/[PAMELA software]/quicklook/OrbitalRate/src/OrbitalRate.cpp
ViewVC logotype

Contents of /quicklook/OrbitalRate/src/OrbitalRate.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.7 - (show annotations) (download)
Mon Apr 2 19:44:38 2007 UTC (17 years, 8 months ago) by pam-rm2
Branch: MAIN
Changes since 1.6: +1 -1 lines
lookfortimesync return UInt_t now and not int.

1 /**
2 * OrbitalRate
3 * author Nagni
4 * version 1.0 - 27 April 2006
5 *
6 * version 2.0
7 * author De Simone
8 * - most of the code rewritten
9 * - added graphs, magnetic field, new overflow resolution (AC), tle
10 * stuff.
11 *
12 */
13 #include <physics/anticounter/AnticounterEvent.h>
14 #include <physics/trigger/TriggerEvent.h>
15 #include <physics/neutronDetector/NeutronEvent.h>
16 #include "physics/neutronDetector/NeutronRecord.h"
17 #include <mcmd/McmdEvent.h>
18 #include <mcmd/McmdRecord.h>
19 #include <EventHeader.h>
20 #include <PscuHeader.h>
21 #include <TTree.h>
22 #include "sgp4.h"
23 #include "TH2F.h"
24 #include "TFrame.h"
25 #include "TGraph.h"
26 #include "TCanvas.h"
27 #include "TASImage.h"
28 #include <TDatime.h>
29 #include <TFile.h>
30
31 #include <TTimeStamp.h>
32 #include "TString.h"
33 #include "TObjString.h"
34 #include "TStyle.h"
35 #include "TPaletteAxis.h"
36 #include "TROOT.h"
37 #include <sys/stat.h>
38 #include <fstream>
39 #include <iostream>
40
41 #include <OrbitalRate.h>
42
43 using namespace std;
44
45 int main(int argc, char* argv[]){
46 TString *rootFile = NULL;
47 TString outDir = "./";
48 TString mapFile = "";
49 TString tleFile = "";
50 int offDate = 20060928;
51 // int offDate = 20060614;
52 int offTime = 210000;
53 bool field = false;
54
55 if (argc < 2){
56 printf("You have to insert at least the file to analyze and the mapFile \n");
57 printf("Try '--help' for more information. \n");
58 exit(1);
59 }
60
61 if (!strcmp(argv[1], "--help")){
62 printf( "Usage: OrbitRate FILE -map mapFile [OPTION] \n");
63 printf( "mapFile have to be a mercator map image [gif|jpg|png] \n");
64 printf( "\t --help Print this help and exit \n");
65 printf( "\t -tle[File path] Path where to find the tle infos \n");
66 printf( "\t\tUse the script retrieve_TLE.sh to create the file.\n ");
67 printf( "\t -outDir[path] Path where to put the output.\n");
68 printf( "\t -offDate Date of resetting of the Resource counter [format YYMMDD (UTC date) default 20060928] \n");
69 printf( "\t -offTime Time of resetting of the Resource counter [format HHMMSS (UTC date) default 210000] \n");
70 printf( "\t -field Produce maps of the magnetic field \n");
71 exit(1);
72 }
73
74 // Ok, here we should have at least one root file. We check that
75 // the filename contains ".root".
76 if(strstr(argv[1], ".root"))
77 rootFile = new TString(argv[1]);
78 else {
79 cerr << "OrbitalRate: no root file." << endl << "See --help" << endl;
80 exit(EXIT_FAILURE);
81 }
82
83 for (int i = 2; i < argc; i++){
84 if (!strcmp(argv[i], "-field")){
85 field = true;
86 i++;
87 continue;
88 }
89
90 if (!strcmp(argv[i], "-outDir")){
91 if (++i >= argc){
92 printf( "-outDir needs arguments. \n");
93 printf( "Try '--help' for more information. \n");
94 exit(1);
95 } else {
96 outDir = argv[i];
97 continue;
98 }
99 }
100
101 if (!strcmp(argv[i], "-tle")){
102 if (++i >= argc){
103 printf( "-tle needs arguments. \n");
104 printf( "Try '--help' for more information. \n");
105 exit(1);
106 } else {
107 tleFile = argv[i];
108 continue;
109 }
110 }
111
112 if (!strcmp(argv[i], "-offTime")){
113 if (++i >= argc){
114 printf( "-offTime needs arguments. \n");
115 printf( "Try '--help' for more information. \n");
116 exit(1);
117 }
118 else{
119 offTime = atol(argv[i]);
120 continue;
121 }
122 }
123
124 if (!strcmp(argv[i], "-offDate")){
125 if (++i >= argc){
126 printf( "-offDate needs arguments. \n");
127 printf( "Try '--help' for more information. \n");
128 exit(1);
129 }
130 else{
131 offDate = atol(argv[i]);
132 continue;
133 }
134 }
135
136 if (!strcmp(argv[i], "-map")){
137 if (++i >= argc){
138 printf( "-map needs arguments. \n");
139 printf( "Try '--help' for more information. \n");
140 exit(1);
141 } else {
142 mapFile = argv[i];
143 continue;
144 }
145 }
146 }
147
148 if (mapFile != ""){
149 Rate(rootFile, outDir, mapFile, tleFile, offDate, offTime, field);
150 } else {
151 printf("You have to insert at least the file to analyze and the mapFile \n");
152 printf("Try '--help' for more information. \n");
153 }
154 }
155
156
157 void InitStyle() {
158 gROOT->SetStyle("Plain");
159
160 TStyle *myStyle[2], *tempo;
161 myStyle[0]=new TStyle("StyleWhite", "white");
162 myStyle[1]=new TStyle("StyleBlack", "black");
163
164 tempo=gStyle;
165 Int_t linecol, bkgndcol, histcol;
166
167 for(Int_t style=0; style<2; style++) {
168
169 linecol=kWhite*style+kBlack*(1-style);
170 bkgndcol=kBlack*style+kWhite*(1-style);
