/[PAMELA software]/quicklook/OrbitalRate/src/OrbitalRate.cpp
ViewVC logotype

Contents of /quicklook/OrbitalRate/src/OrbitalRate.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.8 - (show annotations) (download)
Sat Nov 3 22:11:18 2007 UTC (17 years, 1 month ago) by pam-rm2
Branch: MAIN
Changes since 1.7: +28 -27 lines
TDatime functions replaced by TTimeStamp.

1 /**
2 * OrbitalRate
3 * author Nagni
4 * version 1.0 - 27 April 2006
5 *
6 * version 2.0
7 * author De Simone
8 * - most of the code rewritten
9 * - added graphs, magnetic field, new overflow resolution (AC), tle
10 * stuff.
11 *
12 */
13 #include <physics/anticounter/AnticounterEvent.h>
14 #include <physics/trigger/TriggerEvent.h>
15 #include <physics/neutronDetector/NeutronEvent.h>
16 #include "physics/neutronDetector/NeutronRecord.h"
17 #include <mcmd/McmdEvent.h>
18 #include <mcmd/McmdRecord.h>
19 #include <EventHeader.h>
20 #include <PscuHeader.h>
21 #include <TTree.h>
22 #include "sgp4.h"
23 #include "TH2F.h"
24 #include "TFrame.h"
25 #include "TGraph.h"
26 #include "TCanvas.h"
27 #include "TASImage.h"
28 #include <TDatime.h>
29 #include <TFile.h>
30
31 #include <TTimeStamp.h>
32 #include "TString.h"
33 #include "TObjString.h"
34 #include "TStyle.h"
35 #include "TPaletteAxis.h"
36 #include "TROOT.h"
37 #include <sys/stat.h>
38 #include <fstream>
39 #include <iostream>
40
41 #include <OrbitalRate.h>
42
43 using namespace std;
44
45 int main(int argc, char* argv[]){
46 TString *rootFile = NULL;
47 TString outDir = "./";
48 TString mapFile = "";
49 TString tleFile = "";
50 int offDate = 20060928;
51 // int offDate = 20060614;
52 int offTime = 210000;
53 bool field = false;
54
55 if (argc < 2){
56 printf("You have to insert at least the file to analyze and the mapFile \n");
57 printf("Try '--help' for more information. \n");
58 exit(1);
59 }
60
61 if (!strcmp(argv[1], "--help")){
62 printf( "Usage: OrbitRate FILE -map mapFile [OPTION] \n");
63 printf( "mapFile have to be a mercator map image [gif|jpg|png] \n");
64 printf( "\t --help Print this help and exit \n");
65 printf( "\t -tle[File path] Path where to find the tle infos \n");
66 printf( "\t\tUse the script retrieve_TLE.sh to create the file.\n ");
67 printf( "\t -outDir[path] Path where to put the output.\n");
68 printf( "\t -offDate Date of resetting of the Resource counter [format YYMMDD (UTC date) default 20060928] \n");
69 printf( "\t -offTime Time of resetting of the Resource counter [format HHMMSS (UTC date) default 210000] \n");
70 printf( "\t -field Produce maps of the magnetic field \n");
71 exit(1);
72 }
73
74 // Ok, here we should have at least one root file. We check that
75 // the filename contains ".root".
76 if(strstr(argv[1], ".root"))
77 rootFile = new TString(argv[1]);
78 else {
79 cerr << "OrbitalRate: no root file." << endl << "See --help" << endl;
80 exit(EXIT_FAILURE);
81 }
82
83 for (int i = 2; i < argc; i++){
84 if (!strcmp(argv[i], "-field")){
85 field = true;
86 i++;
87 continue;
88 }
89
90 if (!strcmp(argv[i], "-outDir")){
91 if (++i >= argc){
92 printf( "-outDir needs arguments. \n");
93 printf( "Try '--help' for more information. \n");
94 exit(1);
95 } else {
96 outDir = argv[i];
97 continue;
98 }
99 }
100
101 if (!strcmp(argv[i], "-tle")){
102 if (++i >= argc){
103 printf( "-tle needs arguments. \n");
104 printf( "Try '--help' for more information. \n");
105 exit(1);
106 } else {
107 tleFile = argv[i];
108 continue;
109 }
110 }
111
112 if (!strcmp(argv[i], "-offTime")){
113 if (++i >= argc){
114 printf( "-offTime needs arguments. \n");
115 printf( "Try '--help' for more information. \n");
116 exit(1);
117 }
118 else{
119 offTime = atol(argv[i]);
120 continue;
121 }
122 }
123
124 if (!strcmp(argv[i], "-offDate")){
125 if (++i >= argc){
126 printf( "-offDate needs arguments. \n");
127 printf( "Try '--help' for more information. \n");
128 exit(1);
129 }
130 else{
131 offDate = atol(argv[i]);
132 continue;
133 }
134 }
135
136 if (!strcmp(argv[i], "-map")){
137 if (++i >= argc){
138 printf( "-map needs arguments. \n");
139 printf( "Try '--help' for more information. \n");
140 exit(1);
141 } else {
142 mapFile = argv[i];
143 continue;
144 }
145 }
146 }
147
148 if (mapFile != ""){
149 Rate(rootFile, outDir, mapFile, tleFile, offDate, offTime, field);
150 } else {
151 printf("You have to insert at least the file to analyze and the mapFile \n");
152 printf("Try '--help' for more information. \n");
153 }
154 }
155
156
157 void InitStyle() {
158 gROOT->SetStyle("Plain");
159
160 TStyle *myStyle[2], *tempo;
161 myStyle[0]=new TStyle("StyleWhite", "white");
162 myStyle[1]=new TStyle("StyleBlack", "black");
163
164 tempo=gStyle;
165 Int_t linecol, bkgndcol, histcol;
166
167 for(Int_t style=0; style<2; style++) {
168
169 linecol=kWhite*style+kBlack*(1-style);
170 bkgndcol=kBlack*style+kWhite*(1-style);
