/[PAMELA software]/quicklook/OrbitalRate/src/OrbitalRate.cpp
ViewVC logotype

Contents of /quicklook/OrbitalRate/src/OrbitalRate.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.9 - (show annotations) (download)
Sun Nov 4 16:01:37 2007 UTC (17 years, 1 month ago) by pam-rm2
Branch: MAIN
CVS Tags: v2r02, HEAD
Changes since 1.8: +11 -4 lines
Error occurred while calculating annotation data.
isUTC is kFALSE instead of kTRUE in TTimeStamp::Set().  I dont know why.

1 /**
2 * OrbitalRate
3 * author Nagni
4 * version 1.0 - 27 April 2006
5 *
6 * version 2.0
7 * author De Simone
8 * - most of the code rewritten
9 * - added graphs, magnetic field, new overflow resolution (AC), tle
10 * stuff.
11 *
12 */
13 #include <physics/anticounter/AnticounterEvent.h>
14 #include <physics/trigger/TriggerEvent.h>
15 #include <physics/neutronDetector/NeutronEvent.h>
16 #include "physics/neutronDetector/NeutronRecord.h"
17 #include <mcmd/McmdEvent.h>
18 #include <mcmd/McmdRecord.h>
19 #include <EventHeader.h>
20 #include <PscuHeader.h>
21 #include <TTree.h>
22 #include "sgp4.h"
23 #include "TH2F.h"
24 #include "TFrame.h"
25 #include "TGraph.h"
26 #include "TCanvas.h"
27 #include "TASImage.h"
28 #include <TDatime.h>
29 #include <TFile.h>
30
31 #include <TTimeStamp.h>
32 #include "TString.h"
33 #include "TObjString.h"
34 #include "TStyle.h"
35 #include "TPaletteAxis.h"
36 #include "TROOT.h"
37 #include <sys/stat.h>
38 #include <fstream>
39 #include <iostream>
40
41 #include <OrbitalRate.h>
42
43 using namespace std;
44
45 int main(int argc, char* argv[]){
46 TString *rootFile = NULL;
47 TString outDir = "./";
48 TString mapFile = "";
49 TString tleFile = "";
50 int offDate = 20060928;
51 // int offDate = 20060614;
52 int offTime = 210000;
53 bool field = false;
54
55 if (argc < 2){
56 printf("You have to insert at least the file to analyze and the mapFile \n");
57 printf("Try '--help' for more information. \n");
58 exit(1);
59 }
60
61 if (!strcmp(argv[1], "--help")){
62 printf( "Usage: OrbitRate FILE -map mapFile [OPTION] \n");
63 printf( "mapFile have to be a mercator map image [gif|jpg|png] \n");
64 printf( "\t --help Print this help and exit \n");
65 printf( "\t -tle[File path] Path where to find the tle infos \n");
66 printf( "\t\tUse the script retrieve_TLE.sh to create the file.\n ");
67 printf( "\t -outDir[path] Path where to put the output.\n");
68 printf( "\t -offDate Date of resetting of the Resource counter [format YYMMDD (UTC date) default 20060928] \n");
69 printf( "\t -offTime Time of resetting of the Resource counter [format HHMMSS (UTC date) default 210000] \n");
70 printf( "\t -field Produce maps of the magnetic field \n");
71 exit(1);
72 }
73
74 // Ok, here we should have at least one root file. We check that
75 // the filename contains ".root".
76 if(strstr(argv[1], ".root"))
77 rootFile = new TString(argv[1]);
78 else {
79 cerr << "OrbitalRate: no root file." << endl << "See --help" << endl;
80 exit(EXIT_FAILURE);
81 }
82
83 for (int i = 2; i < argc; i++){
84 if (!strcmp(argv[i], "-field")){
85 field = true;
86 i++;
87 continue;
88 }
89
90 if (!strcmp(argv[i], "-outDir")){
91 if (++i >= argc){
92 printf( "-outDir needs arguments. \n");
93 printf( "Try '--help' for more information. \n");
94 exit(1);
95 } else {
96 outDir = argv[i];
97 continue;
98 }
99 }
100
101 if (!strcmp(argv[i], "-tle")){
102 if (++i >= argc){
103 printf( "-tle needs arguments. \n");
104 printf( "Try '--help' for more information. \n");
105 exit(1);
106 } else {
107 tleFile = argv[i];
108 continue;
109 }
110 }
111
112 if (!strcmp(argv[i], "-offTime")){
113 if (++i >= argc){
114 printf( "-offTime needs arguments. \n");
115 printf( "Try '--help' for more information. \n");
116 exit(1);
117 }
118 else{
119 offTime = atol(argv[i]);
120 continue;
121 }
122 }
123
124 if (!strcmp(argv[i], "-offDate")){
125 if (++i >= argc){
126 printf( "-offDate needs arguments. \n");
127 printf( "Try '--help' for more information. \n");
128 exit(1);
129 }
130 else{
131 offDate = atol(argv[i]);
132 continue;
133 }
134 }
135
136 if (!strcmp(argv[i], "-map")){
137 if (++i >= argc){
138 printf( "-map needs arguments. \n");
139 printf( "Try '--help' for more information. \n");
140 exit(1);
141 } else {
142 mapFile = argv[i];
143 continue;
144 }
145 }
146 }
147
148 if (mapFile != ""){
149 Rate(rootFile, outDir, mapFile, tleFile, offDate, offTime, field);
150 } else {
151 printf("You have to insert at least the file to analyze and the mapFile \n");
152 printf("Try '--help' for more information. \n");
153 }
154 }
155
156
157 void InitStyle() {
158 gROOT->SetStyle("Plain");
159
160 TStyle *myStyle[2], *tempo;
161 myStyle[0]=new TStyle("StyleWhite", "white");
162 myStyle[1]=new TStyle("StyleBlack", "black");
163
164 tempo=gStyle;
165 Int_t linecol, bkgndcol, histcol;
166
167 for(Int_t style=0; style<2; style++) {
168
169 linecol=kWhite*style+kBlack*(1-style);
