/[PAMELA software]/quicklook/OrbitalRate/src/OrbitalRate.cpp
ViewVC logotype

Contents of /quicklook/OrbitalRate/src/OrbitalRate.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.5 - (show annotations) (download)
Sat Dec 23 21:34:58 2006 UTC (17 years, 11 months ago) by pam-rm2
Branch: MAIN
Changes since 1.4: +1 -1 lines
Removed the offtime offset again.

1 /**
2 * OrbitalRate
3 * author Nagni
4 * version 1.0 - 27 April 2006
5 *
6 * version 2.0
7 * author De Simone
8 * - most of the code rewritten
9 * - added graphs, magnetic field, new overflow resolution (AC), tle
10 * stuff.
11 *
12 */
13 #include <physics/anticounter/AnticounterEvent.h>
14 #include <physics/trigger/TriggerEvent.h>
15 #include <physics/neutronDetector/NeutronEvent.h>
16 #include "physics/neutronDetector/NeutronRecord.h"
17 #include <mcmd/McmdEvent.h>
18 #include <mcmd/McmdRecord.h>
19 #include <EventHeader.h>
20 #include <PscuHeader.h>
21 #include <TTree.h>
22 #include "sgp4.h"
23 #include "TH2F.h"
24 #include "TFrame.h"
25 #include "TGraph.h"
26 #include "TCanvas.h"
27 #include "TASImage.h"
28 #include <TDatime.h>
29 #include <TFile.h>
30
31 #include <TTimeStamp.h>
32 #include "TString.h"
33 #include "TObjString.h"
34 #include "TStyle.h"
35 #include "TPaletteAxis.h"
36 #include "TROOT.h"
37 #include <sys/stat.h>
38 #include <fstream>
39 #include <iostream>
40
41 #include <OrbitalRate.h>
42
43 using namespace std;
44
45 int main(int argc, char* argv[]){
46 TString *rootFile = NULL;
47 TString outDir = "./";
48 TString mapFile = "";
49 TString tleFile = "";
50 int offDate = 20060928;
51 // int offDate = 20060614;
52 int offTime = 210000;
53
54 if (argc < 2){
55 printf("You have to insert at least the file to analyze and the mapFile \n");
56 printf("Try '--help' for more information. \n");
57 exit(1);
58 }
59
60 if (!strcmp(argv[1], "--help")){
61 printf( "Usage: OrbitRate FILE -map mapFile [OPTION] \n");
62 printf( "mapFile have to be a mercator map image [gif|jpg|png] \n");
63 printf( "\t --help Print this help and exit \n");
64 printf( "\t -tle[File path] Path where to find the tle infos \n");
65 printf( "\t\tUse the script retrieve_TLE.sh to create the file.\n ");
66 printf( "\t -outDir[path] Path where to put the output.\n");
67 printf( "\t -offDate Date of resetting of the Resource counter [format YYMMDD (UTC date) default 20060928] \n");
68 printf( "\t -offTime Time of resetting of the Resource counter [format HHMMSS (UTC date) default 210000] \n");
69 exit(1);
70 }
71
72 // Ok, here we should have at least one root file. We check that
73 // the filename contains ".root".
74 if(strstr(argv[1], ".root"))
75 rootFile = new TString(argv[1]);
76 else {
77 cerr << "OrbitalRate: no root file." << endl << "See --help" << endl;
78 exit(EXIT_FAILURE);
79 }
80
81 for (int i = 2; i < argc; i++){
82 if (!strcmp(argv[i], "-outDir")){
83 if (++i >= argc){
84 printf( "-outDir needs arguments. \n");
85 printf( "Try '--help' for more information. \n");
86 exit(1);
87 } else {
88 outDir = argv[i];
89 continue;
90 }
91 }
92
93 if (!strcmp(argv[i], "-tle")){
94 if (++i >= argc){
95 printf( "-tle needs arguments. \n");
96 printf( "Try '--help' for more information. \n");
97 exit(1);
98 } else {
99 tleFile = argv[i];
100 continue;
101 }
102 }
103
104 if (!strcmp(argv[i], "-offTime")){
105 if (++i >= argc){
106 printf( "-offTime needs arguments. \n");
107 printf( "Try '--help' for more information. \n");
108 exit(1);
109 }
110 else{
111 offTime = atol(argv[i]);
112 continue;
113 }
114 }
115
116 if (!strcmp(argv[i], "-offDate")){
117 if (++i >= argc){
118 printf( "-offDate needs arguments. \n");
119 printf( "Try '--help' for more information. \n");
120 exit(1);
121 }
122 else{
123 offDate = atol(argv[i]);
124 continue;
125 }
126 }
127
128 if (!strcmp(argv[i], "-map")){
129 if (++i >= argc){
130 printf( "-map needs arguments. \n");
131 printf( "Try '--help' for more information. \n");
132 exit(1);
133 } else {
134 mapFile = argv[i];
135 continue;
136 }
137 }
138 }
139
140 if (mapFile != ""){
141 Rate(rootFile, outDir, mapFile, tleFile, offDate, offTime);
142 } else {
143 printf("You have to insert at least the file to analyze and the mapFile \n");
144 printf("Try '--help' for more information. \n");
145 }
146 }
147
148
149 void InitStyle() {
150 gROOT->SetStyle("Plain");
151
152 TStyle *myStyle[2], *tempo;
153 myStyle[0]=new TStyle("StyleWhite", "white");
154 myStyle[1]=new TStyle("StyleBlack", "black");
155
156 tempo=gStyle;
157 Int_t linecol, bkgndcol, histcol;
158
159 for(Int_t style=0; style<2; style++) {
160
161 linecol=kWhite*style+kBlack*(1-style);
162 bkgndcol=kBlack*style+kWhite*(1-style);
163 histcol=kYellow*style+kBlack*(1-style); // was 95
164
165 myStyle[style]->Copy(*tempo);
166