171 histcol=kYellow*style+kBlack*(1-style); // was 95
172
173 myStyle[style]->Copy(*tempo);
174
175 myStyle[style]->SetCanvasBorderMode(0);
176 myStyle[style]->SetCanvasBorderSize(1);
177 myStyle[style]->SetFrameBorderSize(1);
178 myStyle[style]->SetFrameBorderMode(0);
179 myStyle[style]->SetPadBorderSize(1);
180 myStyle[style]->SetStatBorderSize(1);
181 myStyle[style]->SetTitleBorderSize(1);
182 myStyle[style]->SetPadBorderMode(0);
183 myStyle[style]->SetPalette(1,0);
184 myStyle[style]->SetPaperSize(20,27);
185 myStyle[style]->SetFuncColor(kRed);
186 myStyle[style]->SetFuncWidth(1);
187 myStyle[style]->SetLineScalePS(1);
188 myStyle[style]->SetCanvasColor(bkgndcol);
189 myStyle[style]->SetAxisColor(linecol,"XYZ");
190 myStyle[style]->SetFrameFillColor(bkgndcol);
191 myStyle[style]->SetFrameLineColor(linecol);
192 myStyle[style]->SetLabelColor(linecol,"XYZ");
193 myStyle[style]->SetPadColor(bkgndcol);
194 myStyle[style]->SetStatColor(bkgndcol);
195 myStyle[style]->SetStatTextColor(linecol);
196 myStyle[style]->SetTitleColor(linecol,"XYZ");
197 myStyle[style]->SetTitleFillColor(bkgndcol);
198 myStyle[style]->SetTitleTextColor(linecol);
199 myStyle[style]->SetLineColor(linecol);
200 myStyle[style]->SetMarkerColor(histcol);
201 myStyle[style]->SetTextColor(linecol);
202
203 myStyle[style]->SetGridColor((style)?13:kBlack);
204 myStyle[style]->SetHistFillStyle(1001*(1-style));
205 myStyle[style]->SetHistLineColor(histcol);
206 myStyle[style]->SetHistFillColor((style)?bkgndcol:kYellow);
207
208 myStyle[style]->SetOptStat(0); // Remove statistic summary
209 }
210
211 myStyle[1]->cd();
212
213 gROOT->ForceStyle();
214
215 }
216
217
218 void Rate(TString *filename, TString outDirectory = "", TString mapFile = "", TString tleFile = "", int offDate = 20060614, int offTime = 210000, bool field = false)
219 {
220 // **** Offset to temporarily correct the TDatime bug ****/
221 // offTime += 10000;
222 //********************************************************/
223
224 TTree *tr = 0;
225 TFile *rootFile;
226 FILE *f;
227
228 pamela::McmdEvent *mcmdev = 0;
229 pamela::McmdRecord *mcmdrc = 0;
230 pamela::EventHeader *eh = 0;
231 pamela::PscuHeader *ph = 0;
232 TArrayC *mcmddata;
233 ULong64_t nevents = 0;
234 stringstream oss;
235
236 Float_t timesync = 0, obt_timesync = 0;
237 Long64_t offsetTime = 0;
238 Long64_t timeElapsedFromTLE = 0;
239 Long64_t deltaTime = 0, oldtimeElapsedFromTLE = 0;
240 bool a_second_is_over;
241
242 Float_t lon, lat, alt;
243
244 vector<Double_t> vector_trigAndOr;
245 vector<Double_t> vector_trigAndAnd;
246 vector<Double_t> vector_trigS11andS12;
247 vector<Double_t> vector_trigS12andS21andS22;
248 vector<Double_t> vector_trigS111A;
249
250 double mean_trigAndOr;
251 double mean_trigAndAnd;
252 double mean_trigS11andS12;
253 double mean_trigS12andS21andS22;
254 double mean_trigS111A;
255
256 // We'll use this size for the generated images.
257 TImage *tImage=TImage::Open(mapFile);
258 int width=(int)(tImage->GetWidth()*0.80);
259 int height=(int)(tImage->GetHeight()*0.80);
260 delete tImage;
261
262 // This histogram will store time (in seconds) spent in each bin.
263 TH2F *obtBinTime = new TH2F("obtBinTime", "Time of acquisition of background data", 360, -180, 180, 180, -90, 90);
264
265 // Now I create histograms longitude x latitude to hold values. I
266 // use the suffix _counter to say that this values are what I read
267 // from Pamela and they are not normalized in any way.
268
269 // This historam will store the number of events occurred in each bin.
270 TH2F *event_counter = new TH2F("event_counter", "Event rate", 360, -180, 180, 180, -90, 90);
271 TH2F *nd_counter = new TH2F("nd_counter", "Upper background neutrons", 360, -180, 180, 180, -90, 90);
272 TH2F *antiCAS4_counter = new TH2F("CAS4_counter", "CAS4 rate", 360, -180, 180, 180, -90, 90);
273 TH2F *antiCAS3_counter = new TH2F("CAS3_counter", "CAS3 rate", 360, -180, 180, 180, -90, 90);
274 TH2F *trigAndOr_counter = new TH2F("trigAndOr_counter", "Rate of triggering in (S11+S12)*(S21+S22)*(S31+S32) configuration", 360, -180, 180, 180, -90, 90);
275 TH2F *trigAndAnd_counter = new TH2F("trigAndAnd_counter", "Rate of triggering in (S11*S12)*(S21*S22)*(S31*S32) configuration", 360, -180, 180, 180, -90, 90);
276 TH2F *trigS11andS12_counter = new TH2F("trigS11andS12_counter", "Rate of S1 triggers", 360, -180, 180, 180, -90, 90); //(S11+S12)
277 TH2F *trigS12andS21andS22_counter = new TH2F("trigS12andS21andS22_counter", "Rate of S11*S21*S21 triggers", 360, -180, 180, 180, -90, 90); //(S11*S12*S21)
278 TH2F *trigS111A_counter = new TH2F("trigS111A_counter", "Rate of S111A counts", 360, -180, 180, 180, -90, 90); //(S111A)
279
280 // Magnetic field histograms. I use always the suffix _counter
281 // because they are not normalized. Imagine that an instrument
282 // give us the value of the magnetic field for each event.
