subroutine igrf_sub(xlat,xlong,year,height, & xl,icode,dip,dec) c---------------------------------------------------------------- c INPUT: c xlat geodatic latitude in degrees c xlong geodatic longitude in degrees c year decimal year (year+month/12.0-0.5 or year+day-of-year/365 c or 366 if leap year) c height height in km c OUTPUT: c xl L value c icode =1 L is correct; =2 L is not correct; c =3 an approximation is used c dip geomagnetic inclination in degrees c dec geomagnetic declination in degress c---------------------------------------------------------------- INTEGER EGNR,AGNR,OGNR REAL LATI,LONGI COMMON/GENER/ UMR,ERA,AQUAD,BQUAD C CALL INITIZE ibbb=0 ALOG2=ALOG(2.) ISTART=1 lati=xlat longi=xlong c C----------------CALCULATE PROFILES----------------------------------- c CALL FELDCOF(YEAR,DIMO) CALL FELDG(LATI,LONGI,HEIGHT,BNORTH,BEAST,BDOWN,BABS) CALL SHELLG(LATI,LONGI,HEIGHT,DIMO,XL,ICODE,BAB1) DIP=ASIN(BDOWN/BABS)/UMR DEC=ASIN(BEAST/SQRT(BEAST*BEAST+BNORTH*BNORTH))/UMR RETURN END c c C SHELLIG.FOR, Version 2.0, January 1992 C C 11/01/91-DKB- SHELLG: lowest starting point for B0 search is 2 C 1/27/92-DKB- Adopted to IGRF-91 coeffcients model C 2/05/92-DKB- Reduce variable-names: INTER(P)SHC,EXTRA(P)SHC,INITI(ALI)ZE C 8/08/95-DKB- Updated to IGRF-45-95; new coeff. DGRF90, IGRF95, IGRF95S C 5/31/00-DKB- Updated to IGRF-45-00; new coeff.: IGRF00, IGRF00s C 3/24/05-DKB- Updated to IGRF-45-10; new coeff.: IGRF05, IGRF05s C 4/25/05-DKB- CALL FELDI and DO 1111 I=1,7 [Alexey Petrov] C C********************************************************************* C SUBROUTINES FINDB0, SHELLG, STOER, FELDG, FELDCOF, GETSHC, * C INTERSHC, EXTRASHC, INITIZE * C********************************************************************* C********************************************************************* C C SUBROUTINE FINDB0(STPS,BDEL,VALUE,BEQU,RR0) C-------------------------------------------------------------------- C FINDS SMALLEST MAGNETIC FIELD STRENGTH ON FIELD LINE C C INPUT: STPS STEP SIZE FOR FIELD LINE TRACING C COMMON/FIDB0/ C SP DIPOLE ORIENTED COORDINATES FORM SHELLG; P(1,*), C P(2,*), P(3,*) CLOSEST TO MAGNETIC EQUATOR C BDEL REQUIRED ACCURACY = [ B(LAST) - BEQU ] / BEQU C B(LAST) IS FIELD STRENGTH BEFORE BEQU C C OUTPUT: VALUE =.FALSE., IF BEQU IS NOT MINIMAL VALUE ON FIELD LINE C BEQU MAGNETIC FIELD STRENGTH AT MAGNETIC EQUATOR C RR0 EQUATORIAL RADIUS NORMALIZED TO EARTH RADIUS C BDEL FINAL ACHIEVED ACCURACY C-------------------------------------------------------------------- DIMENSION P(8,4),SP(3) LOGICAL VALUE COMMON/FIDB0/ SP C STEP=STPS IRUN=0 7777 IRUN=IRUN+1 IF(IRUN.GT.5) THEN VALUE=.FALSE. GOTO 8888 ENDIF C*********************FIRST THREE POINTS P(1,2)=SP(1) P(2,2)=SP(2) P(3,2)=SP(3) STEP=-SIGN(STEP,P(3,2)) CALL STOER(P(1,2),BQ2,R2) P(1,3)=P(1,2)+0.5*STEP*P(4,2) P(2,3)=P(2,2)+0.5*STEP*P(5,2) P(3,3)=P(3,2)+0.5*STEP CALL STOER(P(1,3),BQ3,R3) P(1,1)=P(1,2)-STEP*(2.*P(4,2)-P(4,3)) P(2,1)=P(2,2)-STEP*(2.*P(5,2)-P(5,3)) P(3,1)=P(3,2)-STEP CALL STOER(P(1,1),BQ1,R1) P(1,3)=P(1,2)+STEP*(20.*P(4,3)-3.*P(4,2)+P(4,1))/18. P(2,3)=P(2,2)+STEP*(20.