167 myStyle[style]->SetCanvasBorderMode(0);
168 myStyle[style]->SetCanvasBorderSize(1);
169 myStyle[style]->SetFrameBorderSize(1);
170 myStyle[style]->SetFrameBorderMode(0);
171 myStyle[style]->SetPadBorderSize(1);
172 myStyle[style]->SetStatBorderSize(1);
173 myStyle[style]->SetTitleBorderSize(1);
174 myStyle[style]->SetPadBorderMode(0);
175 myStyle[style]->SetPalette(1,0);
176 myStyle[style]->SetPaperSize(20,27);
177 myStyle[style]->SetFuncColor(kRed);
178 myStyle[style]->SetFuncWidth(1);
179 myStyle[style]->SetLineScalePS(1);
180 myStyle[style]->SetCanvasColor(bkgndcol);
181 myStyle[style]->SetAxisColor(linecol,"XYZ");
182 myStyle[style]->SetFrameFillColor(bkgndcol);
183 myStyle[style]->SetFrameLineColor(linecol);
184 myStyle[style]->SetLabelColor(linecol,"XYZ");
185 myStyle[style]->SetPadColor(bkgndcol);
186 myStyle[style]->SetStatColor(bkgndcol);
187 myStyle[style]->SetStatTextColor(linecol);
188 myStyle[style]->SetTitleColor(linecol,"XYZ");
189 myStyle[style]->SetTitleFillColor(bkgndcol);
190 myStyle[style]->SetTitleTextColor(linecol);
191 myStyle[style]->SetLineColor(linecol);
192 myStyle[style]->SetMarkerColor(histcol);
193 myStyle[style]->SetTextColor(linecol);
194
195 myStyle[style]->SetGridColor((style)?13:kBlack);
196 myStyle[style]->SetHistFillStyle(1001*(1-style));
197 myStyle[style]->SetHistLineColor(histcol);
198 myStyle[style]->SetHistFillColor((style)?bkgndcol:kYellow);
199
200 myStyle[style]->SetOptStat(0); // Remove statistic summary
201 }
202
203 myStyle[1]->cd();
204
205 gROOT->ForceStyle();
206
207 }
208
209
210 void Rate(TString *filename, TString outDirectory = "", TString mapFile = "", TString tleFile = "", int offDate = 20060614, int offTime = 210000)
211 {
212 // **** Offset to temporarily correct the TDatime bug ****/
213 // offTime += 10000;
214 //********************************************************/
215
216 TTree *tr = 0;
217 TFile *rootFile;
218 FILE *f;
219
220 pamela::McmdEvent *mcmdev = 0;
221 pamela::McmdRecord *mcmdrc = 0;
222 pamela::EventHeader *eh = 0;
223 pamela::PscuHeader *ph = 0;
224 TArrayC *mcmddata;
225 ULong64_t nevents = 0;
226 stringstream oss;
227
228 Float_t timesync = 0, obt_timesync = 0;
229 Long64_t offsetTime = 0;
230 Long64_t timeElapsedFromTLE = 0;
231 Long64_t deltaTime = 0, oldtimeElapsedFromTLE = 0;
232 bool a_second_is_over;
233
234 Float_t lon, lat, alt;
235
236 vector<Double_t> vector_trigAndOr;
237 vector<Double_t> vector_trigAndAnd;
238 vector<Double_t> vector_trigS11andS12;
239 vector<Double_t> vector_trigS12andS21andS22;
240 vector<Double_t> vector_trigS111A;
241
242 double mean_trigAndOr;
243 double mean_trigAndAnd;
244 double mean_trigS11andS12;
245 double mean_trigS12andS21andS22;
246 double mean_trigS111A;
247
248 // We'll use this size for the generated images.
249 TImage *tImage=TImage::Open(mapFile);
250 int width=(int)(tImage->GetWidth()*0.80);
251 int height=(int)(tImage->GetHeight()*0.80);
252 delete tImage;
253
254 // This histogram will store time (in seconds) spent in each bin.
255 TH2F *obtBinTime = new TH2F("obtBinTime", "Time of acquisition of background data", 360, -180, 180, 180, -90, 90);
256
257 // Now I create histograms longitude x latitude to hold values. I
258 // use the suffix _counter to say that this values are what I read
259 // from Pamela and they are not normalized in any way.
260
261 // This historam will store the number of events occurred in each bin.
262 TH2F *event_counter = new TH2F("event_counter", "Event rate", 360, -180, 180, 180, -90, 90);
263 TH2F *nd_counter = new TH2F("nd_counter", "Upper background neutrons", 360, -180, 180, 180, -90, 90);
264 TH2F *antiCAS4_counter = new TH2F("CAS4_counter", "CAS4 rate", 360, -180, 180, 180, -90, 90);
265 TH2F *antiCAS3_counter = new TH2F("CAS3_counter", "CAS3 rate", 360, -180, 180, 180, -90, 90);
266 TH2F *trigAndOr_counter = new TH2F("trigAndOr_counter", "Rate of triggering in (S11+S12)*(S21+S22)*(S31+S32) configuration", 360, -180, 180, 180, -90, 90);
267 TH2F *trigAndAnd_counter = new TH2F("trigAndAnd_counter", "Rate of triggering in (S11*S12)*(S21*S22)*(S31*S32) configuration", 360, -180, 180, 180, -90, 90);
268 TH2F *trigS11andS12_counter = new TH2F("trigS11andS12_counter", "Rate of S1 triggers", 360, -180, 180, 180, -90, 90); //(S11+S12)
269 TH2F *trigS12andS21andS22_counter = new TH2F("trigS12andS21andS22_counter", "Rate of S11*S21*S21 triggers", 360, -180, 180, 180, -90, 90); //(S11*S12*S21)
270 TH2F *trigS111A_counter = new TH2F("trigS111A_counter", "Rate of S111A counts", 360, -180, 180, 180, -90, 90); //(S111A)
271
272 // Magnetic field histograms. I use always the suffix _counter
273 // because they are not normalized. Imagine that an instrument
274 // give us the value of the magnetic field for each event.