170 bkgndcol=kBlack*style+kWhite*(1-style);
171 histcol=kYellow*style+kBlack*(1-style); // was 95
172
173 myStyle[style]->Copy(*tempo);
174
175 myStyle[style]->SetCanvasBorderMode(0);
176 myStyle[style]->SetCanvasBorderSize(1);
177 myStyle[style]->SetFrameBorderSize(1);
178 myStyle[style]->SetFrameBorderMode(0);
179 myStyle[style]->SetPadBorderSize(1);
180 myStyle[style]->SetStatBorderSize(1);
181 myStyle[style]->SetTitleBorderSize(1);
182 myStyle[style]->SetPadBorderMode(0);
183 myStyle[style]->SetPalette(1,0);
184 myStyle[style]->SetPaperSize(20,27);
185 myStyle[style]->SetFuncColor(kRed);
186 myStyle[style]->SetFuncWidth(1);
187 myStyle[style]->SetLineScalePS(1);
188 myStyle[style]->SetCanvasColor(bkgndcol);
189 myStyle[style]->SetAxisColor(linecol,"XYZ");
190 myStyle[style]->SetFrameFillColor(bkgndcol);
191 myStyle[style]->SetFrameLineColor(linecol);
192 myStyle[style]->SetLabelColor(linecol,"XYZ");
193 myStyle[style]->SetPadColor(bkgndcol);
194 myStyle[style]->SetStatColor(bkgndcol);
195 myStyle[style]->SetStatTextColor(linecol);
196 myStyle[style]->SetTitleColor(linecol,"XYZ");
197 myStyle[style]->SetTitleFillColor(bkgndcol);
198 myStyle[style]->SetTitleTextColor(linecol);
199 myStyle[style]->SetLineColor(linecol);
200 myStyle[style]->SetMarkerColor(histcol);
201 myStyle[style]->SetTextColor(linecol);
202
203 myStyle[style]->SetGridColor((style)?13:kBlack);
204 myStyle[style]->SetHistFillStyle(1001*(1-style));
205 myStyle[style]->SetHistLineColor(histcol);
206 myStyle[style]->SetHistFillColor((style)?bkgndcol:kYellow);
207
208 myStyle[style]->SetOptStat(0); // Remove statistic summary
209 }
210
211 myStyle[1]->cd();
212
213 gROOT->ForceStyle();
214
215 }
216
217
218 void Rate(TString *filename, TString outDirectory = "", TString mapFile = "", TString tleFile = "", int offDate = 20060614, int offTime = 210000, bool field = false)
219 {
220 // **** Offset to temporarily correct the TDatime bug ****/
221 // offTime += 10000;
222 //********************************************************/
223
224 TTree *tr = 0;
225 TFile *rootFile;
226 FILE *f;
227
228 pamela::McmdEvent *mcmdev = 0;
229 pamela::McmdRecord *mcmdrc = 0;
230 pamela::EventHeader *eh = 0;
231 pamela::PscuHeader *ph = 0;
232 TArrayC *mcmddata;
233 ULong64_t nevents = 0;
234 stringstream oss;
235
236 Float_t timesync = 0, obt_timesync = 0;
237 Long64_t offsetTime = 0;
238 Long64_t timeElapsedFromTLE = 0;
239 Long64_t deltaTime = 0, oldtimeElapsedFromTLE = 0;
240 bool a_second_is_over;
241
242 Float_t lon, lat, alt;
243
244 vector<Double_t> vector_trigAndOr;
245 vector<Double_t> vector_trigAndAnd;
246 vector<Double_t> vector_trigS11andS12;
247 vector<Double_t> vector_trigS12andS21andS22;
248 vector<Double_t> vector_trigS111A;
249
250 double mean_trigAndOr;
251 double mean_trigAndAnd;
252 double mean_trigS11andS12;
253 double mean_trigS12andS21andS22;
254 double mean_trigS111A;
255
256 // We'll use this size for the generated images.
257 TImage *tImage=TImage::Open(mapFile);
258 int width=(int)(tImage->GetWidth()*0.80);
259 int height=(int)(tImage->GetHeight()*0.80);
260 delete tImage;
261
262 // This histogram will store time (in seconds) spent in each bin.
263 TH2F *obtBinTime = new TH2F("obtBinTime", "Time of acquisition of background data", 360, -180, 180, 180, -90, 90);
264
265 // Now I create histograms longitude x latitude to hold values. I
266 // use the suffix _counter to say that this values are what I read
267 // from Pamela and they are not normalized in any way.
268
269 // This historam will store the number of events occurred in each bin.
270 TH2F *event_counter = new TH2F("event_counter", "Event rate", 360, -180, 180, 180, -90, 90);
271 TH2F *nd_counter = new TH2F("nd_counter", "Upper background neutrons", 360, -180, 180, 180, -90, 90);
272 TH2F *antiCAS4_counter = new TH2F("CAS4_counter", "CAS4 rate", 360, -180, 180, 180, -90, 90);
273 TH2F *antiCAS3_counter = new TH2F("CAS3_counter", "CAS3 rate", 360, -180, 180, 180, -90, 90);
274 TH2F *trigAndOr_counter = new TH2F("trigAndOr_counter", "Rate of triggering in (S11+S12)*(S21+S22)*(S31+S32) configuration", 360, -180, 180, 180, -90, 90);
275 TH2F *trigAndAnd_counter = new TH2F("trigAndAnd_counter", "Rate of triggering in (S11*S12)*(S21*S22)*(S31*S32) configuration", 360, -180, 180, 180, -90, 90);
276 TH2F *trigS11andS12_counter = new TH2F("trigS11andS12_counter", "Rate of S1 triggers", 360, -180, 180, 180, -90, 90); //(S11+S12)
277 TH2F *trigS12andS21andS22_counter = new TH2F("trigS12andS21andS22_counter", "Rate of S11*S21*S21 triggers", 360, -180, 180, 180, -90, 90); //(S11*S12*S21)
278 TH2F *trigS111A_counter = new TH2F("trigS111A_counter", "Rate of S111A counts", 360, -180, 180, 180, -90, 90); //(S111A)
279
280 // Magnetic field histograms. I use always the suffix _counter
281 // because they are not normalized. Imagine that an instrument
282 // give us the value of the magnetic field for each event.
