YOCS_2m/XOCS_2m);
445 // if ((XOCS_2m<0)&&(YOCS_2m>=0)) AbPoAaAoP0XY_2m[i] = 180/a + atan(YOCS_2m/XOCS_2m);
446 // if ((XOCS_2m<0)&&(YOCS_2m<0)) AbPoAaAoP0XY_2m[i] = atan(YOCS_2m/XOCS_2m) - 180/a;
447 // if ((XOCS_2m=0)&&(YOCS_2m>0)) AbPoAaAoP0XY_2m[i] = 90/a;
448 // if ((XOCS_2m=0)&&(YOCS_2m<0)) AbPoAaAoP0XY_2m[i] = -90/a;
449 // if ((XOCS_2m=0)&&(YOCS_2m=0)) AbPoAaAoP0XY_2m[i] = 0;
450
451 // if (YOCS_2m>0) AbPoAaAoP0YZ_2m[i] = atan(ZOCS_2m/YOCS_2m);
452 // if ((YOCS_2m<0)&&(ZOCS_2m>=0)) AbPoAaAoP0YZ_2m[i] = 180/a + atan(ZOCS_2m/YOCS_2m);
453 // if ((YOCS_2m<0)&&(ZOCS_2m<0)) AbPoAaAoP0YZ_2m[i] = atan(ZOCS_2m/YOCS_2m) - 180/a;
454 // if ((YOCS_2m=0)&&(ZOCS_2m>0)) AbPoAaAoP0YZ_2m[i] = 90/a;
455 // if ((YOCS_2m=0)&&(ZOCS_2m<0)) AbPoAaAoP0YZ_2m[i] = -90/a;
456 // if ((YOCS_2m=0)&&(ZOCS_2m=0)) AbPoAaAoP0YZ_2m[i] = 0;
457
458 //if (i==0) cout<<"AbPoAaAoP0ZX_2m[i]"<<AbPoAaAoP0ZX_2m[i]<<"\n";
459 //cout<<"XOCS/ZOCS= "<<XOCS_2m/ZOCS_2m<<"\n";
460 //cout<<"Atan= "<<AbPoAaAoP0ZX_2m[i]<<"\n";
461 //cout<<"atan= "<<a*atan(0.2);
462 //int GJH;
463 //cin>>GJH;
464
465 }
466 Double_t u13 = XYRCS/*Gij(0,2)*/; Double_t u33 = ZYRCS/*Gij(2,2)*/;
467 Double_t u23 = YYRCS/*Gij(1,2)*/; Double_t u21 = YZRCS/*Gij(1,0)*/;
468 Double_t u22 = YXRCS/*Gij(1,1)*/;
469 Tangazh = a*atan(-u13/u33);
470 //cout<<"u13= "<<u13<<", u33= "<<u33<<"\n";
471 Kren = a*atan(-u23/sqrt(1 - pow(u23,2)));
472 //Ryskanie = a*atan(u21/u22);
473
474 if (u22>0) Ryskanie = a*atan(u21/u22);
475 if ((u22<0)&&(u21>=0)) Ryskanie = 180 + a*atan(u21/u22);
476 if ((u22<0)&&(u21<0)) Ryskanie = a*atan(u21/u22) - 180;
477 if ((u22=0)&&(u21>0)) Ryskanie = 90;
478 if ((u22=0)&&(u21<0)) Ryskanie = -90;
479 if ((u22=0)&&(u21=0)) Ryskanie = 0;
480
481 // AXrXo = AboA0X[0]*a; AXrZXo = AboAa0ZX[0]*a; ApXrZXoZ = AbPoAaAoP0ZX[0]*a;
482 // AXrYo = AboA0Y[0]*a; AXrXYo = AboAa0XY[0]*a; ApXrXYoZ = AbPoAaAoP0XY[0]*a;
483 // AXrZo = AboA0Z[0]*a; AXrYZo = AboAa0YZ[0]*a; ApXrYZoZ = AbPoAaAoP0YZ[0]*a;
484 // AYrXo = AboA0X[1]*a; AYrZXo = AboAa0ZX[1]*a; ApYrZXoZ = AbPoAaAoP0ZX[1]*a;
485 // AYrYo = AboA0Y[1]*a; AYrXYo = AboAa0XY[1]*a; ApYrXYoZ = AbPoAaAoP0XY[1]*a;
486 // AYrZo = AboA0Z[1]*a; AYrYZo = AboAa0YZ[1]*a; ApYrYZoZ = AbPoAaAoP0YZ[1]*a;
487 // AZrXo = AboA0X[2]*a; AZrZXo = AboAa0ZX[2]*a; ApZrZXoZ = AbPoAaAoP0ZX[2]*a;
488 // AZrYo = AboA0Y[2]*a; AZrXYo = AboAa0XY[2]*a; ApZrXYoZ = AbPoAaAoP0XY[2]*a;