275 TH2F *hbabs_counter = new TH2F("hbabs_counter", "B module", 360, -180, 180, 180, -90, 90);
276 TH2F *hbnorth_counter = new TH2F("hbnorth_counter", "B north", 360, -180, 180, 180, -90, 90);
277 TH2F *hbdown_counter = new TH2F("hbdown_counter", "B down", 360, -180, 180, 180, -90, 90);
278 TH2F *hbeast_counter = new TH2F("hbeast_counter", "B east", 360, -180, 180, 180, -90, 90);
279 TH2F *hb0_counter = new TH2F("hb0_counter", "B_0", 360, -180, 180, 180, -90, 90);
280 TH2F *hl_counter = new TH2F("hl_counter", "l", 360, -180, 180, 180, -90, 90);
281
282 // Get a char* to "file" from "/dir1/dir2/.../file.root"
283 TString basename;
284 basename = ((TObjString*) filename->Tokenize('/')->Last())->GetString(); // we get file.root
285 basename = ((TObjString*)basename.Tokenize('.')->First())->GetString(); // we get file
286
287 // Exit if the map file doesn't exist.
288 if(! (f = fopen(mapFile.Data(), "r")) ) {
289 cerr << "Error: the file " << mapFile.Data() << " does not exists." << endl;
290 exit(EXIT_FAILURE);
291 }
292
293 // Open the root file.
294 rootFile = new TFile(filename->Data());
295 if (rootFile->IsZombie()) {
296 printf("The file %s does not exist\n", (filename->Data()));
297 exit(EXIT_FAILURE);
298 }
299
300 // Look for a timesync in the TFile rootFile. We also get the obt
301 // of the timesync mcmd.
302 bool err;
303 err = lookforTimesync(rootFile, &timesync, &obt_timesync);
304 if(!err) {
305 cerr << "Warning!!! No timesync info has been found in the file "
306 << filename->Data() << endl;
307 exit(EXIT_FAILURE);
308 }
309
310 //Get the Julian date of the Resours offset
311 TDatime offRes = TDatime(offDate, offTime);
312 // Add to the Resours Offset the timesync. This is now the date at
313 // the moment of the timesync.
314 offRes.Set(offRes.Convert() + (UInt_t) timesync);
315
316 // Now I need a pointer to a cTle object. The class misses a
317 // constructor without arguments, so we have to give it a dummy TLE.
318 string str1 = "RESURS-DK 1";
319 string str2 = "1 29228U 06021A 06170.19643714 .00009962 00000-0 21000-3 0 196";
320 string str3 = "2 29228 069.9363 054.7893 0167576 127.4359 017.0674 15.31839265 604";
321 cTle *tle1 = new cTle(str1, str2, str3);
322
323 // If we have to use a TLE file, call getTle().
324 if (tleFile != "")
325 tle1 = getTle(tleFile, offRes);
326
327 cOrbit orbit(*tle1);
328 cEci eci;
329 cCoordGeo coo;
330
331 // offRes is now "offset date" + timesync. Now I subtract the obt
332 // of the timesync. Remember that the time of the event from the
333 // tle date is:
334 // tle date - (offset date + timesync - obt timesync + obt event).
335 offRes.Set(offRes.Convert() - (UInt_t) obt_timesync);
336
337 // Get the Julian date of the TLE epoch
338 string datetime = getTleDatetime(tle1);
339 TDatime tledate = TDatime(datetime.c_str());
340
341 cJulian jdatetime = cJulian((int) (tle1->getField(cTle::FLD_EPOCHYEAR)+2e3), tle1->getField(cTle::FLD_EPOCHDAY));
342 int pYear, pMon; double pDOM;
343 jdatetime.getComponent(&pYear, &pMon, &pDOM);
344
345 offsetTime = ((Long64_t) offRes.Convert() - (Long64_t) tledate.Convert());
346
347 /********** Magnetic Field **************/
348 // Check that all this is correct!
349 float br, btheta, bphi;
350
351 // I can now compute the magnetic dipole moment at the actual date,
352 // using the cJulian date. I don't to recompute it for every event
353 // beacause changes are not relevant at all.
