/[PAMELA software]/quicklook/OrbitalRate/src/OrbitalRate.cpp
ViewVC logotype

Annotation of /quicklook/OrbitalRate/src/OrbitalRate.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.7 - (hide annotations) (download)
Mon Apr 2 19:44:38 2007 UTC (17 years, 8 months ago) by pam-rm2
Branch: MAIN
Changes since 1.6: +1 -1 lines
lookfortimesync return UInt_t now and not int.

1 pam-rm2 1.1 /**
2     * OrbitalRate
3     * author Nagni
4     * version 1.0 - 27 April 2006
5     *
6     * version 2.0
7     * author De Simone
8     * - most of the code rewritten
9     * - added graphs, magnetic field, new overflow resolution (AC), tle
10     * stuff.
11     *
12     */
13     #include <physics/anticounter/AnticounterEvent.h>
14     #include <physics/trigger/TriggerEvent.h>
15     #include <physics/neutronDetector/NeutronEvent.h>
16     #include "physics/neutronDetector/NeutronRecord.h"
17     #include <mcmd/McmdEvent.h>
18     #include <mcmd/McmdRecord.h>
19     #include <EventHeader.h>
20     #include <PscuHeader.h>
21     #include <TTree.h>
22     #include "sgp4.h"
23     #include "TH2F.h"
24     #include "TFrame.h"
25     #include "TGraph.h"
26     #include "TCanvas.h"
27     #include "TASImage.h"
28     #include <TDatime.h>
29     #include <TFile.h>
30    
31     #include <TTimeStamp.h>
32     #include "TString.h"
33     #include "TObjString.h"
34     #include "TStyle.h"
35     #include "TPaletteAxis.h"
36     #include "TROOT.h"
37     #include <sys/stat.h>
38     #include <fstream>
39     #include <iostream>
40    
41     #include <OrbitalRate.h>
42    
43     using namespace std;
44    
45     int main(int argc, char* argv[]){
46     TString *rootFile = NULL;
47     TString outDir = "./";
48     TString mapFile = "";
49     TString tleFile = "";
50     int offDate = 20060928;
51     // int offDate = 20060614;
52     int offTime = 210000;
53 pam-rm2 1.6 bool field = false;
54 pam-rm2 1.1
55     if (argc < 2){
56     printf("You have to insert at least the file to analyze and the mapFile \n");
57     printf("Try '--help' for more information. \n");
58     exit(1);
59     }
60    
61     if (!strcmp(argv[1], "--help")){
62     printf( "Usage: OrbitRate FILE -map mapFile [OPTION] \n");
63     printf( "mapFile have to be a mercator map image [gif|jpg|png] \n");
64     printf( "\t --help Print this help and exit \n");
65     printf( "\t -tle[File path] Path where to find the tle infos \n");
66     printf( "\t\tUse the script retrieve_TLE.sh to create the file.\n ");
67     printf( "\t -outDir[path] Path where to put the output.\n");
68     printf( "\t -offDate Date of resetting of the Resource counter [format YYMMDD (UTC date) default 20060928] \n");
69     printf( "\t -offTime Time of resetting of the Resource counter [format HHMMSS (UTC date) default 210000] \n");
70 pam-rm2 1.6 printf( "\t -field Produce maps of the magnetic field \n");
71 pam-rm2 1.1 exit(1);
72     }
73    
74     // Ok, here we should have at least one root file. We check that
75     // the filename contains ".root".