*P(5,3)-3.*P(5,2)+P(5,1))/18. P(3,3)=P(3,2)+STEP CALL STOER(P(1,3),BQ3,R3) C******************INVERT SENSE IF REQUIRED IF(BQ3.LE.BQ1) GOTO 2 STEP=-STEP R3=R1 BQ3=BQ1 DO 1 I=1,5 ZZ=P(I,1) P(I,1)=P(I,3) 1 P(I,3)=ZZ C******************INITIALIZATION 2 STEP12=STEP/12. VALUE=.TRUE. BMIN=1.E4 BOLD=1.E4 C******************CORRECTOR (FIELD LINE TRACING) N=0 5555 P(1,3)=P(1,2)+STEP12*(5.*P(4,3)+8.*P(4,2)-P(4,1)) N=N+1 P(2,3)=P(2,2)+STEP12*(5.*P(5,3)+8.*P(5,2)-P(5,1)) C******************PREDICTOR (FIELD LINE TRACING) P(1,4)=P(1,3)+STEP12*(23.*P(4,3)-16.*P(4,2)+5.*P(4,1)) P(2,4)=P(2,3)+STEP12*(23.*P(5,3)-16.*P(5,2)+5.*P(5,1)) P(3,4)=P(3,3)+STEP CALL STOER(P(1,4),BQ3,R3) DO 1111 J=1,3 C DO 1111 I=1,8 DO 1111 I=1,7 1111 P(I,J)=P(I,J+1) B=SQRT(BQ3) IF(B.LT.BMIN) BMIN=B IF(B.LE.BOLD) THEN BOLD=B ROLD=1./R3 SP(1)=P(1,4) SP(2)=P(2,4) SP(3)=P(3,4) GOTO 5555 ENDIF IF(BOLD.NE.BMIN) THEN VALUE=.FALSE. ENDIF BDELTA=(B-BOLD)/BOLD IF(BDELTA.GT.BDEL) THEN STEP=STEP/10. GOTO 7777 ENDIF 8888 RR0=ROLD BEQU=BOLD BDEL=BDELTA RETURN END C C SUBROUTINE SHELLG(GLAT,GLON,ALT,DIMO,FL,ICODE,B0) C-------------------------------------------------------------------- C CALCULATES L-VALUE FOR SPECIFIED GEODAETIC COORDINATES, ALTITUDE C AND GEMAGNETIC FIELD MODEL. C REF: G. KLUGE, EUROPEAN SPACE OPERATIONS CENTER, INTERNAL NOTE C NO. 67, 1970. C G. KLUGE, COMPUTER PHYSICS COMMUNICATIONS 3, 31-35, 1972 C-------------------------------------------------------------------- C CHANGES (D. BILITZA, NOV 87): C - USING CORRECT DIPOL MOMENT I.E.,DIFFERENT COMMON/MODEL/ C - USING IGRF EARTH MAGNETIC FIELD MODELS FROM 1945 TO 1990 C-------------------------------------------------------------------- C INPUT: ENTRY POINT SHELLG C GLAT GEODETIC LATITUDE IN DEGREES (NORTH) C GLON GEODETIC LONGITUDE IN DEGREES (EAST) C ALT ALTITUDE IN KM ABOVE SEA LEVEL C C ENTRY POINT SHELLC C V(3) CARTESIAN COORDINATES IN EARTH RADII (6371.2 KM) C X-AXIS POINTING TO EQUATOR AT 0 LONGITUDE C Y-AXIS POINTING TO EQUATOR AT 90 LONG. C Z-AXIS POINTING TO NORTH POLE C C DIMO DIPOL MOMENT IN GAUSS (NORMALIZED TO EARTH RADIUS) C C COMMON C X(3) NOT USED C H(144) FIELD MODEL COEFFICIENTS ADJUSTED FOR SHELLG C----------------------------------------------------------------------- C OUTPUT: FL L-VALUE C ICODE =1 NORMAL COMPLETION C =2 UNPHYSICAL CONJUGATE POINT (FL MEANINGLESS) C =3 SHELL PARAMETER GREATER THAN LIMIT UP TO C WHICH ACCURATE CALCULATION IS REQUIRED; C APPROXIMATION IS USED. C B0 MAGNETIC FIELD STRENGTH IN GAUSS C----------------------------------------------------------------------- DIMENSION V(3),U(3,3),P(8,100),SP(3) COMMON X(3),H(144) COMMON/FIDB0/ SP COMMON/GENER/ UMR,ERA,AQUAD,BQUAD C C-- RMIN, RMAX ARE BOUNDARIES FOR IDENTIFICATION OF ICODE=2 AND 3 C-- STEP IS STEP SIZE FOR FIELD LINE TRACING C-- STEQ IS STEP SIZE FOR INTEGRATION C DATA RMIN,RMAX /0.05,1.01/ DATA STEP,STEQ /0.20,0.03/ BEQU=1.E10 C*****ENTRY POINT SHELLG TO BE USED WITH GEODETIC CO-ORDINATES RLAT=GLAT*UMR CT=SIN(RLAT) ST=COS(RLAT) D=SQRT(AQUAD-(AQUAD-BQUAD)*CT*CT) X(1)=(ALT+AQUAD/D)*ST/ERA