283 TH2F *hbabs_counter;
284 TH2F *hbnorth_counter;
285 TH2F *hbdown_counter;
286 TH2F *hbeast_counter;
287 TH2F *hb0_counter;
288 TH2F *hl_counter;
289
290 if(field) {
291 hbabs_counter = new TH2F("hbabs_counter", "B module", 360, -180, 180, 180, -90, 90);
292 hbnorth_counter = new TH2F("hbnorth_counter", "B north", 360, -180, 180, 180, -90, 90);
293 hbdown_counter = new TH2F("hbdown_counter", "B down", 360, -180, 180, 180, -90, 90);
294 hbeast_counter = new TH2F("hbeast_counter", "B east", 360, -180, 180, 180, -90, 90);
295 hb0_counter = new TH2F("hb0_counter", "B_0", 360, -180, 180, 180, -90, 90);
296 hl_counter = new TH2F("hl_counter", "l", 360, -180, 180, 180, -90, 90);
297 }
298
299 // Get a char* to "file" from "/dir1/dir2/.../file.root"
300 TString basename;
301 basename = ((TObjString*) filename->Tokenize('/')->Last())->GetString(); // we get file.root
302 basename = ((TObjString*)basename.Tokenize('.')->First())->GetString(); // we get file
303
304 // Exit if the map file doesn't exist.
305 if(! (f = fopen(mapFile.Data(), "r")) ) {
306 cerr << "Error: the file " << mapFile.Data() << " does not exists." << endl;
307 exit(EXIT_FAILURE);
308 }
309
310 // Open the root file.
311 rootFile = new TFile(filename->Data());
312 if (rootFile->IsZombie()) {
313 printf("The file %s does not exist\n", (filename->Data()));
314 exit(EXIT_FAILURE);
315 }
316
317 // Look for a timesync in the TFile rootFile. We also get the obt
318 // of the timesync mcmd.
319 bool err;
320 err = lookforTimesync(rootFile, &timesync, &obt_timesync);
321 if(!err) {
322 cerr << "Warning!!! No timesync info has been found in the file "
323 << filename->Data() << endl;
324 exit(EXIT_FAILURE);
325 }
326
327 //Get the Julian date of the Resours offset
328 TDatime offRes = TDatime(offDate, offTime);
329 // Add to the Resours Offset the timesync. This is now the date at
330 // the moment of the timesync.
331 offRes.Set(offRes.Convert() + (UInt_t) timesync);
332
333 // Now I need a pointer to a cTle object. The class misses a
334 // constructor without arguments, so we have to give it a dummy TLE.
335 string str1 = "RESURS-DK 1";
336 string str2 = "1 29228U 06021A 06170.19643714 .00009962 00000-0 21000-3 0 196";
337 string str3 = "2 29228 069.9363 054.7893 0167576 127.4359 017.0674 15.31839265 604";
338 cTle *tle1 = new cTle(str1, str2, str3);
339
340 // If we have to use a TLE file, call getTle().
341 if (tleFile != "")
342 tle1 = getTle(tleFile, offRes);
343
344 cOrbit orbit(*tle1);
345 cEci eci;
346 cCoordGeo coo;
347
348 // offRes is now "offset date" + timesync. Now I subtract the obt
349 // of the timesync. Remember that the time of the event from the
350 // tle date is:
351 // tle date - (offset date + timesync - obt timesync + obt event).
352 offRes.Set(offRes.Convert() - (UInt_t) obt_timesync);
353
354 // Get the Julian date of the TLE epoch
355 string datetime = getTleDatetime(tle1);
356 TDatime tledate = TDatime(datetime.c_str());
357
358 cJulian jdatetime = cJulian((int) (tle1->getField(cTle::FLD_EPOCHYEAR)+2e3), tle1->getField(cTle::FLD_EPOCHDAY));
359 int pYear, pMon; double pDOM;
360 jdatetime.getComponent(&pYear, &pMon, &pDOM);
361
362 offsetTime = ((Long64_t) offRes.Convert() - (Long64_t) tledate.Convert());
363
364 /********** Magnetic Field **************/
365 // Check that all this is correct!
366 float br, btheta, bphi;
367
368 // I can now compute the magnetic dipole moment at the actual date,
369 // using the cJulian date. I don't to recompute it for every event
370 // beacause changes are not relevant at all.