283 TH2F *hbabs_counter;
284 TH2F *hbnorth_counter;
285 TH2F *hbdown_counter;
286 TH2F *hbeast_counter;
287 TH2F *hb0_counter;
288 TH2F *hl_counter;
289
290 if(field) {
291 hbabs_counter = new TH2F("hbabs_counter", "B module", 360, -180, 180, 180, -90, 90);
292 hbnorth_counter = new TH2F("hbnorth_counter", "B north", 360, -180, 180, 180, -90, 90);
293 hbdown_counter = new TH2F("hbdown_counter", "B down", 360, -180, 180, 180, -90, 90);
294 hbeast_counter = new TH2F("hbeast_counter", "B east", 360, -180, 180, 180, -90, 90);
295 hb0_counter = new TH2F("hb0_counter", "B_0", 360, -180, 180, 180, -90, 90);
296 hl_counter = new TH2F("hl_counter", "l", 360, -180, 180, 180, -90, 90);
297 }
298
299 // Get a char* to "file" from "/dir1/dir2/.../file.root"
300 TString basename;
301 basename = ((TObjString*) filename->Tokenize('/')->Last())->GetString(); // we get file.root
302 basename = ((TObjString*)basename.Tokenize('.')->First())->GetString(); // we get file
303
304 // Exit if the map file doesn't exist.
305 if(! (f = fopen(mapFile.Data(), "r")) ) {
306 cerr << "Error: the file " << mapFile.Data() << " does not exists." << endl;
307 exit(EXIT_FAILURE);
308 }
309
310 // Open the root file.
311 rootFile = new TFile(filename->Data());
312 if (rootFile->IsZombie()) {
313 printf("The file %s does not exist\n", (filename->Data()));
314 exit(EXIT_FAILURE);
315 }
316
317 // Look for a timesync in the TFile rootFile. We also get the obt
318 // of the timesync mcmd.
319 bool err;
320 err = lookforTimesync(rootFile, &timesync, &obt_timesync);
321 if(!err) {
322 cerr << "Warning!!! No timesync info has been found in the file "
323 << filename->Data() << endl;
324 exit(EXIT_FAILURE);
325 }
326
327 // Here I do: resurs offset + timesync
328 TDatime offRes = TDatime(offDate, offTime);
329 TTimeStamp offResTS = TTimeStamp(offRes.GetYear(), offRes.GetMonth(), offRes.GetDay(), offRes.GetHour(), offRes.GetMinute(), offRes.GetSecond(), 0, kTRUE, timesync);
330 // cout<<"timesync="<<timesync<<" obt_timesync="<<obt_timesync<<endl;
331 // cout<<"offResTS.GetSec()="<<offResTS.GetSec()<<endl;
332 // cout<<"offResTS.AsString()="<<offResTS.AsString()<<endl<<endl;
333
334 // Now I need a pointer to a cTle object. The class misses a
335 // constructor without arguments, so we have to give it a dummy TLE.
336 string str1 = "RESURS-DK 1";
337 string str2 = "1 29228U 06021A 06170.19643714 .00009962 00000-0 21000-3 0 196";
338 string str3 = "2 29228 069.9363 054.7893 0167576 127.4359 017.0674 15.31839265 604";
339 cTle *tle1 = new cTle(str1, str2, str3);
340
341 // If we have to use a TLE file, call getTle().
342 if (tleFile != "")
343 tle1 = getTle(tleFile, offResTS); // modify getTle() to use offResTS!
344 else
345 cout<<"OrbitalRate: Warning!!! No tle file supplied.\n";
346
347 // Here I do: resurs offset + timesync - obt of the timesync
348 // cout<<"here0 "<<offResTS.GetSec()<<endl;
349 // offResTS.Set(offResTS.GetSec() - obt_timesync, kTRUE, 0, kFALSE);
350 offResTS.Set(offResTS.GetSec() - obt_timesync, kFALSE, 0, kFALSE);
351 // cout<<"here1 "<<offResTS.GetSec()<<endl;
352
353 cOrbit orbit(*tle1);
354 cEci eci;
355 cCoordGeo coo;
356
357 // Here I do: resurs offset + timesync - obt of the timesync - tle time
358 TTimeStamp tledate = getTleDatetime(tle1);
359 cJulian jdatetime = cJulian((int) (tle1->getField(cTle::FLD_EPOCHYEAR)+2e3), tle1->getField(cTle::FLD_EPOCHDAY));
360 int pYear, pMon; double pDOM;
361 jdatetime.getComponent(&pYear, &pMon, &pDOM);
362 offsetTime = ((Long64_t) offResTS.GetSec() - (Long64_t) tledate.GetSec());
363 // cerr<<"offsetTime="<<offsetTime<<endl
364 // <<"offResTS.GetSec()="<<offResTS.GetSec()<<endl
365 // <<"tledate.GetSec()="<<tledate.GetSec()<<endl<<endl;
366
367 /********** Magnetic Field **************/
368 // Check that all this is correct!
369 float br, btheta, bphi;
370
371 // I can now compute the magnetic dipole moment at the actual date,
372 // using the cJulian date. I don't to recompute it for every event
373 // beacause changes are not relevant at all.