X(3)=(ALT+BQUAD/D)*CT/ERA RLON=GLON*UMR X(2)=X(1)*SIN(RLON) X(1)=X(1)*COS(RLON) GOTO9 ENTRY SHELLC(V,FL,B0) C*****ENTRY POINT SHELLC TO BE USED WITH CARTESIAN CO-ORDINATES X(1)=V(1) X(2)=V(2) X(3)=V(3) C*****CONVERT TO DIPOL-ORIENTED CO-ORDINATES DATA U/ +0.3511737,-0.9148385,-0.1993679, A +0.9335804,+0.3583680,+0.0000000, B +0.0714471,-0.1861260,+0.9799247/ 9 RQ=1./(X(1)*X(1)+X(2)*X(2)+X(3)*X(3)) R3H=SQRT(RQ*SQRT(RQ)) P(1,2)=(X(1)*U(1,1)+X(2)*U(2,1)+X(3)*U(3,1))*R3H P(2,2)=(X(1)*U(1,2)+X(2)*U(2,2) )*R3H P(3,2)=(X(1)*U(1,3)+X(2)*U(2,3)+X(3)*U(3,3))*RQ C*****FIRST THREE POINTS OF FIELD LINE STEP=-SIGN(STEP,P(3,2)) CALL STOER(P(1,2),BQ2,R2) B0=SQRT(BQ2) P(1,3)=P(1,2)+0.5*STEP*P(4,2) P(2,3)=P(2,2)+0.5*STEP*P(5,2) P(3,3)=P(3,2)+0.5*STEP CALL STOER(P(1,3),BQ3,R3) P(1,1)=P(1,2)-STEP*(2.*P(4,2)-P(4,3)) P(2,1)=P(2,2)-STEP*(2.*P(5,2)-P(5,3)) P(3,1)=P(3,2)-STEP CALL STOER(P(1,1),BQ1,R1) P(1,3)=P(1,2)+STEP*(20.*P(4,3)-3.*P(4,2)+P(4,1))/18. P(2,3)=P(2,2)+STEP*(20.*P(5,3)-3.*P(5,2)+P(5,1))/18. P(3,3)=P(3,2)+STEP CALL STOER(P(1,3),BQ3,R3) C*****INVERT SENSE IF REQUIRED IF(BQ3.LE.BQ1)GOTO2 STEP=-STEP R3=R1 BQ3=BQ1 DO 1 I=1,7 ZZ=P(I,1) P(I,1)=P(I,3) 1 P(I,3)=ZZ C*****SEARCH FOR LOWEST MAGNETIC FIELD STRENGTH 2 IF(BQ1.LT.BEQU) THEN BEQU=BQ1 IEQU=1 ENDIF IF(BQ2.LT.BEQU) THEN BEQU=BQ2 IEQU=2 ENDIF IF(BQ3.LT.BEQU) THEN BEQU=BQ3 IEQU=3 ENDIF C*****INITIALIZATION OF INTEGRATION LOOPS STEP12=STEP/12. STEP2=STEP+STEP STEQ=SIGN(STEQ,STEP) FI=0. ICODE=1 ORADIK=0. OTERM=0. STP=R2*STEQ Z=P(3,2)+STP STP=STP/0.75 P(8,1)=STEP2*(P(1,1)*P(4,1)+P(2,1)*P(5,1)) P(8,2)=STEP2*(P(1,2)*P(4,2)+P(2,2)*P(5,2)) C*****MAIN LOOP (FIELD LINE TRACING) DO 3 N=3,3333 C*****CORRECTOR (FIELD LINE TRACING) P(1,N)=P(1,N-1)+STEP12*(5.*P(4,N)+8.*P(4,N-1)-P(4,N-2)) P(2,N)=P(2,N-1)+STEP12*(5.*P(5,N)+8.*P(5,N-1)-P(5,N-2)) C*****PREPARE EXPANSION COEFFICIENTS FOR INTERPOLATION C*****OF SLOWLY VARYING QUANTITIES P(8,N)=STEP2*(P(1,N)*P(4,N)+P(2,N)*P(5,N)) C0=P(1,N-1)**2+P(2,N-1)**2 C1=P(8,N-1) C2=(P(8,N)-P(8,N-2))*0.25 C3=(P(8,N)+P(8,N-2)-C1-C1)/6.0 D0=P(6,N-1) D1=(P(6,N)-P(6,N-2))*0.5 D2=(P(6,N)+P(6,N-2)-D0-D0)*0.5 E0=P(7,N-1) E1=(P(7,N)-P(7,N-2))*0.5 E2=(P(7,N)+P(7,N-2)-E0-E0)*0.5 C*****INNER LOOP (FOR QUADRATURE) 4 T=(Z-P(3,N-1))/STEP IF(T.GT.1.)GOTO5 HLI=0.5*(((C3*T+C2)*T+C1)*T+C0) ZQ=Z*Z R=HLI+SQRT(HLI*HLI+ZQ) IF(R.LE.RMIN)GOTO30 RQ=R*R FF=SQRT(1.+3.*ZQ/RQ) RADIK=B0-((D2*T+D1)*T+D0)*R*RQ*FF IF(R-RMAX)44,44,45 45 ICODE=2 RADIK=RADIK-12.*(R-RMAX)**2 44 IF(RADIK+RADIK.LE.ORADIK) GOTO 10 TERM=SQRT(RADIK)*FF*((E2*T+E1)*T+E0)/(RQ+ZQ) FI=FI+STP*(OTERM+TERM) ORADIK=RADIK OTERM=TERM STP=R*STEQ Z=Z+STP GOTO4 C*****PREDICTOR (FIELD LINE TRACING) 5 P(1,N+1)=P(1,N)+STEP12*(23.*P(4,N)-16.*P(4,N-1)+5.*P(4,N-2)) P(2,N+1)=P(2,N)+STEP12*(23.*P(5,N)-16.*P(5,N-1)+5.