1 |
//
|
2 |
// stdafx.h
|
3 |
//
|
4 |
#ifndef sgp4_h
|
5 |
#define sgp4_h
|
6 |
|
7 |
//#define WIN32_LEAN_AND_MEAN // Exclude rarely-used stuff from Windows headers
|
8 |
#include <stdio.h>
|
9 |
//#include <tchar.h>
|
10 |
#include <ctype.h>
|
11 |
#include <string>
|
12 |
#include <map>
|
13 |
#include <vector>
|
14 |
#include <algorithm>
|
15 |
#include <assert.h>
|
16 |
#include <time.h>
|
17 |
#include <math.h>
|
18 |
|
19 |
using namespace std;
|
20 |
//
|
21 |
// globals.h
|
22 |
//
|
23 |
|
24 |
const double PI = 3.141592653589793;
|
25 |
const double TWOPI = 2.0 * PI;
|
26 |
const double RADS_PER_DEG = PI / 180.0;
|
27 |
|
28 |
const double GM = 398601.2; // Earth gravitational constant, km^3/sec^2
|
29 |
const double GEOSYNC_ALT = 42241.892; // km
|
30 |
const double EARTH_DIA = 12800.0; // km
|
31 |
const double DAY_SIDERAL = (23 * 3600) + (56 * 60) + 4.09; // sec
|
32 |
const double DAY_24HR = (24 * 3600); // sec
|
33 |
|
34 |
const double AE = 1.0;
|
35 |
const double AU = 149597870.0; // Astronomical unit (km) (IAU 76)
|
36 |
const double SR = 696000.0; // Solar radius (km) (IAU 76)
|
37 |
const double TWOTHRD = 2.0 / 3.0;
|
38 |
const double XKMPER_WGS72 = 6378.135; // Earth equatorial radius - km (WGS '72)
|
39 |
const double F = 1.0 / 298.26; // Earth flattening (WGS '72)
|
40 |
const double GE = 398600.8; // Earth gravitational constant (WGS '72)
|
41 |
const double J2 = 1.0826158E-3; // J2 harmonic (WGS '72)
|
42 |
const double J3 = -2.53881E-6; // J3 harmonic (WGS '72)
|
43 |
const double J4 = -1.65597E-6; // J4 harmonic (WGS '72)
|
44 |
const double CK2 = J2 / 2.0;
|
45 |
const double CK4 = -3.0 * J4 / 8.0;
|
46 |
const double XJ3 = J3;
|
47 |
const double E6A = 1.0e-06;
|
48 |
const double QO = AE + 120.0 / XKMPER_WGS72;
|
49 |
const double S = AE + 78.0 / XKMPER_WGS72;
|
50 |
const double HR_PER_DAY = 24.0; // Hours per day (solar)
|
51 |
const double MIN_PER_DAY = 1440.0; // Minutes per day (solar)
|
52 |
const double SEC_PER_DAY = 86400.0; // Seconds per day (solar)
|
53 |
const double OMEGA_E = 1.00273790934; // earth rotation per sideral day
|
54 |
const double XKE = sqrt(3600.0 * GE / //sqrt(ge) ER^3/min^2
|
55 |
(XKMPER_WGS72 * XKMPER_WGS72 * XKMPER_WGS72));
|
56 |
const double QOMS2T = pow((QO - S), 4); //(QO - S)^4 ER^4
|
57 |
|
58 |
// Utility functions
|
59 |
double sqr (const double x);
|
60 |
double Fmod2p(const double arg);
|
61 |
double AcTan (const double sinx, double cosx);
|
62 |
|
63 |
double rad2deg(const double);
|
64 |
double deg2rad(const double);
|
65 |
//
|
66 |
// coord.h
|
67 |
//
|
68 |
// Copyright 2002-2003 Michael F. Henry
|
69 |
//
|
70 |
//////////////////////////////////////////////////////////////////////
|
71 |
// Geocentric coordinates.