171 histcol=kYellow*style+kBlack*(1-style); // was 95
172
173 myStyle[style]->Copy(*tempo);
174
175 myStyle[style]->SetCanvasBorderMode(0);
176 myStyle[style]->SetCanvasBorderSize(1);
177 myStyle[style]->SetFrameBorderSize(1);
178 myStyle[style]->SetFrameBorderMode(0);
179 myStyle[style]->SetPadBorderSize(1);
180 myStyle[style]->SetStatBorderSize(1);
181 myStyle[style]->SetTitleBorderSize(1);
182 myStyle[style]->SetPadBorderMode(0);
183 myStyle[style]->SetPalette(1,0);
184 myStyle[style]->SetPaperSize(20,27);
185 myStyle[style]->SetFuncColor(kRed);
186 myStyle[style]->SetFuncWidth(1);
187 myStyle[style]->SetLineScalePS(1);
188 myStyle[style]->SetCanvasColor(bkgndcol);
189 myStyle[style]->SetAxisColor(linecol,"XYZ");
190 myStyle[style]->SetFrameFillColor(bkgndcol);
191 myStyle[style]->SetFrameLineColor(linecol);
192 myStyle[style]->SetLabelColor(linecol,"XYZ");
193 myStyle[style]->SetPadColor(bkgndcol);
194 myStyle[style]->SetStatColor(bkgndcol);
195 myStyle[style]->SetStatTextColor(linecol);
196 myStyle[style]->SetTitleColor(linecol,"XYZ");
197 myStyle[style]->SetTitleFillColor(bkgndcol);
198 myStyle[style]->SetTitleTextColor(linecol);
199 myStyle[style]->SetLineColor(linecol);
200 myStyle[style]->SetMarkerColor(histcol);
201 myStyle[style]->SetTextColor(linecol);
202
203 myStyle[style]->SetGridColor((style)?13:kBlack);
204 myStyle[style]->SetHistFillStyle(1001*(1-style));
205 myStyle[style]->SetHistLineColor(histcol);
206 myStyle[style]->SetHistFillColor((style)?bkgndcol:kYellow);
207
208 myStyle[style]->SetOptStat(0); // Remove statistic summary
209 }
210
211 myStyle[1]->cd();
212
213 gROOT->ForceStyle();
214
215 }
216
217
218 void Rate(TString *filename, TString outDirectory = "", TString mapFile = "", TString tleFile = "", int offDate = 20060614, int offTime = 210000, bool field = false)
219 {
220 // **** Offset to temporarily correct the TDatime bug ****/
221 // offTime += 10000;
222 //********************************************************/
223
224 TTree *tr = 0;
225 TFile *rootFile;
226 FILE *f;
227
228 pamela::McmdEvent *mcmdev = 0;
229 pamela::McmdRecord *mcmdrc = 0;
230 pamela::EventHeader *eh = 0;
231 pamela::PscuHeader *ph = 0;
232 TArrayC *mcmddata;
233 ULong64_t nevents = 0;
234 stringstream oss;
235
236 Float_t timesync = 0, obt_timesync = 0;
237 Long64_t offsetTime = 0;
238 Long64_t timeElapsedFromTLE = 0;
239 Long64_t deltaTime = 0, oldtimeElapsedFromTLE = 0;
240 bool a_second_is_over;
241
242 Float_t lon, lat, alt;
243
244 vector<Double_t> vector_trigAndOr;
245 vector<Double_t> vector_trigAndAnd;
246 vector<Double_t> vector_trigS11andS12;
247 vector<Double_t> vector_trigS12andS21andS22;
248 vector<Double_t> vector_trigS111A;
249
250 double mean_trigAndOr;
251 double mean_trigAndAnd;
252 double mean_trigS11andS12;
253 double mean_trigS12andS21andS22;
254 double mean_trigS111A;
255
256 // We'll use this size for the generated images.
257 TImage *tImage=TImage::Open(mapFile);
258 int width=(int)(tImage->GetWidth()*0.80);
259 int height=(int)(tImage->GetHeight()*0.80);
260 delete tImage;
261
262 // This histogram will store time (in seconds) spent in each bin.
263 TH2F *obtBinTime = new TH2F("obtBinTime", "Time of acquisition of background data", 360, -180, 180, 180, -90, 90);
264
265 // Now I create histograms longitude x latitude to hold values. I
266 // use the suffix _counter to say that this values are what I read
267 // from Pamela and they are not normalized in any way.
268
269 // This historam will store the number of events occurred in each bin.
270 TH2F *event_counter = new TH2F("event_counter", "Event rate", 360, -180, 180, 180, -90, 90);
271 TH2F *nd_counter = new TH2F("nd_counter", "Upper background neutrons", 360, -180, 180, 180, -90, 90);
272 TH2F *antiCAS4_counter = new TH2F("CAS4_counter", "CAS4 rate", 360, -180, 180, 180, -90, 90);
273 TH2F *antiCAS3_counter = new TH2F("CAS3_counter", "CAS3 rate", 360, -180, 180, 180, -90, 90);
274 TH2F *trigAndOr_counter = new TH2F("trigAndOr_counter", "Rate of triggering in (S11+S12)*(S21+S22)*(S31+S32) configuration", 360, -180, 180, 180, -90, 90);
275 TH2F *trigAndAnd_counter = new TH2F("trigAndAnd_counter", "Rate of triggering in (S11*S12)*(S21*S22)*(S31*S32) configuration", 360, -180, 180, 180, -90, 90);
276 TH2F *trigS11andS12_counter = new TH2F("trigS11andS12_counter", "Rate of S1 triggers", 360, -180, 180, 180, -90, 90); //(S11+S12)
277 TH2F *trigS12andS21andS22_counter = new TH2F("trigS12andS21andS22_counter", "Rate of S11*S21*S21 triggers", 360, -180, 180, 180, -90, 90); //(S11*S12*S21)
278 TH2F *trigS111A_counter = new TH2F("trigS111A_counter", "Rate of S111A counts", 360, -180, 180, 180, -90, 90); //(S111A)
279
280 // Magnetic field histograms. I use always the suffix _counter
281 // because they are not normalized. Imagine that an instrument
282 // give us the value of the magnetic field for each event.