354 Int_t y = tledate.GetYear();
355 Int_t m = tledate.GetMonth();
356 Int_t d = tledate.GetDay();
357 float year = (float) y + (m*31+d)/365;
358
359 // Initialize common data for geopack
360 recalc_(y, m*31+d, 0, 0, 0);
361 /********** Magnetic Field **************/
362
363 tr = (TTree*)rootFile->Get("Physics");
364 TBranch *headBr = tr->GetBranch("Header");
365 tr->SetBranchAddress("Header", &eh);
366
367 /********** Anticounter **************/
368 pamela::anticounter::AnticounterEvent *antiev = 0;
369 tr->SetBranchAddress("Anticounter", &antiev);
370
371 Int_t oldCAS4 = 0;
372 Int_t diffCAS4 = 0;
373 Int_t oldCAS3 = 0;
374 Int_t diffCAS3 = 0;
375 /********** Anticounter **************/
376
377 /********** Trigger **************/
378 pamela::trigger::TriggerEvent *trigger = 0;
379 tr->SetBranchAddress("Trigger", &trigger);
380
381 Int_t oldtrigAndOr = 0;
382 Int_t oldtrigAndAnd = 0;
383 Int_t oldtrigS11andS12 = 0;
384 Int_t oldtrigS12andS21andS22 = 0;
385 Int_t oldtrigS111A = 0;
386 /********** Trigger **************/
387
388 /********** ND **************/
389 Int_t tmpSize=0;
390 Int_t sumTrig=0;
391 Int_t sumUpperBackground=0;
392 Int_t sumBottomBackground=0;
393
394 pamela::neutron::NeutronRecord *nr = 0;
395 pamela::neutron::NeutronEvent *ne = 0;
396 tr->SetBranchAddress("Neutron", &ne);
397 /********** ND **************/
398
399 nevents = tr->GetEntries();
400
401 for(UInt_t i = 0; i < nevents; i++) //Fill variables from root-ple
402 {
403 tr->GetEntry(i);
404 ph = eh->GetPscuHeader();
405
406 // obt in ms
407 ULong64_t obt = ph->GetOrbitalTime();
408
409 // timeElapsedFromTLE is the difference, in seconds, between the
410 // event and the tle date. I use seconds and not milliseconds
411 // because the indetermination on the timesync is about 1s.
412 timeElapsedFromTLE = offsetTime + obt/1000;
413
414 // I also need the abstime in seconds rounded to the lower
415 // value. Every second, we set a_second_is_over to true. Only
416 // in this case histograms with triggers are filled.
417 a_second_is_over = (timeElapsedFromTLE > oldtimeElapsedFromTLE) ? 1 : 0;
418 oldtimeElapsedFromTLE = timeElapsedFromTLE;
419
420 // I need the acquisition time between two triggers to fill the
421 // obtBinTime (histo of time spent in the bin). The time is in
422 // second.
423 deltaTime = timeElapsedFromTLE - oldtimeElapsedFromTLE;
424 oldtimeElapsedFromTLE = timeElapsedFromTLE;
425
426 // Finally, we get coordinates from absolute time the orbit
427 // object initialised with the TLE data. cOrbit::getPosition()
428 // requires the elapased time from the tle in minutes.
429 // Coordinates are stored in the structure eci.
430 orbit.getPosition(((double) timeElapsedFromTLE)/60., &eci);
431 coo = eci.toGeo();
432
433 /********** ND **************/
434 // Summing over all stored pamela::neutron::NeutronRecords in
435 // this event *ne.
436 for(Int_t j = 0; j < ne->Records->GetEntries(); j++) {
437 nr = (pamela::neutron::NeutronRecord*)ne->Records->At(j);
438 sumTrig += (int)nr->trigPhysics;
439 sumUpperBackground += (int)nr->upperBack;
440 sumBottomBackground += (int)nr->bottomBack;
441 }
442 /********** ND **************/
443
444 /********** Anticounter **************/
445 // Get the difference between the actual counter and the
446 // previous counter for anticoincidence, dealing with the
447 // overflow with solve_ac_overflow().
448 diffCAS4 = solve_ac_overflow(oldCAS4, antiev->counters[0][6]);
449 diffCAS3 = solve_ac_overflow(oldCAS3, antiev->counters[0][10]);
450 /********** Anticounter **************/
451
452 // Build coordinates in the right range. We want to convert,
453 // just for aesthetic, longitude from (0, 2*pi) to (-pi, pi).
454 // We also want to convert from radians to degrees.
455 lon = (coo.m_Lon > PI) ? rad2deg(coo.m_Lon - 2*PI) : rad2deg(coo.m_Lon);
456 lat = rad2deg(coo.m_Lat);
457 alt = coo.m_Alt;
458
459 /********** Magnetic Field **************/
460 igrf_geo__((coo.m_Alt+6371.2)/6371.2, M_PI/2.-coo.m_Lat, coo.m_Lon, br, btheta, bphi);
461 // cout<<"("<<(coo.m_Alt+6371.2)/6371.2<<", "<<M_PI/2.-coo.m_Lat<<", "<<coo.m_Lon<<")"<<endl;
462 /********** Magnetic Field **************/
463
464 // serve fare il controllo deltatime < 1?
465 if (deltaTime > 1) cout << endl << "******** deltaTime<1 ********" << endl;
466 // Does nothing for the first two events or if acquisition time if more
467 // than 1s.
468 if(i<1 || (deltaTime > 1)) continue;
469
470 // CAS3 and CAS4 are not rates but only counters. So I fill
471 // with the bin with the difference beetween the actual counter
472 // and the previous one and then divide with the time (see
473 // below) to have rates.
474 if(diffCAS3>1e3) // additional cut to avoid the peaks after dead time
475 diffCAS3 = (Int_t) antiCAS3_counter->GetBinContent((Int_t)antiCAS3_counter->GetEntries()-1);
476 antiCAS3_counter->Fill(lon , lat, diffCAS3);
477
478 if(diffCAS4>1e3) // additional cut to avoid the peaks after dead time
479 diffCAS4 = (Int_t) antiCAS4_counter->GetBinContent((Int_t) antiCAS4_counter->GetEntries()-1);
480 antiCAS4_counter->Fill(lon, lat, diffCAS4);
481
482 // Magnetic field values should be handled a bit carefully.
483 // For every event I get a position and the related magnetic
484 // field values. I can fill the histograms lon x lat with
485 // this values but I need to count how many times I fill
486 // each bin. This is done by the histogram event_counter.
487 // I will normalize later.
488 hbabs_counter->Fill(lon, lat, sqrt(br*br+btheta*btheta+bphi*bphi)*1e-5);
489 hbnorth_counter->Fill(lon, lat, -btheta*1e-5);
490 hbdown_counter->Fill(lon, lat, -br*1e-5);
491 hbeast_counter->Fill(lon, lat, bphi*1e-5);
492
493 // This histograms is now filled with the number of entries.