|
72 |
class cCoordGeo
|
73 |
{
|
74 |
public:
|
75 |
cCoordGeo();
|
76 |
cCoordGeo(double lat, double lon, double alt) :
|
77 |
m_Lat(lat), m_Lon(lon), m_Alt(alt) {}
|
78 |
virtual ~cCoordGeo() {};
|
79 |
|
80 |
double m_Lat; // Latitude, radians (negative south)
|
81 |
double m_Lon; // Longitude, radians (negative west)
|
82 |
double m_Alt; // Altitude, km (above mean sea level)
|
83 |
};
|
84 |
|
85 |
//////////////////////////////////////////////////////////////////////
|
86 |
// Topocentric-Horizon coordinates.
|
87 |
class cCoordTopo
|
88 |
{
|
89 |
public:
|
90 |
cCoordTopo();
|
91 |
cCoordTopo(double az, double el, double rng, double rate) :
|
92 |
m_Az(az), m_El(el), m_Range(rng), m_RangeRate(rate) {}
|
93 |
virtual ~cCoordTopo() {};
|
94 |
|
95 |
double m_Az; // Azimuth, radians
|
96 |
double m_El; // Elevation, radians
|
97 |
double m_Range; // Range, kilometers
|
98 |
double m_RangeRate; // Range rate of change, km/sec
|
99 |
// Negative value means "towards observer"
|
100 |
};
|
101 |
|
102 |
// cVector.h: interface for the cVector class.
|
103 |
//
|
104 |
// Copyright 2003 (c) Michael F. Henry
|
105 |
//
|
106 |
//////////////////////////////////////////////////////////////////////
|
107 |
|
108 |
class cVector
|
109 |
{
|
110 |
public:
|
111 |
cVector(double x = 0.0, double y = 0.0, double z = 0.0, double w = 0.0) :
|
112 |
m_x(x), m_y(y), m_z(z), m_w(w) {}
|
113 |
virtual ~cVector() {};
|
114 |
|
115 |
void Sub(const cVector&); // subtraction
|
116 |
void Mul(double factor); // multiply each component by 'factor'
|
117 |
|
118 |
double Angle(const cVector&) const; // angle between two vectors
|
119 |
double Magnitude() const; // vector magnitude
|
120 |
double Dot(const cVector& vec) const; // dot product
|
121 |
|
122 |
// protected:
|
123 |
double m_x;
|
124 |
double m_y;
|
125 |
double m_z;
|
126 |
double m_w;
|
127 |
};
|
128 |
//
|
129 |
// cTle.h
|
130 |
//
|
131 |
// This class will accept a single set of two-line elements and then allow
|
132 |
// a client to request specific fields, such as epoch, mean motion,
|
133 |
// etc., from the set.
|
134 |
//
|
135 |
// Copyright 1996-2003 Michael F. Henry
|
136 |
//
|
137 |
/////////////////////////////////////////////////////////////////////////////
|
138 |
class cTle
|
139 |
{
|
140 |
public:
|
141 |
cTle(string&, string&, string&);
|
142 |
cTle(const cTle &tle);
|
143 |
~cTle();
|
144 |
|
145 |
enum eTleLine
|
146 |
{
|
147 |
LINE_ZERO,
|
148 |
LINE_ONE,
|
149 |
LINE_TWO
|
150 |
};
|
151 |
|
152 |
enum eField
|
153 |
{
|
154 |
FLD_FIRST,
|
155 |
FLD_NORADNUM = FLD_FIRST,
|
156 |
FLD_INTLDESC,
|
157 |
FLD_SET, // TLE set number
|
158 |
FLD_EPOCHYEAR, // Epoch: Last two digits of year
|
159 |
FLD_EPOCHDAY, // Epoch: Fractional Julian Day of year
|
160 |
FLD_ORBITNUM, // Orbit at epoch
|
161 |
FLD_I, // Inclination
|
162 |
FLD_RAAN, // R.A. ascending node
|
163 |
FLD_E, // Eccentricity
|
164 |
FLD_ARGPER, // Argument of perigee
|
165 |
FLD_M, // Mean anomaly
|
166 |
FLD_MMOTION, // Mean motion
|
167 |
FLD_MMOTIONDT, // First time derivative of mean motion
|
168 |
FLD_MMOTIONDT2,// Second time derivative of mean motion