371 Int_t y = tledate.GetYear();
372 Int_t m = tledate.GetMonth();
373 Int_t d = tledate.GetDay();
374 float year = (float) y + (m*31+d)/365;
375
376 // Initialize common data for geopack
377 if(field)
378 recalc_(y, m*31+d, 0, 0, 0);
379 /********** Magnetic Field **************/
380
381 tr = (TTree*)rootFile->Get("Physics");
382 TBranch *headBr = tr->GetBranch("Header");
383 tr->SetBranchAddress("Header", &eh);
384
385 /********** Anticounter **************/
386 pamela::anticounter::AnticounterEvent *antiev = 0;
387 tr->SetBranchAddress("Anticounter", &antiev);
388
389 Int_t oldCAS4 = 0;
390 Int_t diffCAS4 = 0;
391 Int_t oldCAS3 = 0;
392 Int_t diffCAS3 = 0;
393 /********** Anticounter **************/
394
395 /********** Trigger **************/
396 pamela::trigger::TriggerEvent *trigger = 0;
397 tr->SetBranchAddress("Trigger", &trigger);
398
399 Int_t oldtrigAndOr = 0;
400 Int_t oldtrigAndAnd = 0;
401 Int_t oldtrigS11andS12 = 0;
402 Int_t oldtrigS12andS21andS22 = 0;
403 Int_t oldtrigS111A = 0;
404 /********** Trigger **************/
405
406 /********** ND **************/
407 Int_t tmpSize=0;
408 Int_t sumTrig=0;
409 Int_t sumUpperBackground=0;
410 Int_t sumBottomBackground=0;
411
412 pamela::neutron::NeutronRecord *nr = 0;
413 pamela::neutron::NeutronEvent *ne = 0;
414 tr->SetBranchAddress("Neutron", &ne);
415 /********** ND **************/
416
417 nevents = tr->GetEntries();
418
419 for(UInt_t i = 0; i < nevents; i++) //Fill variables from root-ple
420 {
421 tr->GetEntry(i);
422 ph = eh->GetPscuHeader();
423
424 // obt in ms
425 UInt_t obt = (UInt_t) ph->GetOrbitalTime();
426
427 // timeElapsedFromTLE is the difference, in seconds, between the
428 // event and the tle date. I use seconds and not milliseconds
429 // because the indetermination on the timesync is about 1s.
430 timeElapsedFromTLE = offsetTime + obt/1000;
431
432 // I also need the abstime in seconds rounded to the lower
433 // value. Every second, we set a_second_is_over to true. Only
434 // in this case histograms with triggers are filled.
435 a_second_is_over = (timeElapsedFromTLE > oldtimeElapsedFromTLE) ? 1 : 0;
436 oldtimeElapsedFromTLE = timeElapsedFromTLE;
437
438 // I need the acquisition time between two triggers to fill the
439 // obtBinTime (histo of time spent in the bin). The time is in
440 // second.
441 deltaTime = timeElapsedFromTLE - oldtimeElapsedFromTLE;
442 oldtimeElapsedFromTLE = timeElapsedFromTLE;
443
444 // Finally, we get coordinates from absolute time the orbit
445 // object initialised with the TLE data. cOrbit::getPosition()
446 // requires the elapased time from the tle in minutes.
447 // Coordinates are stored in the structure eci.
448 orbit.getPosition(((double) timeElapsedFromTLE)/60., &eci);
449 coo = eci.toGeo();
450
451 /********** ND **************/
452 // Summing over all stored pamela::neutron::NeutronRecords in
453 // this event *ne.
454 for(Int_t j = 0; j < ne->Records->GetEntries(); j++) {
455 nr = (pamela::neutron::NeutronRecord*)ne->Records->At(j);
456 sumTrig += (int)nr->trigPhysics;
457 sumUpperBackground += (int)nr->upperBack;
458 sumBottomBackground += (int)nr->bottomBack;
459 }
460 /********** ND **************/
461
462 /********** Anticounter **************/
463 // Get the difference between the actual counter and the
464 // previous counter for anticoincidence, dealing with the
465 // overflow with solve_ac_overflow().
466 diffCAS4 = solve_ac_overflow(oldCAS4, antiev->counters[0][6]);
467 diffCAS3 = solve_ac_overflow(oldCAS3, antiev->counters[0][10]);
468 /********** Anticounter **************/
469
470 // Build coordinates in the right range. We want to convert,
471 // just for aesthetic, longitude from (0, 2*pi) to (-pi, pi).
472 // We also want to convert from radians to degrees.
473 lon = (coo.m_Lon > PI) ? rad2deg(coo.m_Lon - 2*PI) : rad2deg(coo.m_Lon);
474 lat = rad2deg(coo.m_Lat);
475 alt = coo.m_Alt;
476
477 /********** Magnetic Field **************/
478 if(field)
479 igrf_geo__((coo.m_Alt+6371.2)/6371.2, M_PI/2.-coo.m_Lat, coo.m_Lon, br, btheta, bphi);
480 // cout<<"("<<(coo.m_Alt+6371.2)/6371.2<<", "<<M_PI/2.-coo.m_Lat<<", "<<coo.m_Lon<<")"<<endl;
481 /********** Magnetic Field **************/
482
483 // serve fare il controllo deltatime < 1?
484 if (deltaTime > 1) cout << endl << "******** deltaTime<1 ********" << endl;
485 // Does nothing for the first two events or if acquisition time if more
486 // than 1s.
487 if(i<1 || (deltaTime > 1)) continue;
488
489 // CAS3 and CAS4 are not rates but only counters. So I fill
490 // with the bin with the difference beetween the actual counter
491 // and the previous one and then divide with the time (see
492 // below) to have rates.
493 if(diffCAS3>1e3) // additional cut to avoid the peaks after dead time
494 diffCAS3 = (Int_t) antiCAS3_counter->GetBinContent((Int_t)antiCAS3_counter->GetEntries()-1);
495 antiCAS3_counter->Fill(lon , lat, diffCAS3);
496
497 if(diffCAS4>1e3) // additional cut to avoid the peaks after dead time
498 diffCAS4 = (Int_t) antiCAS4_counter->GetBinContent((Int_t) antiCAS4_counter->GetEntries()-1);
499 antiCAS4_counter->Fill(lon, lat, diffCAS4);
500
501 // Magnetic field values should be handled a bit carefully.
502 // For every event I get a position and the related magnetic
503 // field values. I can fill the histograms lon x lat with
504 // this values but I need to count how many times I fill
505 // each bin. This is done by the histogram event_counter.
506 // I will normalize later.
507 if(field) {
508 hbabs_counter->Fill(lon, lat, sqrt(br*br+btheta*btheta+bphi*bphi)*1e-5);
509 hbnorth_counter->Fill(lon, lat, -btheta*1e-5);
510 hbdown_counter->Fill(lon, lat, -br*1e-5);
511 hbeast_counter->Fill(lon, lat, bphi*1e-5);
512 }
513 // This histograms is now filled with the number of entries.