374 UInt_t y, m, d;
375 tledate.GetDate(kTRUE, 0, &y, &m, &d);
376 float year = (float) y + (m*31+d)/365;
377
378 // Initialize common data for geopack
379 if(field)
380 recalc_(y, m*31+d, 0, 0, 0);
381 /********** Magnetic Field **************/
382
383 tr = (TTree*)rootFile->Get("Physics");
384 TBranch *headBr = tr->GetBranch("Header");
385 tr->SetBranchAddress("Header", &eh);
386
387 /********** Anticounter **************/
388 pamela::anticounter::AnticounterEvent *antiev = 0;
389 tr->SetBranchAddress("Anticounter", &antiev);
390
391 Int_t oldCAS4 = 0;
392 Int_t diffCAS4 = 0;
393 Int_t oldCAS3 = 0;
394 Int_t diffCAS3 = 0;
395 /********** Anticounter **************/
396
397 /********** Trigger **************/
398 pamela::trigger::TriggerEvent *trigger = 0;
399 tr->SetBranchAddress("Trigger", &trigger);
400
401 Int_t oldtrigAndOr = 0;
402 Int_t oldtrigAndAnd = 0;
403 Int_t oldtrigS11andS12 = 0;
404 Int_t oldtrigS12andS21andS22 = 0;
405 Int_t oldtrigS111A = 0;
406 /********** Trigger **************/
407
408 /********** ND **************/
409 Int_t tmpSize=0;
410 Int_t sumTrig=0;
411 Int_t sumUpperBackground=0;
412 Int_t sumBottomBackground=0;
413
414 pamela::neutron::NeutronRecord *nr = 0;
415 pamela::neutron::NeutronEvent *ne = 0;
416 tr->SetBranchAddress("Neutron", &ne);
417 /********** ND **************/
418
419 nevents = tr->GetEntries();
420
421 for(UInt_t i = 0; i < nevents; i++) //Fill variables from root-ple
422 {
423 tr->GetEntry(i);
424 ph = eh->GetPscuHeader();
425
426 // obt in ms
427 UInt_t obt = (UInt_t) ph->GetOrbitalTime();
428
429 // timeElapsedFromTLE is the difference, in seconds, between the
430 // event and the tle date. I use seconds and not milliseconds
431 // because the indetermination on the timesync is about 1s.
432 timeElapsedFromTLE = offsetTime + obt/1000;
433 if(!i) cerr<<"1st event: timeElapsedFromTLE="<<timeElapsedFromTLE<<endl;
434
435 // I also need the abstime in seconds rounded to the lower
436 // value. Every second, we set a_second_is_over to true. Only
437 // in this case histograms with triggers are filled.
438 a_second_is_over = (timeElapsedFromTLE > oldtimeElapsedFromTLE) ? 1 : 0;
439 oldtimeElapsedFromTLE = timeElapsedFromTLE;
440
441 // I need the acquisition time between two triggers to fill the
442 // obtBinTime (histo of time spent in the bin). The time is in
443 // second.
444 deltaTime = timeElapsedFromTLE - oldtimeElapsedFromTLE;
445 oldtimeElapsedFromTLE = timeElapsedFromTLE;
446
447 // Finally, we get coordinates from absolute time the orbit
448 // object initialised with the TLE data. cOrbit::getPosition()
449 // requires the elapased time from the tle in minutes.
450 // Coordinates are stored in the structure eci.
451 orbit.getPosition(((double) timeElapsedFromTLE)/60., &eci);
452 coo = eci.toGeo();
453
454 /********** ND **************/
455 // Summing over all stored pamela::neutron::NeutronRecords in
456 // this event *ne.
457 for(Int_t j = 0; j < ne->Records->GetEntries(); j++) {
458 nr = (pamela::neutron::NeutronRecord*)ne->Records->At(j);
459 sumTrig += (int)nr->trigPhysics;
460 sumUpperBackground += (int)nr->upperBack;
461 sumBottomBackground += (int)nr->bottomBack;
462 }
463 /********** ND **************/
464
465 /********** Anticounter **************/
466 // Get the difference between the actual counter and the
467 // previous counter for anticoincidence, dealing with the
468 // overflow with solve_ac_overflow().
469 diffCAS4 = solve_ac_overflow(oldCAS4, antiev->counters[0][6]);
470 diffCAS3 = solve_ac_overflow(oldCAS3, antiev->counters[0][10]);
471 /********** Anticounter **************/
472
473 // Build coordinates in the right range. We want to convert,
474 // just for aesthetic, longitude from (0, 2*pi) to (-pi, pi).
475 // We also want to convert from radians to degrees.
476 lon = (coo.m_Lon > PI) ? rad2deg(coo.m_Lon - 2*PI) : rad2deg(coo.m_Lon);
477 lat = rad2deg(coo.m_Lat);
478 alt = coo.m_Alt;
479
480 /********** Magnetic Field **************/
481 if(field)
482 igrf_geo__((coo.m_Alt+6371.2)/6371.2, M_PI/2.-coo.m_Lat, coo.m_Lon, br, btheta, bphi);
483 // cout<<"("<<(coo.m_Alt+6371.2)/6371.2<<", "<<M_PI/2.-coo.m_Lat<<", "<<coo.m_Lon<<")"<<endl;
484 /********** Magnetic Field **************/
485
486 // serve fare il controllo deltatime < 1?
487 if (deltaTime > 1) cout << endl << "******** deltaTime<1 ********" << endl;
488 // Does nothing for the first two events or if acquisition time if more
489 // than 1s.
490 if(i<1 || (deltaTime > 1)) continue;
491
492 // CAS3 and CAS4 are not rates but only counters. So I fill
493 // with the bin with the difference beetween the actual counter
494 // and the previous one and then divide with the time (see
495 // below) to have rates.
496 if(diffCAS3>1e3) // additional cut to avoid the peaks after dead time
497 diffCAS3 = (Int_t) antiCAS3_counter->GetBinContent((Int_t)antiCAS3_counter->GetEntries()-1);
498 antiCAS3_counter->Fill(lon , lat, diffCAS3);
499
500 if(diffCAS4>1e3) // additional cut to avoid the peaks after dead time
501 diffCAS4 = (Int_t) antiCAS4_counter->GetBinContent((Int_t) antiCAS4_counter->GetEntries()-1);
502 antiCAS4_counter->Fill(lon, lat, diffCAS4);
503
504 // Magnetic field values should be handled a bit carefully.