|
169 |
FLD_BSTAR, // BSTAR Drag
|
170 |
FLD_LAST // MUST be last
|
171 |
};
|
172 |
|
173 |
enum eUnits
|
174 |
{
|
175 |
U_FIRST,
|
176 |
U_RAD = U_FIRST, // radians
|
177 |
U_DEG, // degrees
|
178 |
U_NATIVE, // TLE format native units (no conversion)
|
179 |
U_LAST // MUST be last
|
180 |
};
|
181 |
|
182 |
void Initialize();
|
183 |
|
184 |
static int CheckSum(const string&);
|
185 |
static bool IsValidLine(string&, eTleLine);
|
186 |
static string ExpToDecimal(const string&);
|
187 |
|
188 |
static void TrimLeft(string&);
|
189 |
static void TrimRight(string&);
|
190 |
|
191 |
double getField(eField fld, // which field to retrieve
|
192 |
eUnits unit = U_NATIVE, // return units in rad, deg etc.
|
193 |
string *pstr = NULL, // return ptr for str value
|
194 |
bool bStrUnits = false) // 'true': append units to str val
|
195 |
const;
|
196 |
string getName() const { return m_strName; }
|
197 |
string getLine1() const { return m_strLine1;}
|
198 |
string getLine2() const { return m_strLine2;}
|
199 |
|
200 |
protected:
|
201 |
static double ConvertUnits(double val, eField fld, eUnits units);
|
202 |
|
203 |
private:
|
204 |
string getUnits(eField) const;
|
205 |
double getFieldNumeric(eField) const;
|
206 |
|
207 |
// Satellite name and two data lines
|
208 |
string m_strName;
|
209 |
string m_strLine1;
|
210 |
string m_strLine2;
|
211 |
|
212 |
// Converted fields, in atof()-readable form
|
213 |
string m_Field[FLD_LAST];
|
214 |
|
215 |
// Cache of field values in "double" format
|
216 |
typedef int FldKey;
|
217 |
FldKey Key(eUnits u, eField f) const { return (u * 100) + f; }
|
218 |
mutable map<FldKey, double> m_mapCache;
|
219 |
};
|
220 |
|
221 |
///////////////////////////////////////////////////////////////////////////
|
222 |
//
|
223 |
// TLE data format
|
224 |
//
|
225 |
// [Reference: T.S. Kelso]
|
226 |
//
|
227 |
// Two line element data consists of three lines in the following format:
|
228 |
//
|
229 |
// AAAAAAAAAAAAAAAAAAAAAA
|
230 |
// 1 NNNNNU NNNNNAAA NNNNN.NNNNNNNN +.NNNNNNNN +NNNNN-N +NNNNN-N N NNNNN
|
231 |
// 2 NNNNN NNN.NNNN NNN.NNNN NNNNNNN NNN.NNNN NNN.NNNN NN.NNNNNNNNNNNNNN
|
232 |
//
|
233 |
// Line 0 is a twenty-two-character name.
|
234 |
//
|
235 |
// Lines 1 and 2 are the standard Two-Line Orbital Element Set Format identical
|
236 |
// to that used by NORAD and NASA. The format description is:
|
237 |
//
|
238 |
// Line 1
|
239 |
// Column Description
|
240 |
// 01-01 Line Number of Element Data
|
241 |
// 03-07 Satellite Number
|
242 |
// 10-11 International Designator (Last two digits of launch year)
|
243 |
// 12-14 International Designator (Launch number of the year)
|
244 |
// 15-17 International Designator (Piece of launch)
|
245 |
// 19-20 Epoch Year (Last two digits of year)
|
246 |
// 21-32 Epoch (Julian Day and fractional portion of the day)
|
247 |
// 34-43 First Time Derivative of the Mean Motion
|
248 |
// or Ballistic Coefficient (Depending on ephemeris type)
|
249 |
// 45-52 Second Time Derivative of Mean Motion (decimal point assumed;
|
250 |
// blank if N/A)
|
251 |
// 54-61 BSTAR drag term if GP4 general perturbation theory was used.