494 // Below we will divide with the time (in seconds) to get
495 // event rate per bin.
496 event_counter->Fill(lon, lat);
497
498 // counters about triggers are already rates (Hz). Only
499 // every second we fill fill with the mean over all values.
500 if(a_second_is_over) {
501 // This histograms will hold the time, in seconds, spent
502 // in the bin.
503 obtBinTime->Fill(lon, lat, 1);
504
505 // get the means
506 mean_trigAndOr = getMean(vector_trigAndOr);
507 mean_trigAndAnd = getMean(vector_trigAndAnd);
508 mean_trigS11andS12 = getMean(vector_trigS11andS12);
509 mean_trigS12andS21andS22 = getMean(vector_trigS12andS21andS22);
510 mean_trigS111A = getMean(vector_trigS111A);
511
512 // clear data about the last second
513 vector_trigAndOr.clear();
514 vector_trigAndAnd.clear();
515 vector_trigS11andS12.clear();
516 vector_trigS12andS21andS22.clear();
517 vector_trigS111A.clear();
518
519 // Fill with the mean rate value
520 trigAndOr_counter->Fill(lon , lat, mean_trigAndOr);
521 trigAndAnd_counter->Fill(lon , lat, mean_trigAndAnd);
522 trigS11andS12_counter->Fill(lon , lat, mean_trigS11andS12);
523 trigS12andS21andS22_counter->Fill(lon , lat, mean_trigS12andS21andS22);
524 trigS111A_counter->Fill(lon, lat, mean_trigS111A);
525 }
526 else { // Collect values for all the second
527 vector_trigAndOr.push_back((1/4.)*trigger->trigrate[0]);
528 vector_trigAndAnd.push_back((1/4.)*trigger->trigrate[1]);
529 // pmtpl[0] is the rate every 60ms but I want Hz.
530 vector_trigS11andS12.push_back((1000./60.)*trigger->pmtpl[0]);
531 vector_trigS12andS21andS22.push_back((1/4.)*trigger->trigrate[4]);
532 vector_trigS111A.push_back(1.*trigger->pmtcount1[0]);
533 }
534
535 // Now we discard ND data if:
536 // - NeutronEvent is corrupted.
537 if((ne->unpackError != 1))
538 nd_counter->Fill(lon, lat, 1.*(sumUpperBackground+sumTrig));
539
540 // Reset counters for ND.
541 sumTrig = 0;
542 sumUpperBackground = 0;
543 sumBottomBackground = 0;
544 }
545
546 // We now need to normalize the histograms to print something
547 // meaningful. I create similar histograms with the suffix _rate or
548 // _norm.
549 TH2F *event_rate = (TH2F*) event_counter->Clone("event_rate");
550 TH2F *trigS111A_rate = (TH2F*) trigS111A_counter->Clone("trigS111A_rate");
551 TH2F *antiCAS4_rate = (TH2F*) antiCAS4_counter->Clone("antiCAS4_rate");
552 TH2F *antiCAS3_rate = (TH2F*) antiCAS3_counter->Clone("antiCAS3_rate");
553 TH2F *trigS11andS12_rate = (TH2F*) trigS11andS12_counter->Clone("trigS11andS12_rate");
554 TH2F *trigS12andS21andS22_rate = (TH2F*) trigS12andS21andS22_counter->Clone("trigS12andS21andS22_rate");
555 TH2F *trigAndOr_rate = (TH2F*) trigAndOr_counter->Clone("trigAndOr_rate");
556 TH2F *trigAndAnd_rate = (TH2F*) trigAndAnd_counter->Clone("trigAndAnd_rate");
557 TH2F *nd_rate = (TH2F*) nd_counter->Clone("nd_rate");
558 TH2F *hbabs_norm = (TH2F*) hbabs_counter->Clone("hbabs_norm");
559 TH2F *hbnorth_norm = (TH2F*) hbnorth_counter->Clone("hbnorth_norm");
560 TH2F *hbdown_norm = (TH2F*) hbabs_counter->Clone("hbdown_norm");
561 TH2F *hbeast_norm = (TH2F*) hbabs_counter->Clone("hbeast_norm");
562
563 // Now we divide each histogram _counter with the time histogram
564 // obtBinTime to have an histogram _rate. Note that, when a second
565 // is passed in the above cycle, we fill the histogram obtBinTime
566 // with 1 (second) together with all the other histograms. So
567 // dividing here does make sense.
568 //
569 // Then we call printHist() for each filled TH2F. These are
570 // refered to the root file we're now reading. We also build up a
571 // filename to be passed to the function. Pay attention that the
572 // filename must end with a file format (such as .png or .pdf)
573 // recognised by TPad::SaveAs().