76     if(strstr(argv[1], ".root"))
77     rootFile = new TString(argv[1]);
78     else {
79     cerr << "OrbitalRate: no root file." << endl << "See --help" << endl;
80     exit(EXIT_FAILURE);
81     }
82    
83     for (int i = 2; i < argc; i++){
84 pam-rm2 1.6 if (!strcmp(argv[i], "-field")){
85     field = true;
86     i++;
87     continue;
88     }
89    
90 pam-rm2 1.1 if (!strcmp(argv[i], "-outDir")){
91     if (++i >= argc){
92     printf( "-outDir needs arguments. \n");
93     printf( "Try '--help' for more information. \n");
94     exit(1);
95     } else {
96     outDir = argv[i];
97     continue;
98     }
99     }
100    
101     if (!strcmp(argv[i], "-tle")){
102     if (++i >= argc){
103     printf( "-tle needs arguments. \n");
104     printf( "Try '--help' for more information. \n");
105     exit(1);
106     } else {
107     tleFile = argv[i];
108     continue;
109     }
110     }
111    
112     if (!strcmp(argv[i], "-offTime")){
113     if (++i >= argc){
114     printf( "-offTime needs arguments. \n");
115     printf( "Try '--help' for more information. \n");
116     exit(1);
117     }
118     else{
119     offTime = atol(argv[i]);
120     continue;
121     }
122     }
123    
124     if (!strcmp(argv[i], "-offDate")){
125     if (++i >= argc){
126     printf( "-offDate needs arguments. \n");
127     printf( "Try '--help' for more information. \n");
128     exit(1);
129     }
130     else{
131     offDate = atol(argv[i]);
132     continue;
133     }
134     }
135    
136     if (!strcmp(argv[i], "-map")){
137     if (++i >= argc){
138     printf( "-map needs arguments. \n");
139     printf( "Try '--help' for more information. \n");
140     exit(1);
141     } else {
142     mapFile = argv[i];
143     continue;
144     }
145     }
146     }
147    
148     if (mapFile != ""){
149 pam-rm2 1.6 Rate(rootFile, outDir, mapFile, tleFile, offDate, offTime, field);
150 pam-rm2 1.1 } else {
151     printf("You have to insert at least the file to analyze and the mapFile \n");
152     printf("Try '--help' for more information. \n");
153     }
154     }
155    
156    
157     void InitStyle() {
158     gROOT->SetStyle("Plain");
159    
160     TStyle *myStyle[2], *tempo;
161     myStyle[0]=new TStyle("StyleWhite", "white");
162     myStyle[1]=new TStyle("StyleBlack", "black");
163    
164     tempo=gStyle;
165     Int_t linecol, bkgndcol, histcol;
166    
167     for(Int_t style=0; style<2; style++) {
168    
169     linecol=kWhite*style+kBlack*(1-style);
170     bkgndcol=kBlack*style+kWhite*(1-style);
171     histcol=kYellow*style+kBlack*(1-style); // was 95
172    
173     myStyle[style]->Copy(*tempo);
174    
175     myStyle[style]->SetCanvasBorderMode(0);
176     myStyle[style]->SetCanvasBorderSize(1);
177     myStyle[style]->SetFrameBorderSize(1);
178     myStyle[style]->SetFrameBorderMode(0);
179     myStyle[style]->SetPadBorderSize(1);
180     myStyle[style]->SetStatBorderSize(1);
181     myStyle[style]->SetTitleBorderSize(1);
182     myStyle[style]->SetPadBorderMode(0);
183     myStyle[style]->SetPalette(1,0);
184     myStyle[style]->SetPaperSize(20,27);
185     myStyle[style]->SetFuncColor(kRed);
186     myStyle[style]->SetFuncWidth(1);
187     myStyle[style]->SetLineScalePS(1);