|
252 |
// Otherwise, radiation pressure coefficient. (Decimal point assumed)
|
253 |
// 63-63 Ephemeris type
|
254 |
// 65-68 Element number
|
255 |
// 69-69 Check Sum (Modulo 10)
|
256 |
// (Letters, blanks, periods, plus signs = 0; minus signs = 1)
|
257 |
//
|
258 |
// Line 2
|
259 |
// Column Description
|
260 |
// 01-01 Line Number of Element Data
|
261 |
// 03-07 Satellite Number
|
262 |
// 09-16 Inclination [Degrees]
|
263 |
// 18-25 Right Ascension of the Ascending Node [Degrees]
|
264 |
// 27-33 Eccentricity (decimal point assumed)
|
265 |
// 35-42 Argument of Perigee [Degrees]
|
266 |
// 44-51 Mean Anomaly [Degrees]
|
267 |
// 53-63 Mean Motion [Revs per day]
|
268 |
// 64-68 Revolution number at epoch [Revs]
|
269 |
// 69-69 Check Sum (Modulo 10)
|
270 |
//
|
271 |
// All other columns are blank or fixed.
|
272 |
//
|
273 |
// Example:
|
274 |
//
|
275 |
// NOAA 6
|
276 |
// 1 11416U 86 50.28438588 0.00000140 67960-4 0 5293
|
277 |
// 2 11416 98.5105 69.3305 0012788 63.2828 296.9658 14.24899292346978
|
278 |
|
279 |
//
|
280 |
// cJulian.h
|
281 |
//
|
282 |
// Copyright (c) 2003 Michael F. Henry
|
283 |
//
|
284 |
//
|
285 |
// See note in cJulian.cpp for information on this class and the epoch dates
|
286 |
//
|
287 |
const double EPOCH_JAN1_00H_1900 = 2415019.5; // Jan 1.0 1900 = Jan 1 1900 00h UTC
|
288 |
const double EPOCH_JAN1_12H_1900 = 2415020.0; // Jan 1.5 1900 = Jan 1 1900 12h UTC
|
289 |
const double EPOCH_JAN1_12H_2000 = 2451545.0; // Jan 1.5 2000 = Jan 1 2000 12h UTC
|
290 |
|
291 |
//////////////////////////////////////////////////////////////////////////////
|
292 |
class cJulian
|
293 |
{
|
294 |
public:
|
295 |
cJulian() { Initialize(2000, 1); }
|
296 |
explicit cJulian(time_t t); // Create from time_t
|
297 |
explicit cJulian(int year, double day); // Create from year, day of year
|
298 |
explicit cJulian(int year, // i.e., 2004
|
299 |
int mon, // 1..12
|
300 |
int day, // 1..31
|
301 |
int hour, // 0..23
|
302 |
int min, // 0..59
|
303 |
double sec = 0.0); // 0..(59.999999...)