505 // For every event I get a position and the related magnetic
506 // field values. I can fill the histograms lon x lat with
507 // this values but I need to count how many times I fill
508 // each bin. This is done by the histogram event_counter.
509 // I will normalize later.
510 if(field) {
511 hbabs_counter->Fill(lon, lat, sqrt(br*br+btheta*btheta+bphi*bphi)*1e-5);
512 hbnorth_counter->Fill(lon, lat, -btheta*1e-5);
513 hbdown_counter->Fill(lon, lat, -br*1e-5);
514 hbeast_counter->Fill(lon, lat, bphi*1e-5);
515 }
516 // This histograms is now filled with the number of entries.
517 // Below we will divide with the time (in seconds) to get
518 // event rate per bin.
519 event_counter->Fill(lon, lat);
520
521 // counters about triggers are already rates (Hz). Only
522 // every second we fill fill with the mean over all values.
523 if(a_second_is_over) {
524 // This histograms will hold the time, in seconds, spent
525 // in the bin.
526 obtBinTime->Fill(lon, lat, 1);
527
528 // get the means
529 mean_trigAndOr = getMean(vector_trigAndOr);
530 mean_trigAndAnd = getMean(vector_trigAndAnd);
531 mean_trigS11andS12 = getMean(vector_trigS11andS12);
532 mean_trigS12andS21andS22 = getMean(vector_trigS12andS21andS22);
533 mean_trigS111A = getMean(vector_trigS111A);
534
535 // clear data about the last second
536 vector_trigAndOr.clear();
537 vector_trigAndAnd.clear();
538 vector_trigS11andS12.clear();
539 vector_trigS12andS21andS22.clear();
540 vector_trigS111A.clear();
541
542 // Fill with the mean rate value
543 trigAndOr_counter->Fill(lon , lat, mean_trigAndOr);
544 trigAndAnd_counter->Fill(lon , lat, mean_trigAndAnd);
545 trigS11andS12_counter->Fill(lon , lat, mean_trigS11andS12);
546 trigS12andS21andS22_counter->Fill(lon , lat, mean_trigS12andS21andS22);
547 trigS111A_counter->Fill(lon, lat, mean_trigS111A);
548 }
549 else { // Collect values for all the second
550 vector_trigAndOr.push_back((1/4.)*trigger->trigrate[0]);
551 vector_trigAndAnd.push_back((1/4.)*trigger->trigrate[1]);
552 // pmtpl[0] is the rate every 60ms but I want Hz.
553 vector_trigS11andS12.push_back((1000./60.)*trigger->pmtpl[0]);
554 vector_trigS12andS21andS22.push_back((1/4.)*trigger->trigrate[4]);
555 vector_trigS111A.push_back(1.*trigger->pmtcount1[0]);
556 }
557
558 // Now we discard ND data if:
559 // - NeutronEvent is corrupted.
560 if((ne->unpackError != 1))
561 nd_counter->Fill(lon, lat, 1.*(sumUpperBackground+sumTrig));
562
563 // Reset counters for ND.
564 sumTrig = 0;
565 sumUpperBackground = 0;
566 sumBottomBackground = 0;
567 }
568
569 // We now need to normalize the histograms to print something
570 // meaningful. I create similar histograms with the suffix _rate or
571 // _norm.
572 TH2F *event_rate = (TH2F*) event_counter->Clone("event_rate");
573 TH2F *trigS111A_rate = (TH2F*) trigS111A_counter->Clone("trigS111A_rate");
574 TH2F *antiCAS4_rate = (TH2F*) antiCAS4_counter->Clone("antiCAS4_rate");
575 TH2F *antiCAS3_rate = (TH2F*) antiCAS3_counter->Clone("antiCAS3_rate");
576 TH2F *trigS11andS12_rate = (TH2F*) trigS11andS12_counter->Clone("trigS11andS12_rate");
577 TH2F *trigS12andS21andS22_rate = (TH2F*) trigS12andS21andS22_counter->Clone("trigS12andS21andS22_rate");
578 TH2F *trigAndOr_rate = (TH2F*) trigAndOr_counter->Clone("trigAndOr_rate");
579 TH2F *trigAndAnd_rate = (TH2F*) trigAndAnd_counter->Clone("trigAndAnd_rate");
580 TH2F *nd_rate = (TH2F*) nd_counter->Clone("nd_rate");
581
582 TH2F *hbabs_norm;
583 TH2F *hbnorth_norm;
584 TH2F *hbdown_norm;
585 TH2F *hbeast_norm;
586
587 if(field) {
588 hbabs_norm = (TH2F*) hbabs_counter->Clone("hbabs_norm");
589 hbnorth_norm = (TH2F*) hbnorth_counter->Clone("hbnorth_norm");
590 hbdown_norm = (TH2F*) hbabs_counter->Clone("hbdown_norm");
591 hbeast_norm = (TH2F*) hbabs_counter->Clone("hbeast_norm");
592 }
593
594 // Now we divide each histogram _counter with the time histogram
595 // obtBinTime to have an histogram _rate. Note that, when a second
596 // is passed in the above cycle, we fill the histogram obtBinTime
597 // with 1 (second) together with all the other histograms. So
598 // dividing here does make sense.
599 //
600 // Then we call printHist() for each filled TH2F. These are
601 // refered to the root file we're now reading. We also build up a
602 // filename to be passed to the function. Pay attention that the
603 // filename must end with a file format (such as .png or .pdf)
604 // recognised by TPad::SaveAs().