*P(5,N-2)) P(3,N+1)=P(3,N)+STEP CALL STOER(P(1,N+1),BQ3,R3) C*****SEARCH FOR LOWEST MAGNETIC FIELD STRENGTH IF(BQ3.LT.BEQU) THEN IEQU=N+1 BEQU=BQ3 ENDIF 3 CONTINUE 10 IF(IEQU.lt.2) IEQU=2 SP(1)=P(1,IEQU-1) SP(2)=P(2,IEQU-1) SP(3)=P(3,IEQU-1) IF(ORADIK.LT.1E-15)GOTO11 FI=FI+STP/0.75*OTERM*ORADIK/(ORADIK-RADIK) C C-- The minimal allowable value of FI was changed from 1E-15 to 1E-12, C-- because 1E-38 is the minimal allowable arg. for ALOG in our envir. C-- D. Bilitza, Nov 87. C 11 FI=0.5*ABS(FI)/SQRT(B0)+1E-12 C C*****COMPUTE L FROM B AND I. SAME AS CARMEL IN INVAR. C C-- Correct dipole moment is used here. D. Bilitza, Nov 87. C DIMOB0=DIMO/B0 arg1=alog(FI) arg2=alog(DIMOB0) c arg = FI*FI*FI/DIMOB0 c if(abs(arg).gt.88.0) arg=88.0 XX=3*arg1-arg2 IF(XX.GT.23.0) GOTO 776 IF(XX.GT.11.7) GOTO 775 IF(XX.GT.+3.0) GOTO 774 IF(XX.GT.-3.0) GOTO 773 IF(XX.GT.-22.) GOTO 772 771 GG=3.33338E-1*XX+3.0062102E-1 GOTO777 772 GG=((((((((-8.1537735E-14*XX+8.3232531E-13)*XX+1.0066362E-9)*XX+ 18.1048663E-8)*XX+3.2916354E-6)*XX+8.2711096E-5)*XX+1.3714667E-3)* 2XX+1.5017245E-2)*XX+4.3432642E-1)*XX+6.2337691E-1 GOTO777 773 GG=((((((((2.6047023E-10*XX+2.3028767E-9)*XX-2.1997983E-8)*XX- 15.3977642E-7)*XX-3.3408822E-6)*XX+3.8379917E-5)*XX+1.1784234E-3)* 2XX+1.4492441E-2)*XX+4.3352788E-1)*XX+6.228644E-1 GOTO777 774 GG=((((((((6.3271665E-10*XX-3.958306E-8)*XX+9.9766148E-07)*XX- 11.2531932E-5)*XX+7.9451313E-5)*XX-3.2077032E-4)*XX+2.1680398E-3)* 2XX+1.2817956E-2)*XX+4.3510529E-1)*XX+6.222355E-1 GOTO777 775 GG=(((((2.8212095E-8*XX-3.8049276E-6)*XX+2.170224E-4)*XX-6.7310339 1E-3)*XX+1.2038224E-1)*XX-1.8461796E-1)*XX+2.0007187E0 GOTO777 776 GG=XX-3.0460681E0 777 FL=EXP(ALOG((1.+EXP(GG))*DIMOB0)/3.0) RETURN C*****APPROXIMATION FOR HIGH VALUES OF L. 30 ICODE=3 T=-P(3,N-1)/STEP FL=1./(ABS(((C3*T+C2)*T+C1)*T+C0)+1E-15) RETURN END C C SUBROUTINE STOER(P,BQ,R) C******************************************************************* C* SUBROUTINE USED FOR FIELD LINE TRACING IN SHELLG * C* CALLS ENTRY POINT FELDI IN GEOMAGNETIC FIELD SUBROUTINE FELDG * C******************************************************************* DIMENSION P(7),U(3,3) COMMON XI(3),H(144) C*****XM,YM,ZM ARE GEOMAGNETIC CARTESIAN INVERSE CO-ORDINATES ZM=P(3) FLI=P(1)*P(1)+P(2)*P(2)+1E-15 R=0.5*(FLI+SQRT(FLI*FLI+(ZM+ZM)**2)) RQ=R*R WR=SQRT(R) XM=P(1)*WR YM=P(2)*WR C*****TRANSFORM TO GEOGRAPHIC CO-ORDINATE SYSTEM DATA U/ +0.3511737,-0.9148385,-0.1993679, A +0.9335804,+0.3583680,+0.0000000, B +0.0714471,-0.1861260,+0.9799247/ XI(1)=XM*U(1,1)+YM*U(1,2)+ZM*U(1,3) XI(2)=XM*U(2,1)+YM*U(2,2)+ZM*U(2,3) XI(3)=XM*U(3,1) +ZM*U(3,3) C*****COMPUTE DERIVATIVES C CALL FELDI(XI,H) CALL FELDI Q=H(1)/RQ DX=H(3)+H(3)+Q*XI(1) DY=H(4)+H(4)+Q*XI(2) DZ=H(2)+H(2)+Q*XI(3) C*****TRANSFORM BACK TO GEOMAGNETIC CO-ORDINATE SYSTEM DXM=U(1,1)*DX+U(2,1)*DY+U(3,1)*DZ DYM=U(1,2)*DX+U(2,2)*DY DZM=U(1,3)*DX+U(2,3)*DY+U(3,3)*DZ DR=(XM*DXM+YM*DYM+ZM*DZM)/R C*****FORM SLOWLY VARYING EXPRESSIONS P(4)=(WR*DXM-0.5*P(1)*DR)/(R*DZM) P(5)=(WR*DYM-0.5*P(2)*DR)/(R*DZM) DSQ=RQ*(DXM*DXM+DYM*DYM+DZM*DZM) BQ=DSQ*RQ*RQ P(6)=SQRT(DSQ/(RQ+3.