|
304 |
~cJulian() {};
|
305 |
|
306 |
double toGMST() const; // Greenwich Mean Sidereal Time
|
307 |
double toLMST(double lon) const; // Local Mean Sideral Time
|
308 |
time_t toTime() const; // To time_t type - avoid using
|
309 |
|
310 |
double FromJan1_00h_1900() const { return m_Date - EPOCH_JAN1_00H_1900; }
|
311 |
double FromJan1_12h_1900() const { return m_Date - EPOCH_JAN1_12H_1900; }
|
312 |
double FromJan1_12h_2000() const { return m_Date - EPOCH_JAN1_12H_2000; }
|
313 |
|
314 |
void getComponent(int *pYear, int *pMon = NULL, double *pDOM = NULL) const;
|
315 |
double getDate() const { return m_Date; }
|
316 |
|
317 |
void addDay (double day) { m_Date += day; }
|
318 |
void addHour(double hr ) { m_Date += (hr / HR_PER_DAY ); }
|
319 |
void addMin (double min) { m_Date += (min / MIN_PER_DAY); }
|
320 |
void addSec (double sec) { m_Date += (sec / SEC_PER_DAY); }
|
321 |
|
322 |
double spanDay (const cJulian& b) const { return m_Date - b.m_Date; }
|
323 |
double spanHour(const cJulian& b) const { return spanDay(b) * HR_PER_DAY; }
|
324 |
double spanMin (const cJulian& b) const { return spanDay(b) * MIN_PER_DAY; }
|
325 |
double spanSec (const cJulian& b) const { return spanDay(b) * SEC_PER_DAY; }
|
326 |
|
327 |
static bool IsLeapYear(int y)
|
328 |
{ return (y % 4 == 0 && y % 100 != 0) || (y % 400 == 0); }
|
329 |
|
330 |
protected:
|
331 |
void Initialize(int year, double day);
|
332 |
|
333 |
double m_Date; // Julian date
|
334 |
};
|
335 |
//
|
336 |
// cEci.h
|
337 |
//
|
338 |
// Copyright (c) 2003 Michael F. Henry
|
339 |
//
|
340 |
//////////////////////////////////////////////////////////////////////
|
341 |
// class cEci
|
342 |
// Encapsulates an Earth-Centered Inertial position, velocity, and time.
|
343 |
class cEci
|
344 |
{
|
345 |
public:
|
346 |
cEci() { m_VecUnits = UNITS_NONE; }
|
347 |
cEci(const cCoordGeo &geo, const cJulian &cJulian);
|
348 |
cEci(const cVector &pos, const cVector &vel,
|
349 |
const cJulian &date, bool IsAeUnits = true);
|
350 |
virtual ~cEci() {};
|
351 |
|
352 |
cCoordGeo toGeo();
|
353 |
|
354 |
cVector getPos() const { return m_pos; }
|
355 |
cVector getVel() const { return m_vel; }
|
356 |
cJulian getDate() const { return m_date; }
|
357 |
|
358 |
void setUnitsAe() { m_VecUnits = UNITS_AE; }
|
359 |
void setUnitsKm() { m_VecUnits = UNITS_KM; }
|
360 |
bool UnitsAreAe() const { return m_VecUnits == UNITS_AE; }
|
361 |
bool UnitsAreKm() const { return m_VecUnits == UNITS_KM; }
|
362 |
void ae2km(); // Convert position, velocity vector units from AE to km
|
363 |
|
364 |
protected:
|
365 |
void MulPos(double factor) { m_pos.Mul(factor); }
|
366 |
void MulVel(double factor) { m_vel.Mul(factor); }
|
367 |
|
368 |
enum VecUnits
|
369 |
{
|
370 |
UNITS_NONE, // not initialized
|
371 |
UNITS_AE,
|
372 |
UNITS_KM,
|
373 |
};
|
374 |
|
375 |
cVector m_pos;
|
376 |
cVector m_vel;
|
377 |
cJulian m_date;
|
378 |
VecUnits m_VecUnits;
|
379 |
};
|
380 |
//
|
381 |
// cNoradBase.h
|
382 |
//
|
383 |
// This class provides a base class for the NORAD SGP4/SDP4
|
384 |
// orbit models.