574 trigS111A_rate->Divide(trigS111A_counter, obtBinTime, 1, 1, "");
575 oss.str("");
576 oss << basename.Data() << "_orbit_trigS111A.png";
577 trigS111A_rate->SetMinimum(9);
578 printHist(trigS111A_rate, mapFile, outDirectory, oss.str().c_str(), "S111A (Hz)", -width, height, true, 0);
579
580 antiCAS4_rate->Divide(antiCAS4_counter, obtBinTime, 1, 1, "");
581 oss.str("");
582 oss << basename.Data() << "_orbit_CAS4.png";
583 antiCAS4_rate->SetMinimum(99);
584 printHist(antiCAS4_rate, mapFile, outDirectory, oss.str().c_str(), "CAS4 (Hz)", -width, height, true, 0);
585
586 antiCAS3_rate->Divide(antiCAS3_counter, obtBinTime, 1, 1, "");
587 oss.str("");
588 oss << basename.Data() << "_orbit_CAS3.png";
589 antiCAS3_rate->SetMinimum(99);
590 printHist(antiCAS3_rate, mapFile, outDirectory, oss.str().c_str(), "CAS3 (Hz)", -width, height, true, 0);
591
592 event_rate->Divide(event_counter, obtBinTime, 1, 1, "");
593 oss.str("");
594 oss << basename.Data() << "_orbit_EventRate.png";
595 printHist(event_rate, mapFile, outDirectory, oss.str().c_str(), "Event rate (Hz)", -width, height, 0, 0);
596
597 trigS11andS12_rate->Divide(trigS11andS12_counter, obtBinTime, 1, 1, "");
598 oss.str("");
599 oss << basename.Data() << "_orbit_trigS11andS12.png";
600 trigS11andS12_rate->SetMinimum(99);
601 printHist(trigS11andS12_rate, mapFile, outDirectory, oss.str().c_str(), "(S11*S12) (Hz)", -width, height, 1, 0);
602
603 trigS12andS21andS22_rate->Divide(trigS12andS21andS22_counter, obtBinTime, 1, 1, "");
604 oss.str("");
605 oss << basename.Data() << "_orbit_trigS12andS21andS22.png";
606 trigS12andS21andS22_rate->SetMinimum(9);
607 printHist(trigS12andS21andS22_rate, mapFile, outDirectory, oss.str().c_str(), "(S12*S12*S21) (Hz)", -width, height, true, 0);
608
609 trigAndOr_rate->Divide(trigAndOr_counter, obtBinTime, 1, 1, "");
610 oss.str("");
611 oss << basename.Data() << "_orbit_trigANDofOR.png";
612 printHist(trigAndOr_rate, mapFile, outDirectory, oss.str().c_str(), "(S11+S12)*(S21+S22)*(S31+S32) (Hz)", -width, height, 0, 0);
613
614 trigAndAnd_rate->Divide(trigAndAnd_counter, obtBinTime, 1, 1, "");
615 oss.str("");
616 oss << basename.Data() << "_orbit_trigANDofAND.png";
617 printHist(trigAndAnd_rate, mapFile, outDirectory, oss.str().c_str(), "(S11*S12)*(S21*S22)*(S31*S32) (Hz)", -width, height, 0, 0);
618
619 nd_rate->Divide(nd_counter, obtBinTime, 1, 1, "");
620 oss.str("");
621 oss << basename.Data() << "_orbit_ND.png";
622 printHist(nd_rate, mapFile, outDirectory, oss.str().c_str(), "Neutron rate (Hz)", -width, height, 0, 0);
623
624 // Also normalize histograms about magnetic fields. Beacause we
625 // fill the bins with the values of the magnetic field for each
626 // event, we need to divide with the number of fills done, that is
627 // event_counter.
628 hbabs_norm->Divide(hbabs_counter, event_counter, 1, 1, "");
629 oss.str("");
630 oss << basename.Data() << "_orbit_Babs.png";
631 printHist(hbabs_norm, mapFile, outDirectory, oss.str().c_str(), "B abs (G)", -width, height, 0, 0);
632
633 hbnorth_norm->Divide(hbnorth_counter, event_counter, 1, 1, "");
634 oss.str("");
635 oss << basename.Data() << "_orbit_Bnorth.png";
636 printHist(hbnorth_norm, mapFile, outDirectory, oss.str().c_str(), "B north (G)", -width, height, 0, 1);
637
638 hbdown_norm->Divide(hbdown_counter, event_counter, 1, 1, "");
639 oss.str("");
640 oss << basename.Data() << "_orbit_Bdown.png";
641 printHist(hbdown_norm, mapFile, outDirectory, oss.str().c_str(), "B down (G)", -width, height, 0, 1);
642
643 hbeast_norm->Divide(hbeast_counter, event_counter, 1, 1, "");
644 oss.str("");
645 oss << basename.Data() << "_orbit_Beast.png";
646 printHist(hbeast_norm, mapFile, outDirectory, oss.str().c_str(), "B east (G)", -width, height, 0, 1);
647
648
649 delete obtBinTime;
650 delete event_counter;
651
652 delete nd_counter;
653 delete antiCAS4_counter;
654 delete antiCAS3_counter;
655 delete trigAndOr_counter;
656 delete trigAndAnd_counter;
657 delete trigS11andS12_counter;
658 delete trigS111A_counter;
659 delete trigS12andS21andS22_counter;
660
661 delete event_rate;
662 delete nd_rate;
663 delete antiCAS4_rate;
664 delete antiCAS3_rate;
665 delete trigAndOr_rate;
666 delete trigAndAnd_rate;
667 delete trigS11andS12_rate;
668 delete trigS111A_rate;
669 delete trigS12andS21andS22_rate;
670
671 delete hbabs_counter;
672 delete hbnorth_counter;
673 delete hbdown_counter;
674 delete hbeast_counter;
675 delete hbabs_norm;
676 delete hbnorth_norm;
677 delete hbdown_norm;
678 delete hbeast_norm;
679
680 rootFile->Close();
681 }
682
683
684 // Print the istogram *h on the file outputfilename in the direcotry
685 // outDirectory, using mapFile as background image, sizing the image
686 // width per height. Log scale will be used if use_log is true.
687 //
688 // If bool_shift is true a further process is performed to solve a
689 // problem with actual root version (5.12). This should be used when
690 // the histrogram is filled also with negative values, because root
691 // draws zero filled bins (so I have all the pad colorized and this is
692 // really weird!). To avoid this problem I shift all the values in a
693 // positive range and draw again using colz. Now I will not have zero
694 // filled bins painted but the scale will be wrong. This is why I
695 // need to draw a new axis along the palette.