*ZM*ZM)) P(7)=P(6)*(RQ+ZM*ZM)/(RQ*DZM) RETURN END C C SUBROUTINE FELDG(GLAT,GLON,ALT,BNORTH,BEAST,BDOWN,BABS) C------------------------------------------------------------------- C CALCULATES EARTH MAGNETIC FIELD FROM SPHERICAL HARMONICS MODEL C REF: G. KLUGE, EUROPEAN SPACE OPERATIONS CENTRE, INTERNAL NOTE 61, C 1970. C-------------------------------------------------------------------- C CHANGES (D. BILITZA, NOV 87): C - FIELD COEFFICIENTS IN BINARY DATA FILES INSTEAD OF BLOCK DATA C - CALCULATES DIPOL MOMENT C-------------------------------------------------------------------- C INPUT: ENTRY POINT FELDG C GLAT GEODETIC LATITUDE IN DEGREES (NORTH) C GLON GEODETIC LONGITUDE IN DEGREES (EAST) C ALT ALTITUDE IN KM ABOVE SEA LEVEL C C ENTRY POINT FELDC C V(3) CARTESIAN COORDINATES IN EARTH RADII (6371.2 KM) C X-AXIS POINTING TO EQUATOR AT 0 LONGITUDE C Y-AXIS POINTING TO EQUATOR AT 90 LONG. C Z-AXIS POINTING TO NORTH POLE C C COMMON BLANK AND ENTRY POINT FELDI ARE NEEDED WHEN USED C IN CONNECTION WITH L-CALCULATION PROGRAM SHELLG. C C COMMON /MODEL/ AND /GENER/ C UMR = ATAN(1.0)*4./180. *UMR= C ERA EARTH RADIUS FOR NORMALIZATION OF CARTESIAN C COORDINATES (6371.2 KM) C AQUAD, BQUAD SQUARE OF MAJOR AND MINOR HALF AXIS FOR C EARTH ELLIPSOID AS RECOMMENDED BY INTERNATIONAL C ASTRONOMICAL UNION (6378.160, 6356.775 KM). C NMAX MAXIMUM ORDER OF SPHERICAL HARMONICS C TIME YEAR (DECIMAL: 1973.5) FOR WHICH MAGNETIC C FIELD IS TO BE CALCULATED C G(M) NORMALIZED FIELD COEFFICIENTS (SEE FELDCOF) C M=NMAX*(NMAX+2) C------------------------------------------------------------------------ C OUTPUT: BABS MAGNETIC FIELD STRENGTH IN GAUSS C BNORTH, BEAST, BDOWN COMPONENTS OF THE FIELD WITH RESPECT C TO THE LOCAL GEODETIC COORDINATE SYSTEM, WITH AXIS C POINTING IN THE TANGENTIAL PLANE TO THE NORTH, EAST C AND DOWNWARD. C----------------------------------------------------------------------- DIMENSION V(3),B(3) CHARACTER*12 NAME COMMON XI(3),H(144) COMMON/MODEL/ NAME,NMAX,TIME,G(144) COMMON/GENER/ UMR,ERA,AQUAD,BQUAD C C-- IS RECORDS ENTRY POINT C C*****ENTRY POINT FELDG TO BE USED WITH GEODETIC CO-ORDINATES IS=1 RLAT=GLAT*UMR CT=SIN(RLAT) ST=COS(RLAT) D=SQRT(AQUAD-(AQUAD-BQUAD)*CT*CT) RLON=GLON*UMR CP=COS(RLON) SP=SIN(RLON) ZZZ=(ALT+BQUAD/D)*CT/ERA RHO=(ALT+AQUAD/D)*ST/ERA XXX=RHO*CP YYY=RHO*SP GOTO10 ENTRY FELDC(V,B) C*****ENTRY POINT FELDC TO BE USED WITH CARTESIAN CO-ORDINATES IS=2 XXX=V(1) YYY=V(2) ZZZ=V(3) 10 RQ=1./(XXX*XXX+YYY*YYY+ZZZ*ZZZ) XI(1)=XXX*RQ XI(2)=YYY*RQ XI(3)=ZZZ*RQ GOTO20 ENTRY FELDI C*****ENTRY POINT FELDI USED FOR L COMPUTATION IS=3 20 IHMAX=NMAX*NMAX+1 LAST=IHMAX+NMAX+NMAX IMAX=NMAX+NMAX-1 DO 8 I=IHMAX,LAST 8 H(I)=G(I) DO 6 K=1,3,2 I=IMAX IH=IHMAX 1 IL=IH-I F=2./FLOAT(I-K+2) X=XI(1)*F Y=XI(2)*F Z=XI(3)*(F+F) I=I-2 IF(I-1)5,4,2 2 DO 3 M=3,I,2 H(IL+M+1)=G(IL+M+1)+Z*H(IH+M+1)+X*(H(IH+M+3)-H(IH+M-1)) A -Y*(H(IH+M+2)+H(IH+M-2)) 3 H(IL+M)=G(IL+M)+Z*H(IH+M)+X*(H(IH+M+2)-H(IH+M-2)) A +Y*(H(IH+M+3)+H(IH+M-1)) 4 H(IL+2)=G(IL+2)+Z*H(IH+2)+X*H(IH+4)-Y*(H(IH+3)+H(IH)) H(IL+1)=G(IL+1)+Z*H(IH+1)+Y*H(IH+4)+X*(H(IH+3)-H(IH)) 5 H(IL)=G(IL)+Z*H(IH)+2.*(X*H(IH+1)+Y*H(IH+2)) IH=IL IF(I.GE.K)GOTO1 6 CONTINUE IF(IS.EQ.3)RETURN S=.5*H(1)+2.