|
385 |
//
|
386 |
// Copyright (c) 2003 Michael F. Henry
|
387 |
//
|
388 |
#pragma once
|
389 |
|
390 |
//////////////////////////////////////////////////////////////////////////////
|
391 |
|
392 |
class cEci;
|
393 |
class cOrbit;
|
394 |
|
395 |
//////////////////////////////////////////////////////////////////////////////
|
396 |
|
397 |
class cNoradBase
|
398 |
{
|
399 |
public:
|
400 |
cNoradBase(const cOrbit&);
|
401 |
virtual ~cNoradBase() {};
|
402 |
|
403 |
virtual bool getPosition(double tsince, cEci &eci) = 0;
|
404 |
|
405 |
protected:
|
406 |
cNoradBase& operator=(const cNoradBase&);
|
407 |
|
408 |
void Initialize();
|
409 |
bool FinalPosition(double incl, double omega, double e,
|
410 |
double a, double xl, double xnode,
|
411 |
double xn, double tsince, cEci &eci);
|
412 |
|
413 |
const cOrbit &m_Orbit;
|
414 |
|
415 |
// Orbital parameter variables which need only be calculated one
|
416 |
// time for a given orbit (ECI position time-independent).
|
417 |
double m_satInc; // inclination
|
418 |
double m_satEcc; // eccentricity
|
419 |
|
420 |
double m_cosio; double m_theta2; double m_x3thm1; double m_eosq;
|
421 |
double m_betao2; double m_betao; double m_aodp; double m_xnodp;
|
422 |
double m_s4; double m_qoms24; double m_perigee; double m_tsi;
|
423 |
double m_eta; double m_etasq; double m_eeta; double m_coef;
|
424 |
double m_coef1; double m_c1; double m_c2; double m_c3;
|
425 |
double m_c4; double m_sinio; double m_a3ovk2; double m_x1mth2;
|
426 |
double m_xmdot; double m_omgdot; double m_xhdot1; double m_xnodot;
|
427 |
double m_xnodcf; double m_t2cof; double m_xlcof; double m_aycof;
|
428 |
double m_x7thm1;
|
429 |
};
|
430 |
//
|
431 |
// cOrbit.h
|
432 |
//
|
433 |
// This is the header file for the class cOrbit. This class accepts a
|
434 |
// single satellite's NORAD two-line element set and provides information
|
435 |
// regarding the satellite's orbit such as period, axis length,
|
436 |
// ECI coordinates/velocity, etc., using the SGP4/SDP4 orbital models.
|
437 |
//
|
438 |
// Copyright (c) 2002-2003 Michael F. Henry
|
439 |
//
|
440 |
#pragma once
|
441 |
|
442 |
#include "math.h"
|
443 |
|
444 |
using namespace std;
|
445 |
//////////////////////////////////////////////////////////////////////////////
|
446 |
|
447 |
class cVector;
|
448 |
class cGeoCoord;
|
449 |
class cEci;
|
450 |
|
451 |
//////////////////////////////////////////////////////////////////////////////
|
452 |
class cOrbit
|
453 |
{
|
454 |
public:
|
455 |
cOrbit(const cTle &tle);
|
456 |
virtual ~cOrbit();
|
457 |
|
458 |
// Return satellite ECI data at given minutes since element's epoch.