283 TH2F *hbabs_counter;
284 TH2F *hbnorth_counter;
285 TH2F *hbdown_counter;
286 TH2F *hbeast_counter;
287 TH2F *hb0_counter;
288 TH2F *hl_counter;
289
290 if(field) {
291 hbabs_counter = new TH2F("hbabs_counter", "B module", 360, -180, 180, 180, -90, 90);
292 hbnorth_counter = new TH2F("hbnorth_counter", "B north", 360, -180, 180, 180, -90, 90);
293 hbdown_counter = new TH2F("hbdown_counter", "B down", 360, -180, 180, 180, -90, 90);
294 hbeast_counter = new TH2F("hbeast_counter", "B east", 360, -180, 180, 180, -90, 90);
295 hb0_counter = new TH2F("hb0_counter", "B_0", 360, -180, 180, 180, -90, 90);
296 hl_counter = new TH2F("hl_counter", "l", 360, -180, 180, 180, -90, 90);
297 }
298
299 // Get a char* to "file" from "/dir1/dir2/.../file.root"
300 TString basename;
301 basename = ((TObjString*) filename->Tokenize('/')->Last())->GetString(); // we get file.root
302 basename = ((TObjString*)basename.Tokenize('.')->First())->GetString(); // we get file
303
304 // Exit if the map file doesn't exist.
305 if(! (f = fopen(mapFile.Data(), "r")) ) {
306 cerr << "Error: the file " << mapFile.Data() << " does not exists." << endl;
307 exit(EXIT_FAILURE);
308 }
309
310 // Open the root file.
311 rootFile = new TFile(filename->Data());
312 if (rootFile->IsZombie()) {
313 printf("The file %s does not exist\n", (filename->Data()));
314 exit(EXIT_FAILURE);
315 }
316
317 // Look for a timesync in the TFile rootFile. We also get the obt
318 // of the timesync mcmd.
319 bool err;
320 err = lookforTimesync(rootFile, &timesync, &obt_timesync);
321 if(!err) {
322 cerr << "Warning!!! No timesync info has been found in the file "
323 << filename->Data() << endl;
324 exit(EXIT_FAILURE);
325 }
326
327 // Here I do: resurs offset + timesync
328 TDatime offRes = TDatime(offDate, offTime);
329 TTimeStamp offResTS = TTimeStamp(offRes.GetYear(), offRes.GetMonth(), offRes.GetDay(), offRes.GetHour(), offRes.GetMinute(), offRes.GetSecond(), 0, kTRUE, timesync);
330
331 // Now I need a pointer to a cTle object. The class misses a
332 // constructor without arguments, so we have to give it a dummy TLE.
333 string str1 = "RESURS-DK 1";
334 string str2 = "1 29228U 06021A 06170.19643714 .00009962 00000-0 21000-3 0 196";
335 string str3 = "2 29228 069.9363 054.7893 0167576 127.4359 017.0674 15.31839265 604";
336 cTle *tle1 = new cTle(str1, str2, str3);
337
338 // If we have to use a TLE file, call getTle().
339 if (tleFile != "")
340 tle1 = getTle(tleFile, offResTS); // modify getTle() to use offResTS!
341 else
342 cout<<"OrbitalRate: Warning!!! No tle file supplied.\n";
343
344 // Here I do: resurs offset + timesync - obt of the timesync
345 offResTS.Set(offResTS.GetSec() - obt_timesync, kTRUE, 0, kFALSE);
346
347 cOrbit orbit(*tle1);
348 cEci eci;
349 cCoordGeo coo;
350
351 // Here I do: resurs offset + timesync - obt of the timesync - tle time
352 TTimeStamp tledate = getTleDatetime(tle1);
353 cJulian jdatetime = cJulian((int) (tle1->getField(cTle::FLD_EPOCHYEAR)+2e3), tle1->getField(cTle::FLD_EPOCHDAY));
354 int pYear, pMon; double pDOM;
355 jdatetime.getComponent(&pYear, &pMon, &pDOM);
356 offsetTime = ((Long64_t) offResTS.GetSec() - (Long64_t) tledate.GetSec());
357
358 /********** Magnetic Field **************/
359 // Check that all this is correct!
360 float br, btheta, bphi;
361
362 // I can now compute the magnetic dipole moment at the actual date,
363 // using the cJulian date. I don't to recompute it for every event
364 // beacause changes are not relevant at all.