696 //
697 // Pay attention: you cannot use a mapFile different from the provided
698 // one without adjusting the scaling and position of the image (see
699 // Scale() and Merge()).
700 //
701 // This function depends on InitStyle();
702 int printHist(TH2F *h, TString mapFile, TString outDirectory, TString outputFilename, char *title, int width, int height, bool use_log, bool bool_shift)
703 {
704 InitStyle();
705
706 // Create a canvas and draw the TH2F with a nice colormap for z
707 // values, using log scale for z values, if requested, and setting
708 // some title.
709 TCanvas *canvas = new TCanvas("h", "h histogram", width*2, height*2);
710
711 if(use_log) canvas->SetLogz();
712
713 h->SetTitle(title);
714 h->SetXTitle("Longitude (deg)");
715 h->SetYTitle("Latitude (deg)");
716 h->SetLabelColor(0, "X");
717 h->SetAxisColor(0, "X");
718 h->SetLabelColor(0, "Y");
719 h->SetAxisColor(0, "Y");
720 h->SetLabelColor(0, "Z");
721 h->SetAxisColor(0, "Z");
722
723 h->Draw("colz");
724 canvas->Update(); // Update! Otherwise we can't get any palette.
725
726 // If shift in a positive range required (see comment above).
727 if(bool_shift) {
728 // Remember the minimum and maximum in this graph.
729 Float_t min = h->GetMinimum();
730 Float_t max = h->GetMaximum();
731
732 // Shift the graph up by 100. Increase the value if you still get
733 // negative filled bins.
734 h = shiftHist(h, 100.0);
735 h->SetMinimum(min+100.0);
736 h->SetMaximum(max+100.0);
737
738 // Hide the current axis of the palette
739 TPaletteAxis *palette = (TPaletteAxis*) h->GetListOfFunctions()->FindObject("palette");
740 if(!palette) cout << "palette is null" << endl;
741 TGaxis *ax = (TGaxis*) palette->GetAxis();
742 if(!ax) cout << "ax is null" << endl;
743 ax->SetLabelOffset(999);
744 ax->SetTickSize(0);
745
746 // Create a new axis of the palette using the right min and max and draw it.
747 TGaxis *gaxis = new TGaxis(palette->GetX2(), palette->GetY1(), palette->GetX2(), palette->GetY2(), min, max, 510,"+L");
748 gaxis->SetLabelColor(0);
749 gaxis->Draw();
750
751 // Update again.
752 canvas->Update();
753 }
754
755 // We merge two images: the image of the earth read from a file on
756 // that one of the TPad of canvas (the histogram). The first one is
757 // scaled and adjusted to fit well inside the frame of the second
758 // one. Finally we draw them both.
759 //
760 // Here there's a trick to avoid blurring during the merging
761 // operation. We get the image from a canvas sized (width*2 x
762 // height*2) and draw it on a canvas sized (width x height).
763
764 TCanvas *mergeCanvas = new TCanvas("", "", width, height);
765 TImage *img = TImage::Create();
766 TImage *terra = TImage::Create();
767 img->FromPad(canvas); // get the TCanvas canvas as TImage
768 terra->ReadImage(mapFile, TImage::kPng); // get the png file as TImage
769 terra->Scale(1304,830);
770 img->Merge(terra, "add", 166, 112); // add image terra to image img
771 img->Draw("X"); // see what we get, eXpanding img all over mergeCanvas.
772
773 stringstream oss;
774 oss << outDirectory.Data() << "/" << outputFilename.Data();
775
776 mergeCanvas->SaveAs(oss.str().c_str());
777 mergeCanvas->Close();
778 canvas->Close();
779
780 return EXIT_SUCCESS;
781 }
782
783 void saveHist(TH1 *h, TString savetorootfile)
784 {
785 TFile *file = new TFile(savetorootfile.Data(), "update");
786
787 h->Write();
788 file->Close();
789 }
790
791
792 // Get the TLE from tleFile. The right TLE is that one with the
793 // closest previous date to offRes, that is the date at the time of
794 // the first timesync found in the root file.
795 //
796 // Warning: you must use a tle file obtained by space-track.org
797 // querying the database with the RESURS DK-1 id number 29228,
798 // selecting the widest timespan, including the satellite name in the
799 // results.
800 cTle *getTle(TString tleFile, TDatime offRes)
801 {
802 Float_t tledatefromfile, tledatefromroot;
803 fstream tlefile(tleFile.Data(), ios::in);
804 vector<cTle*> ctles;
805 vector<cTle*>::iterator iter;
806
807
808 // Build a vector of *cTle
809 while(1) {
810 cTle *tlef;
811 string str1, str2, str3;
812
813 getline(tlefile, str1);
814 if(tlefile.eof()) break;
815
816 getline(tlefile, str2);
817 if(tlefile.eof()) break;
818
819 getline(tlefile, str3);
820 if(tlefile.eof()) break;
821
822 // We now have three good lines for a cTle.
823 tlef = new cTle(str1, str2, str3);
824 ctles.push_back(tlef);
825 }
826
827 // Sort by date
828 sort(ctles.begin(), ctles.end(), compTLE);
829
830 tledatefromroot = (offRes.GetYear()-2000)*1e3 + (offRes.Convert() - (TDatime(offRes.GetYear(), 1, 1, 0, 0, 0)).Convert())/ (24.*3600.);
831
832 for(iter = ctles.begin(); iter != ctles.end(); iter++) {
833 cTle *tle = *iter;
834
835 tledatefromfile = getTleJulian(tle);
836
837 if(tledatefromroot > tledatefromfile) {
838 tlefile.close();
839 cTle *thisTle = tle;
840 ctles.clear();
841
842 return thisTle;
843 }
844 }
845
846 // File ended withoud founding a TLE with a date after offRes. We'll use the last aviable date.