514 // Below we will divide with the time (in seconds) to get
515 // event rate per bin.
516 event_counter->Fill(lon, lat);
517
518 // counters about triggers are already rates (Hz). Only
519 // every second we fill fill with the mean over all values.
520 if(a_second_is_over) {
521 // This histograms will hold the time, in seconds, spent
522 // in the bin.
523 obtBinTime->Fill(lon, lat, 1);
524
525 // get the means
526 mean_trigAndOr = getMean(vector_trigAndOr);
527 mean_trigAndAnd = getMean(vector_trigAndAnd);
528 mean_trigS11andS12 = getMean(vector_trigS11andS12);
529 mean_trigS12andS21andS22 = getMean(vector_trigS12andS21andS22);
530 mean_trigS111A = getMean(vector_trigS111A);
531
532 // clear data about the last second
533 vector_trigAndOr.clear();
534 vector_trigAndAnd.clear();
535 vector_trigS11andS12.clear();
536 vector_trigS12andS21andS22.clear();
537 vector_trigS111A.clear();
538
539 // Fill with the mean rate value
540 trigAndOr_counter->Fill(lon , lat, mean_trigAndOr);
541 trigAndAnd_counter->Fill(lon , lat, mean_trigAndAnd);
542 trigS11andS12_counter->Fill(lon , lat, mean_trigS11andS12);
543 trigS12andS21andS22_counter->Fill(lon , lat, mean_trigS12andS21andS22);
544 trigS111A_counter->Fill(lon, lat, mean_trigS111A);
545 }
546 else { // Collect values for all the second
547 vector_trigAndOr.push_back((1/4.)*trigger->trigrate[0]);
548 vector_trigAndAnd.push_back((1/4.)*trigger->trigrate[1]);
549 // pmtpl[0] is the rate every 60ms but I want Hz.
550 vector_trigS11andS12.push_back((1000./60.)*trigger->pmtpl[0]);
551 vector_trigS12andS21andS22.push_back((1/4.)*trigger->trigrate[4]);
552 vector_trigS111A.push_back(1.*trigger->pmtcount1[0]);
553 }
554
555 // Now we discard ND data if:
556 // - NeutronEvent is corrupted.
557 if((ne->unpackError != 1))
558 nd_counter->Fill(lon, lat, 1.*(sumUpperBackground+sumTrig));
559
560 // Reset counters for ND.
561 sumTrig = 0;
562 sumUpperBackground = 0;
563 sumBottomBackground = 0;
564 }
565
566 // We now need to normalize the histograms to print something
567 // meaningful. I create similar histograms with the suffix _rate or
568 // _norm.
569 TH2F *event_rate = (TH2F*) event_counter->Clone("event_rate");
570 TH2F *trigS111A_rate = (TH2F*) trigS111A_counter->Clone("trigS111A_rate");
571 TH2F *antiCAS4_rate = (TH2F*) antiCAS4_counter->Clone("antiCAS4_rate");
572 TH2F *antiCAS3_rate = (TH2F*) antiCAS3_counter->Clone("antiCAS3_rate");
573 TH2F *trigS11andS12_rate = (TH2F*) trigS11andS12_counter->Clone("trigS11andS12_rate");
574 TH2F *trigS12andS21andS22_rate = (TH2F*) trigS12andS21andS22_counter->Clone("trigS12andS21andS22_rate");
575 TH2F *trigAndOr_rate = (TH2F*) trigAndOr_counter->Clone("trigAndOr_rate");
576 TH2F *trigAndAnd_rate = (TH2F*) trigAndAnd_counter->Clone("trigAndAnd_rate");
577 TH2F *nd_rate = (TH2F*) nd_counter->Clone("nd_rate");
578
579 TH2F *hbabs_norm;
580 TH2F *hbnorth_norm;
581 TH2F *hbdown_norm;
582 TH2F *hbeast_norm;
583
584 if(field) {
585 hbabs_norm = (TH2F*) hbabs_counter->Clone("hbabs_norm");
586 hbnorth_norm = (TH2F*) hbnorth_counter->Clone("hbnorth_norm");
587 hbdown_norm = (TH2F*) hbabs_counter->Clone("hbdown_norm");
588 hbeast_norm = (TH2F*) hbabs_counter->Clone("hbeast_norm");
589 }
590
591 // Now we divide each histogram _counter with the time histogram
592 // obtBinTime to have an histogram _rate. Note that, when a second
593 // is passed in the above cycle, we fill the histogram obtBinTime
594 // with 1 (second) together with all the other histograms. So
595 // dividing here does make sense.
596 //
597 // Then we call printHist() for each filled TH2F. These are
598 // refered to the root file we're now reading. We also build up a
599 // filename to be passed to the function. Pay attention that the
600 // filename must end with a file format (such as .png or .pdf)
601 // recognised by TPad::SaveAs().