365 // Int_t y = tledate.GetYear();
366 // Int_t m = tledate.GetMonth();
367 // Int_t d = tledate.GetDay();
368 UInt_t y, m, d;
369 tledate.GetDate(kTRUE, 0, &y, &m, &d);
370 float year = (float) y + (m*31+d)/365;
371
372 // Initialize common data for geopack
373 if(field)
374 recalc_(y, m*31+d, 0, 0, 0);
375 /********** Magnetic Field **************/
376
377 tr = (TTree*)rootFile->Get("Physics");
378 TBranch *headBr = tr->GetBranch("Header");
379 tr->SetBranchAddress("Header", &eh);
380
381 /********** Anticounter **************/
382 pamela::anticounter::AnticounterEvent *antiev = 0;
383 tr->SetBranchAddress("Anticounter", &antiev);
384
385 Int_t oldCAS4 = 0;
386 Int_t diffCAS4 = 0;
387 Int_t oldCAS3 = 0;
388 Int_t diffCAS3 = 0;
389 /********** Anticounter **************/
390
391 /********** Trigger **************/
392 pamela::trigger::TriggerEvent *trigger = 0;
393 tr->SetBranchAddress("Trigger", &trigger);
394
395 Int_t oldtrigAndOr = 0;
396 Int_t oldtrigAndAnd = 0;
397 Int_t oldtrigS11andS12 = 0;
398 Int_t oldtrigS12andS21andS22 = 0;
399 Int_t oldtrigS111A = 0;
400 /********** Trigger **************/
401
402 /********** ND **************/
403 Int_t tmpSize=0;
404 Int_t sumTrig=0;
405 Int_t sumUpperBackground=0;
406 Int_t sumBottomBackground=0;
407
408 pamela::neutron::NeutronRecord *nr = 0;
409 pamela::neutron::NeutronEvent *ne = 0;
410 tr->SetBranchAddress("Neutron", &ne);
411 /********** ND **************/
412
413 nevents = tr->GetEntries();
414
415 for(UInt_t i = 0; i < nevents; i++) //Fill variables from root-ple
416 {
417 tr->GetEntry(i);
418 ph = eh->GetPscuHeader();
419
420 // obt in ms
421 UInt_t obt = (UInt_t) ph->GetOrbitalTime();
422
423 // timeElapsedFromTLE is the difference, in seconds, between the
424 // event and the tle date. I use seconds and not milliseconds
425 // because the indetermination on the timesync is about 1s.
426 timeElapsedFromTLE = offsetTime + obt/1000;
427
428 // I also need the abstime in seconds rounded to the lower
429 // value. Every second, we set a_second_is_over to true. Only
430 // in this case histograms with triggers are filled.
431 a_second_is_over = (timeElapsedFromTLE > oldtimeElapsedFromTLE) ? 1 : 0;
432 oldtimeElapsedFromTLE = timeElapsedFromTLE;
433
434 // I need the acquisition time between two triggers to fill the
435 // obtBinTime (histo of time spent in the bin). The time is in
436 // second.
437 deltaTime = timeElapsedFromTLE - oldtimeElapsedFromTLE;
438 oldtimeElapsedFromTLE = timeElapsedFromTLE;
439
440 // Finally, we get coordinates from absolute time the orbit
441 // object initialised with the TLE data. cOrbit::getPosition()
442 // requires the elapased time from the tle in minutes.
443 // Coordinates are stored in the structure eci.
444 orbit.getPosition(((double) timeElapsedFromTLE)/60., &eci);
445 coo = eci.toGeo();
446
447 /********** ND **************/
448 // Summing over all stored pamela::neutron::NeutronRecords in
449 // this event *ne.
450 for(Int_t j = 0; j < ne->Records->GetEntries(); j++) {
451 nr = (pamela::neutron::NeutronRecord*)ne->Records->At(j);
452 sumTrig += (int)nr->trigPhysics;
453 sumUpperBackground += (int)nr->upperBack;
454 sumBottomBackground += (int)nr->bottomBack;
455 }
456 /********** ND **************/
457
458 /********** Anticounter **************/
459 // Get the difference between the actual counter and the
460 // previous counter for anticoincidence, dealing with the
461 // overflow with solve_ac_overflow().
462 diffCAS4 = solve_ac_overflow(oldCAS4, antiev->counters[0][6]);
463 diffCAS3 = solve_ac_overflow(oldCAS3, antiev->counters[0][10]);
464 /********** Anticounter **************/
465
466 // Build coordinates in the right range. We want to convert,
467 // just for aesthetic, longitude from (0, 2*pi) to (-pi, pi).
468 // We also want to convert from radians to degrees.
469 lon = (coo.m_Lon > PI) ? rad2deg(coo.m_Lon - 2*PI) : rad2deg(coo.m_Lon);
470 lat = rad2deg(coo.m_Lat);
471 alt = coo.m_Alt;
472
473 /********** Magnetic Field **************/
474 if(field)
475 igrf_geo__((coo.m_Alt+6371.2)/6371.2, M_PI/2.-coo.m_Lat, coo.m_Lon, br, btheta, bphi);
476 // cout<<"("<<(coo.m_Alt+6371.2)/6371.2<<", "<<M_PI/2.-coo.m_Lat<<", "<<coo.m_Lon<<")"<<endl;
477 /********** Magnetic Field **************/
478
479 // serve fare il controllo deltatime < 1?
480 if (deltaTime > 1) cout << endl << "******** deltaTime<1 ********" << endl;
481 // Does nothing for the first two events or if acquisition time if more
482 // than 1s.
483 if(i<1 || (deltaTime > 1)) continue;
484
485 // CAS3 and CAS4 are not rates but only counters. So I fill
486 // with the bin with the difference beetween the actual counter
487 // and the previous one and then divide with the time (see
488 // below) to have rates.
489 if(diffCAS3>1e3) // additional cut to avoid the peaks after dead time
490 diffCAS3 = (Int_t) antiCAS3_counter->GetBinContent((Int_t)antiCAS3_counter->GetEntries()-1);
491 antiCAS3_counter->Fill(lon , lat, diffCAS3);
492
493 if(diffCAS4>1e3) // additional cut to avoid the peaks after dead time
494 diffCAS4 = (Int_t) antiCAS4_counter->GetBinContent((Int_t) antiCAS4_counter->GetEntries()-1);
495 antiCAS4_counter->Fill(lon, lat, diffCAS4);
496
497 // Magnetic field values should be handled a bit carefully.
498 // For every event I get a position and the related magnetic
499 // field values. I can fill the histograms lon x lat with
500 // this values but I need to count how many times I fill
501 // each bin. This is done by the histogram event_counter.
502 // I will normalize later.
503 if(field) {
504 hbabs_counter->Fill(lon, lat, sqrt(br*br+btheta*btheta+bphi*bphi)*1e-5);
505 hbnorth_counter->Fill(lon, lat, -btheta*1e-5);
506 hbdown_counter->Fill(lon, lat, -br*1e-5);
507 hbeast_counter->Fill(lon, lat, bphi*1e-5);
508 }
509 // This histograms is now filled with the number of entries.