605 trigS111A_rate->Divide(trigS111A_counter, obtBinTime, 1, 1, "");
606 oss.str("");
607 oss << basename.Data() << "_orbit_trigS111A.png";
608 trigS111A_rate->SetMinimum(9);
609 printHist(trigS111A_rate, mapFile, outDirectory, oss.str().c_str(), "S111A (Hz)", -width, height, true, 0);
610
611 antiCAS4_rate->Divide(antiCAS4_counter, obtBinTime, 1, 1, "");
612 oss.str("");
613 oss << basename.Data() << "_orbit_CAS4.png";
614 antiCAS4_rate->SetMinimum(99);
615 printHist(antiCAS4_rate, mapFile, outDirectory, oss.str().c_str(), "CAS4 (Hz)", -width, height, true, 0);
616
617 antiCAS3_rate->Divide(antiCAS3_counter, obtBinTime, 1, 1, "");
618 oss.str("");
619 oss << basename.Data() << "_orbit_CAS3.png";
620 antiCAS3_rate->SetMinimum(99);
621 printHist(antiCAS3_rate, mapFile, outDirectory, oss.str().c_str(), "CAS3 (Hz)", -width, height, true, 0);
622
623 event_rate->Divide(event_counter, obtBinTime, 1, 1, "");
624 oss.str("");
625 oss << basename.Data() << "_orbit_EventRate.png";
626 printHist(event_rate, mapFile, outDirectory, oss.str().c_str(), "Event rate (Hz)", -width, height, 0, 0);
627
628 trigS11andS12_rate->Divide(trigS11andS12_counter, obtBinTime, 1, 1, "");
629 oss.str("");
630 oss << basename.Data() << "_orbit_trigS11andS12.png";
631 trigS11andS12_rate->SetMinimum(99);
632 printHist(trigS11andS12_rate, mapFile, outDirectory, oss.str().c_str(), "(S11*S12) (Hz)", -width, height, 1, 0);
633
634 trigS12andS21andS22_rate->Divide(trigS12andS21andS22_counter, obtBinTime, 1, 1, "");
635 oss.str("");
636 oss << basename.Data() << "_orbit_trigS12andS21andS22.png";
637 trigS12andS21andS22_rate->SetMinimum(9);
638 printHist(trigS12andS21andS22_rate, mapFile, outDirectory, oss.str().c_str(), "(S12*S12*S21) (Hz)", -width, height, true, 0);
639
640 trigAndOr_rate->Divide(trigAndOr_counter, obtBinTime, 1, 1, "");
641 oss.str("");
642 oss << basename.Data() << "_orbit_trigANDofOR.png";
643 printHist(trigAndOr_rate, mapFile, outDirectory, oss.str().c_str(), "(S11+S12)*(S21+S22)*(S31+S32) (Hz)", -width, height, 0, 0);
644
645 trigAndAnd_rate->Divide(trigAndAnd_counter, obtBinTime, 1, 1, "");
646 oss.str("");
647 oss << basename.Data() << "_orbit_trigANDofAND.png";
648 printHist(trigAndAnd_rate, mapFile, outDirectory, oss.str().c_str(), "(S11*S12)*(S21*S22)*(S31*S32) (Hz)", -width, height, 0, 0);
649
650 nd_rate->Divide(nd_counter, obtBinTime, 1, 1, "");
651 oss.str("");
652 oss << basename.Data() << "_orbit_ND.png";
653 printHist(nd_rate, mapFile, outDirectory, oss.str().c_str(), "Neutron rate (Hz)", -width, height, 0, 0);
654
655 // Also normalize histograms about magnetic fields. Beacause we
656 // fill the bins with the values of the magnetic field for each
657 // event, we need to divide with the number of fills done, that is
658 // event_counter.
659 if(field) {
660 hbabs_norm->Divide(hbabs_counter, event_counter, 1, 1, "");
661 oss.str("");
662 oss << basename.Data() << "_orbit_Babs.png";
663 printHist(hbabs_norm, mapFile, outDirectory, oss.str().c_str(), "B abs (G)", -width, height, 0, 0);
664
665 hbnorth_norm->Divide(hbnorth_counter, event_counter, 1, 1, "");
666 oss.str("");
667 oss << basename.Data() << "_orbit_Bnorth.png";
668 printHist(hbnorth_norm, mapFile, outDirectory, oss.str().c_str(), "B north (G)", -width, height, 0, 1);
669
670 hbdown_norm->Divide(hbdown_counter, event_counter, 1, 1, "");
671 oss.str("");
672 oss << basename.Data() << "_orbit_Bdown.png";
673 printHist(hbdown_norm, mapFile, outDirectory, oss.str().c_str(), "B down (G)", -width, height, 0, 1);
674
675 hbeast_norm->Divide(hbeast_counter, event_counter, 1, 1, "");
676 oss.str("");
677 oss << basename.Data() << "_orbit_Beast.png";
678 printHist(hbeast_norm, mapFile, outDirectory, oss.str().c_str(), "B east (G)", -width, height, 0, 1);
679 }
680
681 delete obtBinTime;
682 delete event_counter;
683
684 delete nd_counter;
685 delete antiCAS4_counter;
686 delete antiCAS3_counter;
687 delete trigAndOr_counter;
688 delete trigAndAnd_counter;
689 delete trigS11andS12_counter;
690 delete trigS111A_counter;
691 delete trigS12andS21andS22_counter;
692
693 delete event_rate;
694 delete nd_rate;
695 delete antiCAS4_rate;
696 delete antiCAS3_rate;
697 delete trigAndOr_rate;
698 delete trigAndAnd_rate;
699 delete trigS11andS12_rate;
700 delete trigS111A_rate;
701 delete trigS12andS21andS22_rate;
702
703 if(field) {
704 delete hbabs_counter;
705 delete hbnorth_counter;
706 delete hbdown_counter;
707 delete hbeast_counter;
708 delete hbabs_norm;
709 delete hbnorth_norm;
710 delete hbdown_norm;
711 delete hbeast_norm;
712 }
713
714 rootFile->Close();
715 }
716
717
718 // Print the istogram *h on the file outputfilename in the direcotry
719 // outDirectory, using mapFile as background image, sizing the image
720 // width per height. Log scale will be used if use_log is true.
721 //
722 // If bool_shift is true a further process is performed to solve a
723 // problem with actual root version (5.12). This should be used when
724 // the histrogram is filled also with negative values, because root
725 // draws zero filled bins (so I have all the pad colorized and this is
726 // really weird!). To avoid this problem I shift all the values in a
727 // positive range and draw again using colz. Now I will not have zero
728 // filled bins painted but the scale will be wrong. This is why I
729 // need to draw a new axis along the palette.