602 trigS111A_rate->Divide(trigS111A_counter, obtBinTime, 1, 1, "");
603 oss.str("");
604 oss << basename.Data() << "_orbit_trigS111A.png";
605 trigS111A_rate->SetMinimum(9);
606 printHist(trigS111A_rate, mapFile, outDirectory, oss.str().c_str(), "S111A (Hz)", -width, height, true, 0);
607
608 antiCAS4_rate->Divide(antiCAS4_counter, obtBinTime, 1, 1, "");
609 oss.str("");
610 oss << basename.Data() << "_orbit_CAS4.png";
611 antiCAS4_rate->SetMinimum(99);
612 printHist(antiCAS4_rate, mapFile, outDirectory, oss.str().c_str(), "CAS4 (Hz)", -width, height, true, 0);
613
614 antiCAS3_rate->Divide(antiCAS3_counter, obtBinTime, 1, 1, "");
615 oss.str("");
616 oss << basename.Data() << "_orbit_CAS3.png";
617 antiCAS3_rate->SetMinimum(99);
618 printHist(antiCAS3_rate, mapFile, outDirectory, oss.str().c_str(), "CAS3 (Hz)", -width, height, true, 0);
619
620 event_rate->Divide(event_counter, obtBinTime, 1, 1, "");
621 oss.str("");
622 oss << basename.Data() << "_orbit_EventRate.png";
623 printHist(event_rate, mapFile, outDirectory, oss.str().c_str(), "Event rate (Hz)", -width, height, 0, 0);
624
625 trigS11andS12_rate->Divide(trigS11andS12_counter, obtBinTime, 1, 1, "");
626 oss.str("");
627 oss << basename.Data() << "_orbit_trigS11andS12.png";
628 trigS11andS12_rate->SetMinimum(99);
629 printHist(trigS11andS12_rate, mapFile, outDirectory, oss.str().c_str(), "(S11*S12) (Hz)", -width, height, 1, 0);
630
631 trigS12andS21andS22_rate->Divide(trigS12andS21andS22_counter, obtBinTime, 1, 1, "");
632 oss.str("");
633 oss << basename.Data() << "_orbit_trigS12andS21andS22.png";
634 trigS12andS21andS22_rate->SetMinimum(9);
635 printHist(trigS12andS21andS22_rate, mapFile, outDirectory, oss.str().c_str(), "(S12*S12*S21) (Hz)", -width, height, true, 0);
636
637 trigAndOr_rate->Divide(trigAndOr_counter, obtBinTime, 1, 1, "");
638 oss.str("");
639 oss << basename.Data() << "_orbit_trigANDofOR.png";
640 printHist(trigAndOr_rate, mapFile, outDirectory, oss.str().c_str(), "(S11+S12)*(S21+S22)*(S31+S32) (Hz)", -width, height, 0, 0);
641
642 trigAndAnd_rate->Divide(trigAndAnd_counter, obtBinTime, 1, 1, "");
643 oss.str("");
644 oss << basename.Data() << "_orbit_trigANDofAND.png";
645 printHist(trigAndAnd_rate, mapFile, outDirectory, oss.str().c_str(), "(S11*S12)*(S21*S22)*(S31*S32) (Hz)", -width, height, 0, 0);
646
647 nd_rate->Divide(nd_counter, obtBinTime, 1, 1, "");
648 oss.str("");
649 oss << basename.Data() << "_orbit_ND.png";
650 printHist(nd_rate, mapFile, outDirectory, oss.str().c_str(), "Neutron rate (Hz)", -width, height, 0, 0);
651
652 // Also normalize histograms about magnetic fields. Beacause we
653 // fill the bins with the values of the magnetic field for each
654 // event, we need to divide with the number of fills done, that is
655 // event_counter.
656 if(field) {
657 hbabs_norm->Divide(hbabs_counter, event_counter, 1, 1, "");
658 oss.str("");
659 oss << basename.Data() << "_orbit_Babs.png";
660 printHist(hbabs_norm, mapFile, outDirectory, oss.str().c_str(), "B abs (G)", -width, height, 0, 0);
661
662 hbnorth_norm->Divide(hbnorth_counter, event_counter, 1, 1, "");
663 oss.str("");
664 oss << basename.Data() << "_orbit_Bnorth.png";
665 printHist(hbnorth_norm, mapFile, outDirectory, oss.str().c_str(), "B north (G)", -width, height, 0, 1);
666
667 hbdown_norm->Divide(hbdown_counter, event_counter, 1, 1, "");
668 oss.str("");
669 oss << basename.Data() << "_orbit_Bdown.png";
670 printHist(hbdown_norm, mapFile, outDirectory, oss.str().c_str(), "B down (G)", -width, height, 0, 1);
671
672 hbeast_norm->Divide(hbeast_counter, event_counter, 1, 1, "");
673 oss.str("");
674 oss << basename.Data() << "_orbit_Beast.png";
675 printHist(hbeast_norm, mapFile, outDirectory, oss.str().c_str(), "B east (G)", -width, height, 0, 1);
676 }
677
678 delete obtBinTime;
679 delete event_counter;
680
681 delete nd_counter;
682 delete antiCAS4_counter;
683 delete antiCAS3_counter;
684 delete trigAndOr_counter;
685 delete trigAndAnd_counter;
686 delete trigS11andS12_counter;
687 delete trigS111A_counter;
688 delete trigS12andS21andS22_counter;
689
690 delete event_rate;
691 delete nd_rate;
692 delete antiCAS4_rate;
693 delete antiCAS3_rate;
694 delete trigAndOr_rate;
695 delete trigAndAnd_rate;
696 delete trigS11andS12_rate;
697 delete trigS111A_rate;
698 delete trigS12andS21andS22_rate;
699
700 if(field) {
701 delete hbabs_counter;
702 delete hbnorth_counter;
703 delete hbdown_counter;
704 delete hbeast_counter;
705 delete hbabs_norm;
706 delete hbnorth_norm;
707 delete hbdown_norm;
708 delete hbeast_norm;
709 }
710
711 rootFile->Close();
712 }
713
714
715 // Print the istogram *h on the file outputfilename in the direcotry
716 // outDirectory, using mapFile as background image, sizing the image
717 // width per height. Log scale will be used if use_log is true.
718 //
719 // If bool_shift is true a further process is performed to solve a
720 // problem with actual root version (5.12). This should be used when
721 // the histrogram is filled also with negative values, because root
722 // draws zero filled bins (so I have all the pad colorized and this is
723 // really weird!). To avoid this problem I shift all the values in a
724 // positive range and draw again using colz. Now I will not have zero
725 // filled bins painted but the scale will be wrong. This is why I
726 // need to draw a new axis along the palette.