|
459 |
bool getPosition(double tsince, cEci *pEci) const;
|
460 |
|
461 |
double Inclination() const { return radGet(cTle::FLD_I); }
|
462 |
double Eccentricity() const { return m_tle.getField(cTle::FLD_E); }
|
463 |
double RAAN() const { return radGet(cTle::FLD_RAAN); }
|
464 |
double ArgPerigee() const { return radGet(cTle::FLD_ARGPER); }
|
465 |
double BStar() const { return m_tle.getField(cTle::FLD_BSTAR) / AE;}
|
466 |
double Drag() const { return m_tle.getField(cTle::FLD_MMOTIONDT); }
|
467 |
double mnMotion() const { return m_tle.getField(cTle::FLD_MMOTION); }
|
468 |
double mnAnomaly() const { return radGet(cTle::FLD_M); }
|
469 |
double mnAnomaly(cJulian t) const; // mean anomaly (in radians) at time t
|
470 |
|
471 |
cJulian Epoch() const { return m_jdEpoch; }
|
472 |
|
473 |
double TPlusEpoch(const cJulian &t) const; // time span [t - epoch] in secs
|
474 |
|
475 |
string SatName(bool fAppendId = false) const;
|
476 |
|
477 |
// "Recovered" from the input elements
|
478 |
double SemiMajor() const { return m_aeAxisSemiMajorRec; }
|
479 |
double SemiMinor() const { return m_aeAxisSemiMinorRec; }
|
480 |
double mnMotionRec() const { return m_mnMotionRec; } // mn motion, rads/min
|
481 |
double Major() const { return 2.0 * SemiMajor(); } // major axis in AE
|
482 |
double Minor() const { return 2.0 * SemiMinor(); } // minor axis in AE
|
483 |
double Perigee() const { return m_kmPerigeeRec; } // perigee in km
|
484 |
double Apogee() const { return m_kmApogeeRec; } // apogee in km
|
485 |
double Period() const; // period in seconds
|
486 |
|
487 |
protected:
|
488 |
double radGet(cTle::eField fld) const
|
489 |
{ return m_tle.getField(fld, cTle::U_RAD); }
|
490 |
|
491 |
double degGet(cTle::eField fld) const
|
492 |
{ return m_tle.getField(fld, cTle::U_DEG); }
|
493 |
|
494 |
private:
|
495 |
cTle m_tle;
|
496 |
cJulian m_jdEpoch;
|
497 |
cNoradBase *m_pNoradModel;
|
498 |
|
499 |
// Caching variables; note units are not necessarily the same as tle units
|
500 |
mutable double m_secPeriod;
|
501 |
|
502 |
// Caching variables recovered from the input TLE elements
|
503 |
double m_aeAxisSemiMinorRec; // semi-minor axis, in AE units
|
504 |
double m_aeAxisSemiMajorRec; // semi-major axis, in AE units
|
505 |
double m_mnMotionRec; // radians per minute
|
506 |
double m_kmPerigeeRec; // perigee, in km
|
507 |
double m_kmApogeeRec; // apogee, in km
|
508 |
};
|
509 |
|
510 |
//
|
511 |
// cNoradSGP4.h
|
512 |
//
|
513 |
// This class implements the NORAD Simple General Perturbation 4 orbit
|
514 |
// model. This model provides the ECI coordiantes/velocity of satellites
|
515 |
// with orbit periods less than 225 minutes.
|
516 |
//
|
517 |
// Copyright (c) 2003 Michael F. Henry
|
518 |
//
|
519 |
#pragma once
|
520 |
|
521 |
class cOrbit;
|
522 |
|
523 |
//////////////////////////////////////////////////////////////////////////////
|
524 |
class cNoradSGP4 : public cNoradBase
|
525 |
{
|
526 |
public:
|
527 |
cNoradSGP4(const cOrbit &orbit);
|
528 |
virtual ~cNoradSGP4() {};
|
529 |
|
530 |
virtual bool getPosition(double tsince, cEci &eci);
|
531 |
|
532 |
protected:
|
533 |
double m_c5;
|
534 |
double m_omgcof;
|
535 |
double m_xmcof;
|
536 |
double m_delmo;
|
537 |
double m_sinmo;
|
538 |
};
|
539 |
|
540 |
//
|
541 |
// cNoradSDP4.h
|
542 |
//
|
543 |
// This class implements the NORAD Simple Deep Perturbation 4 orbit
|
544 |
// model. This model provides the ECI coordinates/velocity of satellites
|
545 |
// with periods >= 225 minutes.