730 //
731 // Pay attention: you cannot use a mapFile different from the provided
732 // one without adjusting the scaling and position of the image (see
733 // Scale() and Merge()).
734 //
735 // This function depends on InitStyle();
736 int printHist(TH2F *h, TString mapFile, TString outDirectory, TString outputFilename, const char *title, int width, int height, bool use_log, bool bool_shift)
737 {
738 InitStyle();
739
740 // Create a canvas and draw the TH2F with a nice colormap for z
741 // values, using log scale for z values, if requested, and setting
742 // some title.
743 TCanvas *canvas = new TCanvas("h", "h histogram", width*2, height*2);
744
745 if(use_log) canvas->SetLogz();
746
747 h->SetTitle(title);
748 h->SetXTitle("Longitude (deg)");
749 h->SetYTitle("Latitude (deg)");
750 h->SetLabelColor(0, "X");
751 h->SetAxisColor(0, "X");
752 h->SetLabelColor(0, "Y");
753 h->SetAxisColor(0, "Y");
754 h->SetLabelColor(0, "Z");
755 h->SetAxisColor(0, "Z");
756
757 h->Draw("colz");
758 canvas->Update(); // Update! Otherwise we can't get any palette.
759
760 // If shift in a positive range required (see comment above).
761 if(bool_shift) {
762 // Remember the minimum and maximum in this graph.
763 Float_t min = h->GetMinimum();
764 Float_t max = h->GetMaximum();
765
766 // Shift the graph up by 100. Increase the value if you still get
767 // negative filled bins.
768 h = shiftHist(h, 100.0);
769 h->SetMinimum(min+100.0);
770 h->SetMaximum(max+100.0);
771
772 // Hide the current axis of the palette
773 TPaletteAxis *palette = (TPaletteAxis*) h->GetListOfFunctions()->FindObject("palette");
774 if(!palette) cout << "palette is null" << endl;
775 TGaxis *ax = (TGaxis*) palette->GetAxis();
776 if(!ax) cout << "ax is null" << endl;
777 ax->SetLabelOffset(999);
778 ax->SetTickSize(0);
779
780 // Create a new axis of the palette using the right min and max and draw it.
781 TGaxis *gaxis = new TGaxis(palette->GetX2(), palette->GetY1(), palette->GetX2(), palette->GetY2(), min, max, 510,"+L");
782 gaxis->SetLabelColor(0);
783 gaxis->Draw();
784
785 // Update again.
786 canvas->Update();
787 }
788
789 // We merge two images: the image of the earth read from a file on
790 // that one of the TPad of canvas (the histogram). The first one is
791 // scaled and adjusted to fit well inside the frame of the second
792 // one. Finally we draw them both.
793 //
794 // Here there's a trick to avoid blurring during the merging
795 // operation. We get the image from a canvas sized (width*2 x
796 // height*2) and draw it on a canvas sized (width x height).
797
798 TCanvas *mergeCanvas = new TCanvas("", "", width, height);
799 TImage *img = TImage::Create();
800 TImage *terra = TImage::Create();
801 img->FromPad(canvas); // get the TCanvas canvas as TImage
802 terra->ReadImage(mapFile, TImage::kPng); // get the png file as TImage
803 terra->Scale(1304,830);
804 img->Merge(terra, "add", 166, 112); // add image terra to image img
805 img->Draw("X"); // see what we get, eXpanding img all over mergeCanvas.
806
807 stringstream oss;
808 oss << outDirectory.Data() << "/" << outputFilename.Data();
809
810 mergeCanvas->SaveAs(oss.str().c_str());
811 mergeCanvas->Close();
812 canvas->Close();
813
814 return EXIT_SUCCESS;
815 }
816
817 void saveHist(TH1 *h, TString savetorootfile)
818 {
819 TFile *file = new TFile(savetorootfile.Data(), "update");
820
821 h->Write();
822 file->Close();
823 }
824
825
826 // Get the TLE from tleFile. The right TLE is that one with the
827 // closest previous date to offRes, that is the date at the time of
828 // the first timesync found in the root file.
829 //
830 // Warning: you must use a tle file obtained by space-track.org
831 // querying the database with the RESURS DK-1 id number 29228,
832 // selecting the widest timespan, including the satellite name in the
833 // results.
834 cTle *getTle(TString tleFile, TTimeStamp offResTS)
835 {
836 Float_t tledatefromfile, tledatefromroot;
837 fstream tlefile(tleFile.Data(), ios::in);
838 vector<cTle*> ctles;
839 vector<cTle*>::iterator iter;
840
841
842 // Build a vector of *cTle
843 while(1) {
844 cTle *tlef;
845 string str1, str2, str3;
846
847 getline(tlefile, str1);
848 if(tlefile.eof()) break;
849
850 getline(tlefile, str2);
851 if(tlefile.eof()) break;
852
853 getline(tlefile, str3);
854 if(tlefile.eof()) break;
855
856 // We now have three good lines for a cTle.
857 tlef = new cTle(str1, str2, str3);
858 ctles.push_back(tlef);
859 }
860
861 // Sort by date
862 sort(ctles.begin(), ctles.end(), compTLE);
863
864 UInt_t year, month, day;
865 offResTS.GetDate(kTRUE, 0, &year, &month, &day);
866 TTimeStamp firstofjan = TTimeStamp(year, 1, 1, 0, 0, 0);
867 tledatefromroot = (year-2000)*1e3 + (offResTS.GetSec() - firstofjan.GetSec())/(24.*3600.);
868
869 for(iter = ctles.begin(); iter != ctles.end(); iter++) {
870 cTle *tle = *iter;
871
872 tledatefromfile = getTleJulian(tle);
873
874 if(tledatefromroot > tledatefromfile) {
875 tlefile.close();
876 cTle *thisTle = tle;
877 ctles.clear();
878
879 return thisTle;
880 }
881 }
882
883 // File ended withoud founding a TLE with a date after offRes. We'll use the last aviable date.