510 // Below we will divide with the time (in seconds) to get
511 // event rate per bin.
512 event_counter->Fill(lon, lat);
513
514 // counters about triggers are already rates (Hz). Only
515 // every second we fill fill with the mean over all values.
516 if(a_second_is_over) {
517 // This histograms will hold the time, in seconds, spent
518 // in the bin.
519 obtBinTime->Fill(lon, lat, 1);
520
521 // get the means
522 mean_trigAndOr = getMean(vector_trigAndOr);
523 mean_trigAndAnd = getMean(vector_trigAndAnd);
524 mean_trigS11andS12 = getMean(vector_trigS11andS12);
525 mean_trigS12andS21andS22 = getMean(vector_trigS12andS21andS22);
526 mean_trigS111A = getMean(vector_trigS111A);
527
528 // clear data about the last second
529 vector_trigAndOr.clear();
530 vector_trigAndAnd.clear();
531 vector_trigS11andS12.clear();
532 vector_trigS12andS21andS22.clear();
533 vector_trigS111A.clear();
534
535 // Fill with the mean rate value
536 trigAndOr_counter->Fill(lon , lat, mean_trigAndOr);
537 trigAndAnd_counter->Fill(lon , lat, mean_trigAndAnd);
538 trigS11andS12_counter->Fill(lon , lat, mean_trigS11andS12);
539 trigS12andS21andS22_counter->Fill(lon , lat, mean_trigS12andS21andS22);
540 trigS111A_counter->Fill(lon, lat, mean_trigS111A);
541 }
542 else { // Collect values for all the second
543 vector_trigAndOr.push_back((1/4.)*trigger->trigrate[0]);
544 vector_trigAndAnd.push_back((1/4.)*trigger->trigrate[1]);
545 // pmtpl[0] is the rate every 60ms but I want Hz.
546 vector_trigS11andS12.push_back((1000./60.)*trigger->pmtpl[0]);
547 vector_trigS12andS21andS22.push_back((1/4.)*trigger->trigrate[4]);
548 vector_trigS111A.push_back(1.*trigger->pmtcount1[0]);
549 }
550
551 // Now we discard ND data if:
552 // - NeutronEvent is corrupted.
553 if((ne->unpackError != 1))
554 nd_counter->Fill(lon, lat, 1.*(sumUpperBackground+sumTrig));
555
556 // Reset counters for ND.
557 sumTrig = 0;
558 sumUpperBackground = 0;
559 sumBottomBackground = 0;
560 }
561
562 // We now need to normalize the histograms to print something
563 // meaningful. I create similar histograms with the suffix _rate or
564 // _norm.
565 TH2F *event_rate = (TH2F*) event_counter->Clone("event_rate");
566 TH2F *trigS111A_rate = (TH2F*) trigS111A_counter->Clone("trigS111A_rate");
567 TH2F *antiCAS4_rate = (TH2F*) antiCAS4_counter->Clone("antiCAS4_rate");
568 TH2F *antiCAS3_rate = (TH2F*) antiCAS3_counter->Clone("antiCAS3_rate");
569 TH2F *trigS11andS12_rate = (TH2F*) trigS11andS12_counter->Clone("trigS11andS12_rate");
570 TH2F *trigS12andS21andS22_rate = (TH2F*) trigS12andS21andS22_counter->Clone("trigS12andS21andS22_rate");
571 TH2F *trigAndOr_rate = (TH2F*) trigAndOr_counter->Clone("trigAndOr_rate");
572 TH2F *trigAndAnd_rate = (TH2F*) trigAndAnd_counter->Clone("trigAndAnd_rate");
573 TH2F *nd_rate = (TH2F*) nd_counter->Clone("nd_rate");
574
575 TH2F *hbabs_norm;
576 TH2F *hbnorth_norm;
577 TH2F *hbdown_norm;
578 TH2F *hbeast_norm;
579
580 if(field) {
581 hbabs_norm = (TH2F*) hbabs_counter->Clone("hbabs_norm");
582 hbnorth_norm = (TH2F*) hbnorth_counter->Clone("hbnorth_norm");
583 hbdown_norm = (TH2F*) hbabs_counter->Clone("hbdown_norm");
584 hbeast_norm = (TH2F*) hbabs_counter->Clone("hbeast_norm");
585 }
586
587 // Now we divide each histogram _counter with the time histogram
588 // obtBinTime to have an histogram _rate. Note that, when a second
589 // is passed in the above cycle, we fill the histogram obtBinTime
590 // with 1 (second) together with all the other histograms. So
591 // dividing here does make sense.
592 //
593 // Then we call printHist() for each filled TH2F. These are
594 // refered to the root file we're now reading. We also build up a
595 // filename to be passed to the function. Pay attention that the
596 // filename must end with a file format (such as .png or .pdf)
597 // recognised by TPad::SaveAs().