|
546 |
//
|
547 |
// Copyright (c) 2003 Michael F. Henry
|
548 |
//
|
549 |
#pragma once
|
550 |
|
551 |
class cOrbit;
|
552 |
|
553 |
//////////////////////////////////////////////////////////////////////////////
|
554 |
class cNoradSDP4 : public cNoradBase
|
555 |
{
|
556 |
public:
|
557 |
cNoradSDP4(const cOrbit &orbit);
|
558 |
virtual ~cNoradSDP4() {};
|
559 |
|
560 |
virtual bool getPosition(double tsince, cEci &eci);
|
561 |
|
562 |
protected:
|
563 |
bool DeepInit(double *eosq, double *sinio, double *cosio, double *m_betao,
|
564 |
double *m_aodp, double *m_theta2, double *m_sing, double *m_cosg,
|
565 |
double *m_betao2,double *xmdot, double *omgdot, double *xnodott);
|
566 |
|
567 |
bool DeepSecular(double *xmdf, double *omgadf,double *xnode, double *emm,
|
568 |
double *xincc, double *xnn, double *tsince);
|
569 |
bool DeepCalcDotTerms (double *pxndot, double *pxnddt, double *pxldot);
|
570 |
void DeepCalcIntegrator(double *pxndot, double *pxnddt, double *pxldot,
|
571 |
const double &delt);
|
572 |
bool DeepPeriodics(double *e, double *xincc, double *omgadf,
|
573 |
double *xnode, double *xmam);
|
574 |
double m_sing;
|
575 |
double m_cosg;
|
576 |
|
577 |
// Deep Initialization
|
578 |
double eqsq; double siniq; double cosiq; double rteqsq; double ao;
|
579 |
double cosq2; double sinomo; double cosomo; double bsq; double xlldot;
|
580 |
double omgdt; double xnodot;
|
581 |
|
582 |
// Deep Secular, Periodic
|
583 |
double xll; double omgasm; double xnodes; double _em;
|
584 |
double xinc; double xn; double t;
|
585 |
|
586 |
// Variables shared by "Deep" routines
|
587 |
double dp_e3; double dp_ee2; double dp_savtsn; double dp_se2;
|
588 |
double dp_se3; double dp_sgh2; double dp_sgh3; double dp_sgh4;
|
589 |
double dp_sghs; double dp_sh2; double dp_sh3; double dp_si2;
|
590 |
double dp_si3; double dp_sl2; double dp_sl3; double dp_sl4;
|
591 |
double dp_xgh2; double dp_xgh3; double dp_xgh4; double dp_xh2;
|
592 |
double dp_xh3; double dp_xi2; double dp_xi3; double dp_xl2;
|
593 |
double dp_xl3; double dp_xl4; double dp_xqncl; double dp_zmol;
|
594 |
double dp_zmos;
|
595 |
|
596 |
double dp_atime; double dp_d2201; double dp_d2211; double dp_d3210;
|
597 |
double dp_d3222; double dp_d4410; double dp_d4422; double dp_d5220;
|
598 |
double dp_d5232; double dp_d5421; double dp_d5433; double dp_del1;
|
599 |
double dp_del2; double dp_del3; double dp_fasx2; double dp_fasx4;
|
600 |
double dp_fasx6; double dp_omegaq; double dp_sse; double dp_ssg;
|
601 |
double dp_ssh; double dp_ssi; double dp_ssl; double dp_step2;
|
602 |
double dp_stepn; double dp_stepp; double dp_thgr; double dp_xfact;
|
603 |
double dp_xlamo; double dp_xli; double dp_xni;
|
604 |
|
605 |
bool dp_iresfl;
|
606 |
bool dp_isynfl;
|
607 |
|
608 |
// DeepInit vars that change with epoch
|
609 |
double dpi_c; double dpi_ctem; double dpi_day; double dpi_gam;
|
610 |
double dpi_stem; double dpi_xnodce; double dpi_zcosgl; double dpi_zcoshl;
|
611 |
double dpi_zcosil; double dpi_zsingl; double dpi_zsinhl; double dpi_zsinil;
|
612 |
double dpi_zx; double dpi_zy;
|
613 |
|
614 |
};
|
615 |
|
616 |
#endif
|