727 //
728 // Pay attention: you cannot use a mapFile different from the provided
729 // one without adjusting the scaling and position of the image (see
730 // Scale() and Merge()).
731 //
732 // This function depends on InitStyle();
733 int printHist(TH2F *h, TString mapFile, TString outDirectory, TString outputFilename, char *title, int width, int height, bool use_log, bool bool_shift)
734 {
735 InitStyle();
736
737 // Create a canvas and draw the TH2F with a nice colormap for z
738 // values, using log scale for z values, if requested, and setting
739 // some title.
740 TCanvas *canvas = new TCanvas("h", "h histogram", width*2, height*2);
741
742 if(use_log) canvas->SetLogz();
743
744 h->SetTitle(title);
745 h->SetXTitle("Longitude (deg)");
746 h->SetYTitle("Latitude (deg)");
747 h->SetLabelColor(0, "X");
748 h->SetAxisColor(0, "X");
749 h->SetLabelColor(0, "Y");
750 h->SetAxisColor(0, "Y");
751 h->SetLabelColor(0, "Z");
752 h->SetAxisColor(0, "Z");
753
754 h->Draw("colz");
755 canvas->Update(); // Update! Otherwise we can't get any palette.
756
757 // If shift in a positive range required (see comment above).
758 if(bool_shift) {
759 // Remember the minimum and maximum in this graph.
760 Float_t min = h->GetMinimum();
761 Float_t max = h->GetMaximum();
762
763 // Shift the graph up by 100. Increase the value if you still get
764 // negative filled bins.
765 h = shiftHist(h, 100.0);
766 h->SetMinimum(min+100.0);
767 h->SetMaximum(max+100.0);
768
769 // Hide the current axis of the palette
770 TPaletteAxis *palette = (TPaletteAxis*) h->GetListOfFunctions()->FindObject("palette");
771 if(!palette) cout << "palette is null" << endl;
772 TGaxis *ax = (TGaxis*) palette->GetAxis();
773 if(!ax) cout << "ax is null" << endl;
774 ax->SetLabelOffset(999);
775 ax->SetTickSize(0);
776
777 // Create a new axis of the palette using the right min and max and draw it.
778 TGaxis *gaxis = new TGaxis(palette->GetX2(), palette->GetY1(), palette->GetX2(), palette->GetY2(), min, max, 510,"+L");
779 gaxis->SetLabelColor(0);
780 gaxis->Draw();
781
782 // Update again.
783 canvas->Update();
784 }
785
786 // We merge two images: the image of the earth read from a file on
787 // that one of the TPad of canvas (the histogram). The first one is
788 // scaled and adjusted to fit well inside the frame of the second
789 // one. Finally we draw them both.
790 //
791 // Here there's a trick to avoid blurring during the merging
792 // operation. We get the image from a canvas sized (width*2 x
793 // height*2) and draw it on a canvas sized (width x height).
794
795 TCanvas *mergeCanvas = new TCanvas("", "", width, height);
796 TImage *img = TImage::Create();
797 TImage *terra = TImage::Create();
798 img->FromPad(canvas); // get the TCanvas canvas as TImage
799 terra->ReadImage(mapFile, TImage::kPng); // get the png file as TImage
800 terra->Scale(1304,830);
801 img->Merge(terra, "add", 166, 112); // add image terra to image img
802 img->Draw("X"); // see what we get, eXpanding img all over mergeCanvas.
803
804 stringstream oss;
805 oss << outDirectory.Data() << "/" << outputFilename.Data();
806
807 mergeCanvas->SaveAs(oss.str().c_str());
808 mergeCanvas->Close();
809 canvas->Close();
810
811 return EXIT_SUCCESS;
812 }
813
814 void saveHist(TH1 *h, TString savetorootfile)
815 {
816 TFile *file = new TFile(savetorootfile.Data(), "update");
817
818 h->Write();
819 file->Close();
820 }
821
822
823 // Get the TLE from tleFile. The right TLE is that one with the
824 // closest previous date to offRes, that is the date at the time of
825 // the first timesync found in the root file.
826 //
827 // Warning: you must use a tle file obtained by space-track.org
828 // querying the database with the RESURS DK-1 id number 29228,
829 // selecting the widest timespan, including the satellite name in the
830 // results.
831 cTle *getTle(TString tleFile, TDatime offRes)
832 {
833 Float_t tledatefromfile, tledatefromroot;
834 fstream tlefile(tleFile.Data(), ios::in);
835 vector<cTle*> ctles;
836 vector<cTle*>::iterator iter;
837
838
839 // Build a vector of *cTle
840 while(1) {
841 cTle *tlef;
842 string str1, str2, str3;
843
844 getline(tlefile, str1);
845 if(tlefile.eof()) break;
846
847 getline(tlefile, str2);
848 if(tlefile.eof()) break;
849
850 getline(tlefile, str3);
851 if(tlefile.eof()) break;
852
853 // We now have three good lines for a cTle.
854 tlef = new cTle(str1, str2, str3);
855 ctles.push_back(tlef);
856 }
857
858 // Sort by date
859 sort(ctles.begin(), ctles.end(), compTLE);
860
861 tledatefromroot = (offRes.GetYear()-2000)*1e3 + (offRes.Convert() - (TDatime(offRes.GetYear(), 1, 1, 0, 0, 0)).Convert())/ (24.*3600.);
862
863 for(iter = ctles.begin(); iter != ctles.end(); iter++) {
864 cTle *tle = *iter;
865
866 tledatefromfile = getTleJulian(tle);
867
868 if(tledatefromroot > tledatefromfile) {
869 tlefile.close();
870 cTle *thisTle = tle;
871 ctles.clear();
872
873 return thisTle;
874 }
875 }
876
877 // File ended withoud founding a TLE with a date after offRes. We'll use the last aviable date.