489 // AZrZo = AboA0Z[2]*a; AZrYZo = AboAa0YZ[2]*a; ApZrYZoZ = AbPoAaAoP0YZ[2]*a;
490
491 // AXrZXo_2m = AboAa0ZX_2m[0]*a; ApXrZXoZ_2m = AbPoAaAoP0ZX_2m[0]*a;
492 // AXrXYo_2m = AboAa0XY_2m[0]*a; ApXrXYoZ_2m = AbPoAaAoP0XY_2m[0]*a;
493 // AXrYZo_2m = AboAa0YZ_2m[0]*a; ApXrYZoZ_2m = AbPoAaAoP0YZ_2m[0]*a;
494 // AYrZXo_2m = AboAa0ZX_2m[1]*a; ApYrZXoZ_2m = AbPoAaAoP0ZX_2m[1]*a;
495 // AYrXYo_2m = AboAa0XY_2m[1]*a; ApYrXYoZ_2m = AbPoAaAoP0XY_2m[1]*a;
496 // AYrYZo_2m = AboAa0YZ_2m[1]*a; ApYrYZoZ_2m = AbPoAaAoP0YZ_2m[1]*a;
497 // AZrZXo_2m = AboAa0ZX_2m[2]*a; ApZrZXoZ_2m = AbPoAaAoP0ZX_2m[2]*a;
498 // AZrXYo_2m = AboAa0XY_2m[2]*a; ApZrXYoZ_2m = AbPoAaAoP0XY_2m[2]*a;
499 // AZrYZo_2m = AboAa0YZ_2m[2]*a; ApZrYZoZ_2m = AbPoAaAoP0YZ_2m[2]*a;
500
501 /*
502 //Int_t Y=2;Int_t X=2;Int_t Z=4;Int_t Vx=5;Int_t Vz=9;Int_t Vy=5;
503
504 Double_t X[2]; Double_t Y[2]; Double_t Z[2]; Double_t Vx[2]; Double_t Vy[2]; Double_t Vz[2];
505
506 TMatrixD Aij(3,3);
507 TMatrixD Bij(3,3);
508
509 Bij(0,0) = cos(tetar)*cos(ksir)-sin(tetar)*sin(gamar)*sin(ksir);
510 Bij(0,1) = -sin(tetar)*cos(gamar);
511 Bij(0,2) = cos(tetar)*sin(ksir)+sin(tetar)*sin(gamar)*cos(ksir);
512 Bij(1,0) = sin(tetar)*cos(ksir)+cos(tetar)*sin(gamar)*sin(ksir);
513 Bij(1,1) = cos(tetar)*cos(gamar);
514 Bij(1,2) = sin(tetar)*sin(ksir)-cos(tetar)*sin(gamar)*cos(ksir);
515 Bij(2,0) = -sin(ksir)*cos(gamar);
516 Bij(2,1) = sin(gamar);
517 Bij(2,2) = cos(ksir)*cos(gamar);
518
519 Double_t C1 = Y[0]*Vz[0] - Z[0]*Vy[0];
520 Double_t C2 = Z[0]*Vx[0] - X[0]*Vz[0];
521 Double_t C3 = X[0]*Vy[0] - Y[0]*Vx[0];
522 Double_t C = sqrt(pow(C1,2) + pow(C2,2) + pow(C3,2));
523 Double_t V0 = sqrt(pow(Vx0,2)+pow(Vy0,2) + pow(Vz0,2));
524 Aij(0,0) = Vx0/V0;
525 Aij(0,1) = C1/C;
526 Aij(0,2) = (Vy0*C3-Vz0*C2)/(V0*C);
527 Aij(1,0) = Vy0/V0;
528 Aij(1,1) = C2/C;
529 Aij(1,2) = (Vz0*C1-Vx0*C3)/(V0*C);
530 Aij(2,0) = Vz0/V0;
531 Aij(2,1) = C3/C;
532 Aij(2,2) = (Vx0*C2-Vy0*C1)/(V0*C);
533 Aij.Invert();
534 Double_t Xnew = Aij(0,0)*(X-x0)+Aij(0,1)*(Y-y0)+Aij(0,2)*(Z-z0);
535 Double_t Ynew = Aij(1,0)*(X-x0)+Aij(1,1)*(Y-y0)+Aij(1,2)*(Z-z0);
536 Double_t Znew = Aij(2,0)*(X-x0)+Aij(2,1)*(Y-y0)+Aij(2,2)*(Z-z0);
537 */
538 //A21 = NewTetar;
539 //A22 = NewGamar;
540 //A23 = NewKsir;
541
542 return ;
543 }
544

  ViewVC Help
Powered by ViewVC 1.1.23