598 trigS111A_rate->Divide(trigS111A_counter, obtBinTime, 1, 1, "");
599 oss.str("");
600 oss << basename.Data() << "_orbit_trigS111A.png";
601 trigS111A_rate->SetMinimum(9);
602 printHist(trigS111A_rate, mapFile, outDirectory, oss.str().c_str(), "S111A (Hz)", -width, height, true, 0);
603
604 antiCAS4_rate->Divide(antiCAS4_counter, obtBinTime, 1, 1, "");
605 oss.str("");
606 oss << basename.Data() << "_orbit_CAS4.png";
607 antiCAS4_rate->SetMinimum(99);
608 printHist(antiCAS4_rate, mapFile, outDirectory, oss.str().c_str(), "CAS4 (Hz)", -width, height, true, 0);
609
610 antiCAS3_rate->Divide(antiCAS3_counter, obtBinTime, 1, 1, "");
611 oss.str("");
612 oss << basename.Data() << "_orbit_CAS3.png";
613 antiCAS3_rate->SetMinimum(99);
614 printHist(antiCAS3_rate, mapFile, outDirectory, oss.str().c_str(), "CAS3 (Hz)", -width, height, true, 0);
615
616 event_rate->Divide(event_counter, obtBinTime, 1, 1, "");
617 oss.str("");
618 oss << basename.Data() << "_orbit_EventRate.png";
619 printHist(event_rate, mapFile, outDirectory, oss.str().c_str(), "Event rate (Hz)", -width, height, 0, 0);
620
621 trigS11andS12_rate->Divide(trigS11andS12_counter, obtBinTime, 1, 1, "");
622 oss.str("");
623 oss << basename.Data() << "_orbit_trigS11andS12.png";
624 trigS11andS12_rate->SetMinimum(99);
625 printHist(trigS11andS12_rate, mapFile, outDirectory, oss.str().c_str(), "(S11*S12) (Hz)", -width, height, 1, 0);
626
627 trigS12andS21andS22_rate->Divide(trigS12andS21andS22_counter, obtBinTime, 1, 1, "");
628 oss.str("");
629 oss << basename.Data() << "_orbit_trigS12andS21andS22.png";
630 trigS12andS21andS22_rate->SetMinimum(9);
631 printHist(trigS12andS21andS22_rate, mapFile, outDirectory, oss.str().c_str(), "(S12*S12*S21) (Hz)", -width, height, true, 0);
632
633 trigAndOr_rate->Divide(trigAndOr_counter, obtBinTime, 1, 1, "");
634 oss.str("");
635 oss << basename.Data() << "_orbit_trigANDofOR.png";
636 printHist(trigAndOr_rate, mapFile, outDirectory, oss.str().c_str(), "(S11+S12)*(S21+S22)*(S31+S32) (Hz)", -width, height, 0, 0);
637
638 trigAndAnd_rate->Divide(trigAndAnd_counter, obtBinTime, 1, 1, "");
639 oss.str("");
640 oss << basename.Data() << "_orbit_trigANDofAND.png";
641 printHist(trigAndAnd_rate, mapFile, outDirectory, oss.str().c_str(), "(S11*S12)*(S21*S22)*(S31*S32) (Hz)", -width, height, 0, 0);
642
643 nd_rate->Divide(nd_counter, obtBinTime, 1, 1, "");
644 oss.str("");
645 oss << basename.Data() << "_orbit_ND.png";
646 printHist(nd_rate, mapFile, outDirectory, oss.str().c_str(), "Neutron rate (Hz)", -width, height, 0, 0);
647
648 // Also normalize histograms about magnetic fields. Beacause we
649 // fill the bins with the values of the magnetic field for each
650 // event, we need to divide with the number of fills done, that is
651 // event_counter.
652 if(field) {
653 hbabs_norm->Divide(hbabs_counter, event_counter, 1, 1, "");
654 oss.str("");
655 oss << basename.Data() << "_orbit_Babs.png";
656 printHist(hbabs_norm, mapFile, outDirectory, oss.str().c_str(), "B abs (G)", -width, height, 0, 0);
657
658 hbnorth_norm->Divide(hbnorth_counter, event_counter, 1, 1, "");
659 oss.str("");
660 oss << basename.Data() << "_orbit_Bnorth.png";
661 printHist(hbnorth_norm, mapFile, outDirectory, oss.str().c_str(), "B north (G)", -width, height, 0, 1);
662
663 hbdown_norm->Divide(hbdown_counter, event_counter, 1, 1, "");
664 oss.str("");
665 oss << basename.Data() << "_orbit_Bdown.png";
666 printHist(hbdown_norm, mapFile, outDirectory, oss.str().c_str(), "B down (G)", -width, height, 0, 1);
667
668 hbeast_norm->Divide(hbeast_counter, event_counter, 1, 1, "");
669 oss.str("");
670 oss << basename.Data() << "_orbit_Beast.png";
671 printHist(hbeast_norm, mapFile, outDirectory, oss.str().c_str(), "B east (G)", -width, height, 0, 1);
672 }
673
674 delete obtBinTime;
675 delete event_counter;
676
677 delete nd_counter;
678 delete antiCAS4_counter;
679 delete antiCAS3_counter;
680 delete trigAndOr_counter;
681 delete trigAndAnd_counter;
682 delete trigS11andS12_counter;
683 delete trigS111A_counter;
684 delete trigS12andS21andS22_counter;
685
686 delete event_rate;
687 delete nd_rate;
688 delete antiCAS4_rate;
689 delete antiCAS3_rate;
690 delete trigAndOr_rate;
691 delete trigAndAnd_rate;
692 delete trigS11andS12_rate;
693 delete trigS111A_rate;
694 delete trigS12andS21andS22_rate;
695
696 if(field) {
697 delete hbabs_counter;
698 delete hbnorth_counter;
699 delete hbdown_counter;
700 delete hbeast_counter;
701 delete hbabs_norm;
702 delete hbnorth_norm;
703 delete hbdown_norm;
704 delete hbeast_norm;
705 }
706
707 rootFile->Close();
708 }
709
710
711 // Print the istogram *h on the file outputfilename in the direcotry
712 // outDirectory, using mapFile as background image, sizing the image
713 // width per height. Log scale will be used if use_log is true.
714 //
715 // If bool_shift is true a further process is performed to solve a
716 // problem with actual root version (5.12). This should be used when
717 // the histrogram is filled also with negative values, because root
718 // draws zero filled bins (so I have all the pad colorized and this is
719 // really weird!). To avoid this problem I shift all the values in a
720 // positive range and draw again using colz. Now I will not have zero
721 // filled bins painted but the scale will be wrong. This is why I
722 // need to draw a new axis along the palette.