884 cerr << "Warning: using last available TLE in " << tleFile.Data() << ". Consider updating your tle file." << endl;
885
886 tlefile.close();
887 cTle *thisTle = ctles[ctles.size()-1];
888 ctles.clear();
889
890 return thisTle;
891 }
892
893
894 // Return whether the first TLE is older than the second
895 bool compTLE (cTle *tle1, cTle *tle2)
896 {
897 return getTleJulian(tle1) > getTleJulian(tle2);
898 }
899
900
901 // Return the date of the tle using the format (year-2000)*1e3 +
902 // julian day. e.g. 6364.5 is the 31th Dec 2006 12:00:00.
903 // It does *not* return a cJulian date.
904 float getTleJulian(cTle *tle) {
905 return tle->getField(cTle::FLD_EPOCHYEAR)*1e3 + tle->getField(cTle::FLD_EPOCHDAY);
906 }
907
908
909 // Look for a timesync in the TFile rootFile. Set timesync and
910 // obt_timesync. Returns 1 if timesync is found, 0 otherwise.
911 UInt_t lookforTimesync(TFile *rootFile, Float_t *timesync, Float_t *obt_timesync) {
912 *timesync = -1; // will be != -1 if found
913
914 ULong64_t nevents = 0;
915 pamela::McmdRecord *mcmdrc = 0;
916 pamela::McmdEvent *mcmdev = 0;
917 TArrayC *mcmddata;
918 TTree *tr = (TTree*) rootFile->Get("Mcmd");
919
920 tr->SetBranchAddress("Mcmd", &mcmdev);
921
922 nevents = tr->GetEntries();
923
924 // Looking for a timesync. We stop at the first one found.
925 long int recEntries;
926
927 for(UInt_t i = 0; i < nevents; i++) {
928 tr->GetEntry(i);
929 recEntries = mcmdev->Records->GetEntries();
930
931 for(UInt_t j = 0; j < recEntries; j++) {
932 mcmdrc = (pamela::McmdRecord*)mcmdev->Records->At(j);
933
934 if ((mcmdrc != 0) && (mcmdrc->ID1 == 0xE0)) //Is it a TimeSync?
935 {
936 mcmddata = mcmdrc->McmdData;
937 *timesync = (((unsigned int)mcmddata->At(0)<<24)&0xFF000000)
938 + (((unsigned int)mcmddata->At(1)<<16)&0x00FF0000)
939 + (((unsigned int)mcmddata->At(2)<<8)&0x0000FF00)
940 + (((unsigned int)mcmddata->At(3))&0x000000FF);
941 *obt_timesync = (mcmdrc->MCMD_RECORD_OBT)*(1./1000.);
942
943 goto out; // a timesync is found
944 }
945 }
946 }
947
948 out:
949
950 if (*timesync == -1)
951 return 0;
952 else
953 return 1;
954 }
955
956
957 // Returns the mean value of the elements stored in the vector v.
958 double getMean(vector<Double_t> v)
959 {
960 double mean = 0;
961
962 for(int i=0; i < v.size(); i++)
963 mean += v.at(i);
964
965 return mean/v.size();
966 }
967
968
969 // Shift all non zero bins by shift.
970 TH2F* shiftHist(TH2F* h, Float_t shift)
971 {
972 // Global bin number.
973 Int_t nBins = h->GetBin(h->GetNbinsX(), h->GetNbinsY());
974
975 for(int i = 0; i < nBins; i++)
976 if(h->GetBinContent(i)) h->AddBinContent(i, shift);
977
978 return h;
979 }
980
981
982 //
983 // Returns the tle date as a TTimeStamp object.
984 //
985 TTimeStamp getTleDatetime(cTle *tle)
986 {
987 int year, mon, day, hh, mm, ss;
988 double dom; // day of month (is double!)
989 stringstream date; // date in datetime format
990
991 // create a cJulian from the date in tle
992 cJulian jdate = cJulian( 2000 + (int) tle->getField(cTle::FLD_EPOCHYEAR), tle->getField(cTle::FLD_EPOCHDAY));
993
994 // get year, month, day of month
995 jdate.getComponent(&year, &mon, &dom);
996
997 // build a datetime YYYY-MM-DD hh:mm:ss
998 date.str("");
999 day = (int) floor(dom);
1000 hh = (int) floor( (dom - day) * 24);
1001 mm = (int) floor( ((dom - day) * 24 - hh) * 60);
1002 ss = (int) floor( ((((dom - day) * 24 - hh) * 60 - mm) * 60));
1003 // ms = (int) floor( (((((dom - day) * 24 - hh) * 60 - mm) * 60) - ss) * 1000);
1004
1005 TTimeStamp t = TTimeStamp(year, mon, day, hh, mm, ss, 0, true);
1006
1007 return t;
1008 }
1009
1010 //
1011 // Solve the overflow for anticoincidence because this counter is
1012 // stored in 2 bytes so counts from 0 to 65535.
1013 //
1014 // counter is the actual value.
1015 // oldValue is meant to be the previous value of counter.
1016 //
1017 // Example:
1018 // for(...) {
1019 // ...
1020 // corrected_diff = solve_ac_overflow(oldValueOfTheCounter, actualValue);
1021 // ...
1022 // }
1023 //
1024 //
1025 // Returns the corrected difference between counter and oldValue and
1026 // set oldValue to the value of counter.
1027 // Attention: oldValue is a reference.
1028 Int_t solve_ac_overflow(Int_t& oldValue, Int_t counter)
1029 {
1030 Int_t truediff = 0;
1031
1032 if (counter < oldValue) // overflow!
1033 truediff = 0xFFFF - oldValue + counter;
1034 else
1035 truediff = counter - oldValue;
1036
1037 oldValue = counter;
1038
1039 return truediff;
1040 }

  ViewVC Help
Powered by ViewVC 1.1.23