847 cerr << "Warning: using last available TLE in " << tleFile.Data() << ". Consider updating your tle file." << endl;
848
849 tlefile.close();
850 cTle *thisTle = ctles[ctles.size()-1];
851 ctles.clear();
852
853 return thisTle;
854 }
855
856
857 // Return whether the first TLE is older than the second
858 bool compTLE (cTle *tle1, cTle *tle2)
859 {
860 return getTleJulian(tle1) > getTleJulian(tle2);
861 }
862
863
864 // Return the date of the tle using the format (year-2000)*1e3 +
865 // julian day. e.g. 6364.5 is the 31th Dec 2006 12:00:00.
866 // It does *not* return a cJulian date.
867 float getTleJulian(cTle *tle) {
868 return tle->getField(cTle::FLD_EPOCHYEAR)*1e3 + tle->getField(cTle::FLD_EPOCHDAY);
869 }
870
871
872 // Look for a timesync in the TFile rootFile. Set timesync and
873 // obt_timesync. Returns 1 if timesync is found, 0 otherwise.
874 int lookforTimesync(TFile *rootFile, Float_t *timesync, Float_t *obt_timesync) {
875 *timesync = -1; // will be != -1 if found
876
877 ULong64_t nevents = 0;
878 pamela::McmdRecord *mcmdrc = 0;
879 pamela::McmdEvent *mcmdev = 0;
880 TArrayC *mcmddata;
881 TTree *tr = (TTree*) rootFile->Get("Mcmd");
882
883 tr->SetBranchAddress("Mcmd", &mcmdev);
884
885 nevents = tr->GetEntries();
886
887 // Looking for a timesync. We stop at the first one found.
888 long int recEntries;
889
890 for(UInt_t i = 0; i < nevents; i++) {
891 tr->GetEntry(i);
892 recEntries = mcmdev->Records->GetEntries();
893
894 for(UInt_t j = 0; j < recEntries; j++) {
895 mcmdrc = (pamela::McmdRecord*)mcmdev->Records->At(j);
896
897 if ((mcmdrc != 0) && (mcmdrc->ID1 == 0xE0)) //Is it a TimeSync?
898 {
899 mcmddata = mcmdrc->McmdData;
900 *timesync = (((unsigned int)mcmddata->At(0)<<24)&0xFF000000)
901 + (((unsigned int)mcmddata->At(1)<<16)&0x00FF0000)
902 + (((unsigned int)mcmddata->At(2)<<8)&0x0000FF00)
903 + (((unsigned int)mcmddata->At(3))&0x000000FF);
904 *obt_timesync = (mcmdrc->MCMD_RECORD_OBT)*(1./1000.);
905
906 goto out; // a timesync is found
907 }
908 }
909 }
910
911 out:
912
913 if (*timesync == -1)
914 return 0;
915 else
916 return 1;
917 }
918
919
920 // Returns the mean value of the elements stored in the vector v.
921 double getMean(vector<Double_t> v)
922 {
923 double mean = 0;
924
925 for(int i=0; i < v.size(); i++)
926 mean += v.at(i);
927
928 return mean/v.size();
929 }
930
931
932 // Shift all non zero bins by shift.
933 TH2F* shiftHist(TH2F* h, Float_t shift)
934 {
935 // Global bin number.
936 Int_t nBins = h->GetBin(h->GetNbinsX(), h->GetNbinsY());
937
938 for(int i = 0; i < nBins; i++)
939 if(h->GetBinContent(i)) h->AddBinContent(i, shift);
940
941 return h;
942 }
943
944
945 // Return a string like YYYY-MM-DD hh:mm:ss, a datetime format.
946 string getTleDatetime(cTle *tle)
947 {
948 int year, mon, day, hh, mm, ss;
949 double dom; // day of month (is double!)
950 stringstream date; // date in datetime format
951
952 // create a cJulian from the date in tle
953 cJulian jdate = cJulian( 2000 + (int) tle->getField(cTle::FLD_EPOCHYEAR), tle->getField(cTle::FLD_EPOCHDAY));
954
955 // get year, month, day of month
956 jdate.getComponent(&year, &mon, &dom);
957
958 // build a datetime YYYY-MM-DD hh:mm:ss
959 date.str("");
960 day = (int) floor(dom);
961 hh = (int) floor( (dom - day) * 24);
962 mm = (int) floor( ((dom - day) * 24 - hh) * 60);
963 ss = (int) floor( ((((dom - day) * 24 - hh) * 60 - mm) * 60));
964 // ms = (int) floor( (((((dom - day) * 24 - hh) * 60 - mm) * 60) - ss) * 1000);
965
966 date << year << "-" << mon << "-" << day << " " << hh << ":" << mm << ":" << ss;
967
968 return date.str();
969 }
970
971 //
972 // Solve the overflow for anticoincidence because this counter is
973 // stored in 2 bytes so counts from 0 to 65535.
974 //
975 // counter is the actual value.
976 // oldValue is meant to be the previous value of counter.
977 //
978 // Example:
979 // for(...) {
980 // ...
981 // corrected_diff = solve_ac_overflow(oldValueOfTheCounter, actualValue);
982 // ...
983 // }
984 //
985 //
986 // Returns the corrected difference between counter and oldValue and
987 // set oldValue to the value of counter.
988 // Attention: oldValue is a reference.
989 Int_t solve_ac_overflow(Int_t& oldValue, Int_t counter)
990 {
991 Int_t truediff = 0;
992
993 if (counter < oldValue) // overflow!
994 truediff = 0xFFFF - oldValue + counter;
995 else
996 truediff = counter - oldValue;
997
998 oldValue = counter;
999
1000 return truediff;
1001 }

  ViewVC Help
Powered by ViewVC 1.1.23