723 //
724 // Pay attention: you cannot use a mapFile different from the provided
725 // one without adjusting the scaling and position of the image (see
726 // Scale() and Merge()).
727 //
728 // This function depends on InitStyle();
729 int printHist(TH2F *h, TString mapFile, TString outDirectory, TString outputFilename, const char *title, int width, int height, bool use_log, bool bool_shift)
730 {
731 InitStyle();
732
733 // Create a canvas and draw the TH2F with a nice colormap for z
734 // values, using log scale for z values, if requested, and setting
735 // some title.
736 TCanvas *canvas = new TCanvas("h", "h histogram", width*2, height*2);
737
738 if(use_log) canvas->SetLogz();
739
740 h->SetTitle(title);
741 h->SetXTitle("Longitude (deg)");
742 h->SetYTitle("Latitude (deg)");
743 h->SetLabelColor(0, "X");
744 h->SetAxisColor(0, "X");
745 h->SetLabelColor(0, "Y");
746 h->SetAxisColor(0, "Y");
747 h->SetLabelColor(0, "Z");
748 h->SetAxisColor(0, "Z");
749
750 h->Draw("colz");
751 canvas->Update(); // Update! Otherwise we can't get any palette.
752
753 // If shift in a positive range required (see comment above).
754 if(bool_shift) {
755 // Remember the minimum and maximum in this graph.
756 Float_t min = h->GetMinimum();
757 Float_t max = h->GetMaximum();
758
759 // Shift the graph up by 100. Increase the value if you still get
760 // negative filled bins.
761 h = shiftHist(h, 100.0);
762 h->SetMinimum(min+100.0);
763 h->SetMaximum(max+100.0);
764
765 // Hide the current axis of the palette
766 TPaletteAxis *palette = (TPaletteAxis*) h->GetListOfFunctions()->FindObject("palette");
767 if(!palette) cout << "palette is null" << endl;
768 TGaxis *ax = (TGaxis*) palette->GetAxis();
769 if(!ax) cout << "ax is null" << endl;
770 ax->SetLabelOffset(999);
771 ax->SetTickSize(0);
772
773 // Create a new axis of the palette using the right min and max and draw it.
774 TGaxis *gaxis = new TGaxis(palette->GetX2(), palette->GetY1(), palette->GetX2(), palette->GetY2(), min, max, 510,"+L");
775 gaxis->SetLabelColor(0);
776 gaxis->Draw();
777
778 // Update again.
779 canvas->Update();
780 }
781
782 // We merge two images: the image of the earth read from a file on
783 // that one of the TPad of canvas (the histogram). The first one is
784 // scaled and adjusted to fit well inside the frame of the second
785 // one. Finally we draw them both.
786 //
787 // Here there's a trick to avoid blurring during the merging
788 // operation. We get the image from a canvas sized (width*2 x
789 // height*2) and draw it on a canvas sized (width x height).
790
791 TCanvas *mergeCanvas = new TCanvas("", "", width, height);
792 TImage *img = TImage::Create();
793 TImage *terra = TImage::Create();
794 img->FromPad(canvas); // get the TCanvas canvas as TImage
795 terra->ReadImage(mapFile, TImage::kPng); // get the png file as TImage
796 terra->Scale(1304,830);
797 img->Merge(terra, "add", 166, 112); // add image terra to image img
798 img->Draw("X"); // see what we get, eXpanding img all over mergeCanvas.
799
800 stringstream oss;
801 oss << outDirectory.Data() << "/" << outputFilename.Data();
802
803 mergeCanvas->SaveAs(oss.str().c_str());
804 mergeCanvas->Close();
805 canvas->Close();
806
807 return EXIT_SUCCESS;
808 }
809
810 void saveHist(TH1 *h, TString savetorootfile)
811 {
812 TFile *file = new TFile(savetorootfile.Data(), "update");
813
814 h->Write();
815 file->Close();
816 }
817
818
819 // Get the TLE from tleFile. The right TLE is that one with the
820 // closest previous date to offRes, that is the date at the time of
821 // the first timesync found in the root file.
822 //
823 // Warning: you must use a tle file obtained by space-track.org
824 // querying the database with the RESURS DK-1 id number 29228,
825 // selecting the widest timespan, including the satellite name in the
826 // results.
827 cTle *getTle(TString tleFile, TTimeStamp offResTS)
828 {
829 Float_t tledatefromfile, tledatefromroot;
830 fstream tlefile(tleFile.Data(), ios::in);
831 vector<cTle*> ctles;
832 vector<cTle*>::iterator iter;
833
834
835 // Build a vector of *cTle
836 while(1) {
837 cTle *tlef;
838 string str1, str2, str3;
839
840 getline(tlefile, str1);
841 if(tlefile.eof()) break;
842
843 getline(tlefile, str2);
844 if(tlefile.eof()) break;
845
846 getline(tlefile, str3);
847 if(tlefile.eof()) break;
848
849 // We now have three good lines for a cTle.
850 tlef = new cTle(str1, str2, str3);
851 ctles.push_back(tlef);
852 }
853
854 // Sort by date
855 sort(ctles.begin(), ctles.end(), compTLE);
856
857 UInt_t year, month, day;
858 offResTS.GetDate(kTRUE, 0, &year, &month, &day);
859 TTimeStamp firstofjan = TTimeStamp(year, 1, 1, 0, 0, 0);
860 tledatefromroot = (year-2000)*1e3 + (offResTS.GetSec() - firstofjan.GetSec())/(24.*3600.);
861
862 for(iter = ctles.begin(); iter != ctles.end(); iter++) {
863 cTle *tle = *iter;
864
865 tledatefromfile = getTleJulian(tle);
866
867 if(tledatefromroot > tledatefromfile) {
868 tlefile.close();
869 cTle *thisTle = tle;
870 ctles.clear();
871
872 return thisTle;
873 }
874 }
875
876 // File ended withoud founding a TLE with a date after offRes. We'll use the last aviable date.