188     myStyle[style]->SetCanvasColor(bkgndcol);
189     myStyle[style]->SetAxisColor(linecol,"XYZ");
190     myStyle[style]->SetFrameFillColor(bkgndcol);
191     myStyle[style]->SetFrameLineColor(linecol);
192     myStyle[style]->SetLabelColor(linecol,"XYZ");
193     myStyle[style]->SetPadColor(bkgndcol);
194     myStyle[style]->SetStatColor(bkgndcol);
195     myStyle[style]->SetStatTextColor(linecol);
196     myStyle[style]->SetTitleColor(linecol,"XYZ");
197     myStyle[style]->SetTitleFillColor(bkgndcol);
198     myStyle[style]->SetTitleTextColor(linecol);
199     myStyle[style]->SetLineColor(linecol);
200     myStyle[style]->SetMarkerColor(histcol);
201     myStyle[style]->SetTextColor(linecol);
202    
203     myStyle[style]->SetGridColor((style)?13:kBlack);
204     myStyle[style]->SetHistFillStyle(1001*(1-style));
205     myStyle[style]->SetHistLineColor(histcol);
206     myStyle[style]->SetHistFillColor((style)?bkgndcol:kYellow);
207    
208     myStyle[style]->SetOptStat(0); // Remove statistic summary
209     }
210    
211     myStyle[1]->cd();
212    
213     gROOT->ForceStyle();
214    
215     }
216    
217    
218 pam-rm2 1.6 void Rate(TString *filename, TString outDirectory = "", TString mapFile = "", TString tleFile = "", int offDate = 20060614, int offTime = 210000, bool field = false)
219 pam-rm2 1.1 {
220     // **** Offset to temporarily correct the TDatime bug ****/
221 pam-rm2 1.5 // offTime += 10000;
222 pam-rm2 1.1 //********************************************************/
223    
224     TTree *tr = 0;
225     TFile *rootFile;
226     FILE *f;
227    
228     pamela::McmdEvent *mcmdev = 0;
229     pamela::McmdRecord *mcmdrc = 0;
230     pamela::EventHeader *eh = 0;
231     pamela::PscuHeader *ph = 0;
232     TArrayC *mcmddata;
233     ULong64_t nevents = 0;
234     stringstream oss;
235    
236     Float_t timesync = 0, obt_timesync = 0;
237     Long64_t offsetTime = 0;
238     Long64_t timeElapsedFromTLE = 0;
239     Long64_t deltaTime = 0, oldtimeElapsedFromTLE = 0;
240     bool a_second_is_over;
241    
242     Float_t lon, lat, alt;
243    
244     vector<Double_t> vector_trigAndOr;
245     vector<Double_t> vector_trigAndAnd;
246     vector<Double_t> vector_trigS11andS12;
247     vector<Double_t> vector_trigS12andS21andS22;
248     vector<Double_t> vector_trigS111A;
249    
250     double mean_trigAndOr;
251     double mean_trigAndAnd;
252     double mean_trigS11andS12;
253     double mean_trigS12andS21andS22;
254     double mean_trigS111A;
255    
256     // We'll use this size for the generated images.
257     TImage *tImage=TImage::Open(mapFile);
258     int width=(int)(tImage->GetWidth()*0.80);
259     int height=(int)(tImage->GetHeight()*0.80);
260     delete tImage;
261    
262     // This histogram will store time (in seconds) spent in each bin.
263     TH2F *obtBinTime = new TH2F("obtBinTime", "Time of acquisition of background data", 360, -180, 180, 180, -90, 90);
264    
265     // Now I create histograms longitude x latitude to hold values. I
266     // use the suffix _counter to say that this values are what I read
267     // from Pamela and they are not normalized in any way.
268    
269     // This historam will store the number of events occurred in each bin.