*(H(2)*XI(3)+H(3)*XI(1)+H(4)*XI(2)) T=(RQ+RQ)*SQRT(RQ) BXXX=T*(H(3)-S*XXX) BYYY=T*(H(4)-S*YYY) BZZZ=T*(H(2)-S*ZZZ) IF(IS.EQ.2)GOTO7 BABS=SQRT(BXXX*BXXX+BYYY*BYYY+BZZZ*BZZZ) BEAST=BYYY*CP-BXXX*SP BRHO=BYYY*SP+BXXX*CP BNORTH=BZZZ*ST-BRHO*CT BDOWN=-BZZZ*CT-BRHO*ST RETURN 7 B(1)=BXXX B(2)=BYYY B(3)=BZZZ RETURN END C C SUBROUTINE FELDCOF(YEAR,DIMO) C------------------------------------------------------------------------ C DETERMINES COEFFICIENTS AND DIPOL MOMENT FROM IGRF MODELS C C INPUT: YEAR DECIMAL YEAR FOR WHICH GEOMAGNETIC FIELD IS TO C BE CALCULATED C OUTPUT: DIMO GEOMAGNETIC DIPOL MOMENT IN GAUSS (NORMALIZED C TO EARTH'S RADIUS) AT THE TIME (YEAR) C D. BILITZA, NSSDC, GSFC, CODE 633, GREENBELT, MD 20771, C (301)286-9536 NOV 1987. C ### updated to IGRF-2000 version -dkb- 5/31/2000 C ### updated to IGRF-2005 version -dkb- 3/24/2000 C----------------------------------------------------------------------- CHARACTER*12 FILMOD, FIL1, FIL2 C ### FILMOD, DTEMOD arrays +1 c DIMENSION GH1(144),GH2(120),GHA(144),FILMOD(14),DTEMOD(14) DIMENSION GH1(144),GH2(120),GHA(144),FILMOD(3),DTEMOD(3) DOUBLE PRECISION X,F0,F COMMON/MODEL/ FIL1,NMAX,TIME,GH1 COMMON/GENER/ UMR,ERAD,AQUAD,BQUAD C ### updated to 2005 DATA FILMOD /'dgrf00.dat', 'igrf05.dat', 1 'igrf05s.dat'/ DATA DTEMOD / 2000., 2005., 2010./ c c DATA FILMOD /'dgrf45.dat', 'dgrf50.dat', c 1 'dgrf55.dat', 'dgrf60.dat', 'dgrf65.dat', c 2 'dgrf70.dat', 'dgrf75.dat', 'dgrf80.dat', c 3 'dgrf85.dat', 'dgrf90.dat', 'dgrf95.dat', c 4 'dgrf00.dat','igrf05.dat','igrf05s.dat'/ c DATA DTEMOD / 1945., 1950., 1955., 1960., 1965., 1970., c 1 1975., 1980., 1985., 1990., 1995., 2000.,2005.,2010./ C C ### numye = numye + 1 ; is number of years represented by IGRF C c NUMYE=13 NUMYE=2 C C IS=0 FOR SCHMIDT NORMALIZATION IS=1 GAUSS NORMALIZATION C IU IS INPUT UNIT NUMBER FOR IGRF COEFFICIENT SETS C IU = 10 IS = 0 C-- DETERMINE IGRF-YEARS FOR INPUT-YEAR TIME = YEAR IYEA = INT(YEAR/5.)*5 c L = (IYEA - 1945)/5 + 1 L = (IYEA - 2000)/5 + 1 IF(L.LT.1) L=1 IF(L.GT.NUMYE) L=NUMYE DTE1 = DTEMOD(L) FIL1 = FILMOD(L) DTE2 = DTEMOD(L+1) FIL2 = FILMOD(L+1) C-- GET IGRF COEFFICIENTS FOR THE BOUNDARY YEARS CALL GETSHC (IU, FIL1, NMAX1, ERAD, GH1, IER) IF (IER .NE. 0) STOP CALL GETSHC (IU, FIL2, NMAX2, ERAD, GH2, IER) IF (IER .NE. 0) STOP C-- DETERMINE IGRF COEFFICIENTS FOR YEAR IF (L .LE. NUMYE-1) THEN CALL INTERSHC (YEAR, DTE1, NMAX1, GH1, DTE2, 1 NMAX2, GH2, NMAX, GHA) ELSE CALL EXTRASHC (YEAR, DTE1, NMAX1, GH1, NMAX2, 1 GH2, NMAX, GHA) ENDIF C-- DETERMINE MAGNETIC DIPOL MOMENT AND COEFFIECIENTS G F0=0.D0 DO 1234 J=1,3 F = GHA(J) * 1.D-5 F0 = F0 + F * F 1234 CONTINUE DIMO = DSQRT(F0) GH1(1) = 0.0 I=2 F0=1.D-5 IF(IS.EQ.0) F0=-F0 SQRT2=SQRT(2.) DO 9 N=1,NMAX X = N F0 = F0 * X * X / (4.D0 * X - 2.D0) IF(IS.EQ.0) F0 = F0 * (2.D0 * X - 1.D0) / X F = F0 * 0.5D0 IF(IS.EQ.0) F = F * SQRT2 GH1(I) = GHA(I-1) * F0 I = I+1 DO 9 M=1,N F = F * (X + M) / (X - M + 1.D0) IF(IS.EQ.0) F = F * DSQRT((X - M + 1.D0) / (X + M)) GH1(I) = GHA(I-1) * F GH1(I+1) = GHA(I) * F I=I+2 9 CONTINUE RETURN END C C SUBROUTINE GETSHC (IU, FSPEC, NMAX, ERAD, GH, IER) C =============================================================== C C Version 1.01 C C Reads spherical harmonic coefficients from the specified C file into an array. C C Input: C IU - Logical unit number C FSPEC - File specification C C Output: C NMAX - Maximum degree and order of model C ERAD - Earth's radius associated with the spherical C harmonic coefficients, in the same units as C elevation C GH - Schmidt quasi-normal internal spherical C harmonic coefficients C IER - Error number: = 0, no error C = -2, records out of order C = FORTRAN run-time error number C C A. Zunde C USGS, MS 964, Box 25046 Federal Center, Denver, CO 80225 C C =============================================================== CHARACTER FSPEC*(*), FOUT*55 DIMENSION GH(*) C --------------------------------------------------------------- C Open coefficient file. Read past first header record. C Read degree and order of model and Earth's radius. C --------------------------------------------------------------- WRITE(FOUT,667) FSPEC c 667 FORMAT('/usr/local/etc/httpd/cgi-bin/natasha/IRI/',A12) 667 FORMAT(A12) OPEN (IU, FILE=FOUT, STATUS='OLD', IOSTAT=IER, ERR=999) READ (IU, *, IOSTAT=IER, ERR=999) READ (IU, *, IOSTAT=IER, ERR=999) NMAX, ERAD C --------------------------------------------------------------- C Read the coefficient file, arranged as follows: C C N M G H C ---------------------- C / 1 0 GH(1) - C / 1 1 GH(2) GH(3) C / 2 0 GH(4) - C / 2 1 GH(5) GH(6) C NMAX*(NMAX+3)/2 / 2 2 GH(7) GH(8) C records \ 3 0 GH(9) - C \ . . . . C \ . . . . C NMAX*(NMAX+2) \ . . . . C elements in GH \ NMAX NMAX . . C C N and M are, respectively, the degree and order of the C coefficient. C --------------------------------------------------------------- I = 0 DO 2211 NN = 1, NMAX DO 2233 MM = 0, NN READ (IU, *, IOSTAT=IER, ERR=999) N, M, G, H IF (NN .NE. N .OR. MM .NE. M) THEN IER = -2 GOTO 999 ENDIF I = I + 1 GH(I) = G IF (M .NE. 0) THEN I = I + 1 GH(I) = H ENDIF 2233 CONTINUE 2211 CONTINUE 999 CLOSE (IU) RETURN END C C SUBROUTINE INTERSHC (DATE, DTE1, NMAX1, GH1, DTE2, 1 NMAX2, GH2, NMAX, GH) C =============================================================== C C Version 1.01 C C Interpolates linearly, in time, between two spherical C harmonic models. C C Input: C DATE - Date of resulting model (in decimal year) C DTE1 - Date of earlier model C NMAX1 - Maximum degree and order of earlier model C GH1 - Schmidt quasi-normal internal spherical C harmonic coefficients of earlier model C DTE2 - Date of later model C NMAX2 - Maximum degree and order of later model C GH2 - Schmidt quasi-normal internal spherical C harmonic coefficients of later model C C Output: C GH - Coefficients of resulting model C NMAX - Maximum degree and order of resulting model C C A. Zunde C USGS, MS 964, Box 25046 Federal Center, Denver, CO 80225 C C =============================================================== DIMENSION GH1(*), GH2(*), GH(*) C --------------------------------------------------------------- C The coefficients (GH) of the resulting model, at date C DATE, are computed by linearly interpolating between the C coefficients of the earlier model (GH1), at date DTE1, C and those of the later model (GH2), at date DTE2. If one C model is smaller than the other, the interpolation is C performed with the missing coefficients assumed to