877 cerr << "Warning: using last available TLE in " << tleFile.Data() << ". Consider updating your tle file." << endl;
878
879 tlefile.close();
880 cTle *thisTle = ctles[ctles.size()-1];
881 ctles.clear();
882
883 return thisTle;
884 }
885
886
887 // Return whether the first TLE is older than the second
888 bool compTLE (cTle *tle1, cTle *tle2)
889 {
890 return getTleJulian(tle1) > getTleJulian(tle2);
891 }
892
893
894 // Return the date of the tle using the format (year-2000)*1e3 +
895 // julian day. e.g. 6364.5 is the 31th Dec 2006 12:00:00.
896 // It does *not* return a cJulian date.
897 float getTleJulian(cTle *tle) {
898 return tle->getField(cTle::FLD_EPOCHYEAR)*1e3 + tle->getField(cTle::FLD_EPOCHDAY);
899 }
900
901
902 // Look for a timesync in the TFile rootFile. Set timesync and
903 // obt_timesync. Returns 1 if timesync is found, 0 otherwise.
904 UInt_t lookforTimesync(TFile *rootFile, Float_t *timesync, Float_t *obt_timesync) {
905 *timesync = -1; // will be != -1 if found
906
907 ULong64_t nevents = 0;
908 pamela::McmdRecord *mcmdrc = 0;
909 pamela::McmdEvent *mcmdev = 0;
910 TArrayC *mcmddata;
911 TTree *tr = (TTree*) rootFile->Get("Mcmd");
912
913 tr->SetBranchAddress("Mcmd", &mcmdev);
914
915 nevents = tr->GetEntries();
916
917 // Looking for a timesync. We stop at the first one found.
918 long int recEntries;
919
920 for(UInt_t i = 0; i < nevents; i++) {
921 tr->GetEntry(i);
922 recEntries = mcmdev->Records->GetEntries();
923
924 for(UInt_t j = 0; j < recEntries; j++) {
925 mcmdrc = (pamela::McmdRecord*)mcmdev->Records->At(j);
926
927 if ((mcmdrc != 0) && (mcmdrc->ID1 == 0xE0)) //Is it a TimeSync?
928 {
929 mcmddata = mcmdrc->McmdData;
930 *timesync = (((unsigned int)mcmddata->At(0)<<24)&0xFF000000)
931 + (((unsigned int)mcmddata->At(1)<<16)&0x00FF0000)
932 + (((unsigned int)mcmddata->At(2)<<8)&0x0000FF00)
933 + (((unsigned int)mcmddata->At(3))&0x000000FF);
934 *obt_timesync = (mcmdrc->MCMD_RECORD_OBT)*(1./1000.);
935
936 goto out; // a timesync is found
937 }
938 }
939 }
940
941 out:
942
943 if (*timesync == -1)
944 return 0;
945 else
946 return 1;
947 }
948
949
950 // Returns the mean value of the elements stored in the vector v.
951 double getMean(vector<Double_t> v)
952 {
953 double mean = 0;
954
955 for(int i=0; i < v.size(); i++)
956 mean += v.at(i);
957
958 return mean/v.size();
959 }
960
961
962 // Shift all non zero bins by shift.
963 TH2F* shiftHist(TH2F* h, Float_t shift)
964 {
965 // Global bin number.
966 Int_t nBins = h->GetBin(h->GetNbinsX(), h->GetNbinsY());
967
968 for(int i = 0; i < nBins; i++)
969 if(h->GetBinContent(i)) h->AddBinContent(i, shift);
970
971 return h;
972 }
973
974
975 //
976 // Returns the tle date as a TTimeStamp object.
977 //
978 TTimeStamp getTleDatetime(cTle *tle)
979 {
980 int year, mon, day, hh, mm, ss;
981 double dom; // day of month (is double!)
982 stringstream date; // date in datetime format
983
984 // create a cJulian from the date in tle
985 cJulian jdate = cJulian( 2000 + (int) tle->getField(cTle::FLD_EPOCHYEAR), tle->getField(cTle::FLD_EPOCHDAY));
986
987 // get year, month, day of month
988 jdate.getComponent(&year, &mon, &dom);
989
990 // build a datetime YYYY-MM-DD hh:mm:ss
991 date.str("");
992 day = (int) floor(dom);
993 hh = (int) floor( (dom - day) * 24);
994 mm = (int) floor( ((dom - day) * 24 - hh) * 60);
995 ss = (int) floor( ((((dom - day) * 24 - hh) * 60 - mm) * 60));
996 // ms = (int) floor( (((((dom - day) * 24 - hh) * 60 - mm) * 60) - ss) * 1000);
997
998 TTimeStamp t = TTimeStamp(year, mon, day, hh, mm, ss, 0, true);
999
1000 return t;
1001 }
1002
1003 //
1004 // Solve the overflow for anticoincidence because this counter is
1005 // stored in 2 bytes so counts from 0 to 65535.
1006 //
1007 // counter is the actual value.
1008 // oldValue is meant to be the previous value of counter.
1009 //
1010 // Example:
1011 // for(...) {
1012 // ...
1013 // corrected_diff = solve_ac_overflow(oldValueOfTheCounter, actualValue);
1014 // ...
1015 // }
1016 //
1017 //
1018 // Returns the corrected difference between counter and oldValue and
1019 // set oldValue to the value of counter.
1020 // Attention: oldValue is a reference.
1021 Int_t solve_ac_overflow(Int_t& oldValue, Int_t counter)
1022 {
1023 Int_t truediff = 0;
1024
1025 if (counter < oldValue) // overflow!
1026 truediff = 0xFFFF - oldValue + counter;
1027 else
1028 truediff = counter - oldValue;
1029
1030 oldValue = counter;
1031
1032 return truediff;
1033 }

  ViewVC Help
Powered by ViewVC 1.1.23