878 cerr << "Warning: using last available TLE in " << tleFile.Data() << ". Consider updating your tle file." << endl;
879
880 tlefile.close();
881 cTle *thisTle = ctles[ctles.size()-1];
882 ctles.clear();
883
884 return thisTle;
885 }
886
887
888 // Return whether the first TLE is older than the second
889 bool compTLE (cTle *tle1, cTle *tle2)
890 {
891 return getTleJulian(tle1) > getTleJulian(tle2);
892 }
893
894
895 // Return the date of the tle using the format (year-2000)*1e3 +
896 // julian day. e.g. 6364.5 is the 31th Dec 2006 12:00:00.
897 // It does *not* return a cJulian date.
898 float getTleJulian(cTle *tle) {
899 return tle->getField(cTle::FLD_EPOCHYEAR)*1e3 + tle->getField(cTle::FLD_EPOCHDAY);
900 }
901
902
903 // Look for a timesync in the TFile rootFile. Set timesync and
904 // obt_timesync. Returns 1 if timesync is found, 0 otherwise.
905 UInt_t lookforTimesync(TFile *rootFile, Float_t *timesync, Float_t *obt_timesync) {
906 *timesync = -1; // will be != -1 if found
907
908 ULong64_t nevents = 0;
909 pamela::McmdRecord *mcmdrc = 0;
910 pamela::McmdEvent *mcmdev = 0;
911 TArrayC *mcmddata;
912 TTree *tr = (TTree*) rootFile->Get("Mcmd");
913
914 tr->SetBranchAddress("Mcmd", &mcmdev);
915
916 nevents = tr->GetEntries();
917
918 // Looking for a timesync. We stop at the first one found.
919 long int recEntries;
920
921 for(UInt_t i = 0; i < nevents; i++) {
922 tr->GetEntry(i);
923 recEntries = mcmdev->Records->GetEntries();
924
925 for(UInt_t j = 0; j < recEntries; j++) {
926 mcmdrc = (pamela::McmdRecord*)mcmdev->Records->At(j);
927
928 if ((mcmdrc != 0) && (mcmdrc->ID1 == 0xE0)) //Is it a TimeSync?
929 {
930 mcmddata = mcmdrc->McmdData;
931 *timesync = (((unsigned int)mcmddata->At(0)<<24)&0xFF000000)
932 + (((unsigned int)mcmddata->At(1)<<16)&0x00FF0000)
933 + (((unsigned int)mcmddata->At(2)<<8)&0x0000FF00)
934 + (((unsigned int)mcmddata->At(3))&0x000000FF);
935 *obt_timesync = (mcmdrc->MCMD_RECORD_OBT)*(1./1000.);
936
937 goto out; // a timesync is found
938 }
939 }
940 }
941
942 out:
943
944 if (*timesync == -1)
945 return 0;
946 else
947 return 1;
948 }
949
950
951 // Returns the mean value of the elements stored in the vector v.
952 double getMean(vector<Double_t> v)
953 {
954 double mean = 0;
955
956 for(int i=0; i < v.size(); i++)
957 mean += v.at(i);
958
959 return mean/v.size();
960 }
961
962
963 // Shift all non zero bins by shift.
964 TH2F* shiftHist(TH2F* h, Float_t shift)
965 {
966 // Global bin number.
967 Int_t nBins = h->GetBin(h->GetNbinsX(), h->GetNbinsY());
968
969 for(int i = 0; i < nBins; i++)
970 if(h->GetBinContent(i)) h->AddBinContent(i, shift);
971
972 return h;
973 }
974
975
976 // Return a string like YYYY-MM-DD hh:mm:ss, a datetime format.
977 string getTleDatetime(cTle *tle)
978 {
979 int year, mon, day, hh, mm, ss;
980 double dom; // day of month (is double!)
981 stringstream date; // date in datetime format
982
983 // create a cJulian from the date in tle
984 cJulian jdate = cJulian( 2000 + (int) tle->getField(cTle::FLD_EPOCHYEAR), tle->getField(cTle::FLD_EPOCHDAY));
985
986 // get year, month, day of month
987 jdate.getComponent(&year, &mon, &dom);
988
989 // build a datetime YYYY-MM-DD hh:mm:ss
990 date.str("");
991 day = (int) floor(dom);
992 hh = (int) floor( (dom - day) * 24);
993 mm = (int) floor( ((dom - day) * 24 - hh) * 60);
994 ss = (int) floor( ((((dom - day) * 24 - hh) * 60 - mm) * 60));
995 // ms = (int) floor( (((((dom - day) * 24 - hh) * 60 - mm) * 60) - ss) * 1000);
996
997 date << year << "-" << mon << "-" << day << " " << hh << ":" << mm << ":" << ss;
998
999 return date.str();
1000 }
1001
1002 //
1003 // Solve the overflow for anticoincidence because this counter is
1004 // stored in 2 bytes so counts from 0 to 65535.
1005 //
1006 // counter is the actual value.
1007 // oldValue is meant to be the previous value of counter.
1008 //
1009 // Example:
1010 // for(...) {
1011 // ...
1012 // corrected_diff = solve_ac_overflow(oldValueOfTheCounter, actualValue);
1013 // ...
1014 // }
1015 //
1016 //
1017 // Returns the corrected difference between counter and oldValue and
1018 // set oldValue to the value of counter.
1019 // Attention: oldValue is a reference.
1020 Int_t solve_ac_overflow(Int_t& oldValue, Int_t counter)
1021 {
1022 Int_t truediff = 0;
1023
1024 if (counter < oldValue) // overflow!
1025 truediff = 0xFFFF - oldValue + counter;
1026 else
1027 truediff = counter - oldValue;
1028
1029 oldValue = counter;
1030
1031 return truediff;
1032 }

  ViewVC Help
Powered by ViewVC 1.1.23