be 0. C --------------------------------------------------------------- FACTOR = (DATE - DTE1) / (DTE2 - DTE1) IF (NMAX1 .EQ. NMAX2) THEN K = NMAX1 * (NMAX1 + 2) NMAX = NMAX1 ELSE IF (NMAX1 .GT. NMAX2) THEN K = NMAX2 * (NMAX2 + 2) L = NMAX1 * (NMAX1 + 2) DO 1122 I = K + 1, L 1122 GH(I) = GH1(I) + FACTOR * (-GH1(I)) NMAX = NMAX1 ELSE K = NMAX1 * (NMAX1 + 2) L = NMAX2 * (NMAX2 + 2) DO 1133 I = K + 1, L 1133 GH(I) = FACTOR * GH2(I) NMAX = NMAX2 ENDIF DO 1144 I = 1, K 1144 GH(I) = GH1(I) + FACTOR * (GH2(I) - GH1(I)) RETURN END C C SUBROUTINE EXTRASHC (DATE, DTE1, NMAX1, GH1, NMAX2, 1 GH2, NMAX, GH) C =============================================================== C C Version 1.01 C C Extrapolates linearly a spherical harmonic model with a C rate-of-change model. C C Input: C DATE - Date of resulting model (in decimal year) C DTE1 - Date of base model C NMAX1 - Maximum degree and order of base model C GH1 - Schmidt quasi-normal internal spherical C harmonic coefficients of base model C NMAX2 - Maximum degree and order of rate-of-change C model C GH2 - Schmidt quasi-normal internal spherical C harmonic coefficients of rate-of-change model C C Output: C GH - Coefficients of resulting model C NMAX - Maximum degree and order of resulting model C C A. Zunde C USGS, MS 964, Box 25046 Federal Center, Denver, CO 80225 C C =============================================================== DIMENSION GH1(*), GH2(*), GH(*) C --------------------------------------------------------------- C The coefficients (GH) of the resulting model, at date C DATE, are computed by linearly extrapolating the coef- C ficients of the base model (GH1), at date DTE1, using C those of the rate-of-change model (GH2), at date DTE2. If C one model is smaller than the other, the extrapolation is C performed with the missing coefficients assumed to be 0. C --------------------------------------------------------------- FACTOR = (DATE - DTE1) IF (NMAX1 .EQ. NMAX2) THEN K = NMAX1 * (NMAX1 + 2) NMAX = NMAX1 ELSE IF (NMAX1 .GT. NMAX2) THEN K = NMAX2 * (NMAX2 + 2) L = NMAX1 * (NMAX1 + 2) DO 1155 I = K + 1, L 1155 GH(I) = GH1(I) NMAX = NMAX1 ELSE K = NMAX1 * (NMAX1 + 2) L = NMAX2 * (NMAX2 + 2) DO 1166 I = K + 1, L 1166 GH(I) = FACTOR * GH2(I) NMAX = NMAX2 ENDIF DO 1177 I = 1, K 1177 GH(I) = GH1(I) + FACTOR * GH2(I) RETURN END C C SUBROUTINE INITIZE C---------------------------------------------------------------- C Initializes the parameters in COMMON/GENER/ C C UMR = ATAN(1.0)*4./180. *UMR= C ERA EARTH RADIUS FOR NORMALIZATION OF CARTESIAN C COORDINATES (6371.2 KM) C EREQU MAJOR HALF AXIS FOR EARTH ELLIPSOID (6378.160 KM) C ERPOL MINOR HALF AXIS FOR EARTH ELLIPSOID (6356.775 KM) C AQUAD SQUARE OF MAJOR HALF AXIS FOR EARTH ELLIPSOID C BQUAD SQUARE OF MINOR HALF AXIS FOR EARTH ELLIPSOID C C ERA, EREQU and ERPOL as recommended by the INTERNATIONAL C ASTRONOMICAL UNION . C----------------------------------------------------------------- COMMON/GENER/ UMR,ERA,AQUAD,BQUAD ERA=6371.2 EREQU=6378.16 ERPOL=6356.775 AQUAD=EREQU*EREQU BQUAD=ERPOL*ERPOL UMR=ATAN(1.0)*4./180. RETURN END