270     TH2F *event_counter = new TH2F("event_counter", "Event rate", 360, -180, 180, 180, -90, 90);
271     TH2F *nd_counter = new TH2F("nd_counter", "Upper background neutrons", 360, -180, 180, 180, -90, 90);
272     TH2F *antiCAS4_counter = new TH2F("CAS4_counter", "CAS4 rate", 360, -180, 180, 180, -90, 90);
273     TH2F *antiCAS3_counter = new TH2F("CAS3_counter", "CAS3 rate", 360, -180, 180, 180, -90, 90);
274     TH2F *trigAndOr_counter = new TH2F("trigAndOr_counter", "Rate of triggering in (S11+S12)*(S21+S22)*(S31+S32) configuration", 360, -180, 180, 180, -90, 90);
275     TH2F *trigAndAnd_counter = new TH2F("trigAndAnd_counter", "Rate of triggering in (S11*S12)*(S21*S22)*(S31*S32) configuration", 360, -180, 180, 180, -90, 90);
276     TH2F *trigS11andS12_counter = new TH2F("trigS11andS12_counter", "Rate of S1 triggers", 360, -180, 180, 180, -90, 90); //(S11+S12)
277     TH2F *trigS12andS21andS22_counter = new TH2F("trigS12andS21andS22_counter", "Rate of S11*S21*S21 triggers", 360, -180, 180, 180, -90, 90); //(S11*S12*S21)
278     TH2F *trigS111A_counter = new TH2F("trigS111A_counter", "Rate of S111A counts", 360, -180, 180, 180, -90, 90); //(S111A)
279    
280     // Magnetic field histograms. I use always the suffix _counter
281     // because they are not normalized. Imagine that an instrument
282     // give us the value of the magnetic field for each event.
283 pam-rm2 1.6 TH2F *hbabs_counter;
284     TH2F *hbnorth_counter;
285     TH2F *hbdown_counter;
286     TH2F *hbeast_counter;
287     TH2F *hb0_counter;
288     TH2F *hl_counter;
289    
290     if(field) {
291     hbabs_counter = new TH2F("hbabs_counter", "B module", 360, -180, 180, 180, -90, 90);
292     hbnorth_counter = new TH2F("hbnorth_counter", "B north", 360, -180, 180, 180, -90, 90);
293     hbdown_counter = new TH2F("hbdown_counter", "B down", 360, -180, 180, 180, -90, 90);
294     hbeast_counter = new TH2F("hbeast_counter", "B east", 360, -180, 180, 180, -90, 90);
295     hb0_counter = new TH2F("hb0_counter", "B_0", 360, -180, 180, 180, -90, 90);
296     hl_counter = new TH2F("hl_counter", "l", 360, -180, 180, 180, -90, 90);
297     }
298 pam-rm2 1.1
299     // Get a char* to "file" from "/dir1/dir2/.../file.root"
300     TString basename;
301     basename = ((TObjString*) filename->Tokenize('/')->Last())->GetString(); // we get file.root
302     basename = ((TObjString*)basename.Tokenize('.')->First())->GetString(); // we get file
303    
304     // Exit if the map file doesn't exist.
305     if(! (f = fopen(mapFile.Data(), "r")) ) {
306     cerr << "Error: the file " << mapFile.Data() << " does not exists." << endl;
307     exit(EXIT_FAILURE);
308     }
309    
310     // Open the root file.
311     rootFile = new TFile(filename->Data());
312     if (rootFile->IsZombie()) {
313     printf("The file %s does not exist\n", (filename->Data()));
314     exit(EXIT_FAILURE);
315     }
316    
317     // Look for a timesync in the TFile rootFile. We also get the obt
318     // of the timesync mcmd.
319     bool err;
320     err = lookforTimesync(rootFile, &timesync, &obt_timesync);
321     if(!err) {
322     cerr << "Warning!!! No timesync info has been found in the file "
323     << filename->Data() << endl;
324     exit(EXIT_FAILURE);
325     }
326    
327     //Get the Julian date of the Resours offset
328     TDatime offRes = TDatime(offDate, offTime);
329     // Add to the Resours Offset the timesync. This is now the date at
330     // the moment of the timesync.
331     offRes.Set(offRes.Convert() + (UInt_t) timesync);
332    
333     // Now I need a pointer to a cTle object. The class misses a
334     // constructor without arguments, so we have to give it a dummy TLE.
335     string str1 = "RESURS-DK 1";
336     string str2 = "1 29228U 06021A 06170.19643714 .00009962 00000-0 21000-3 0 196";
337     string str3 = "2 29228 069.9363 054.7893 0167576 127.4359 017.0674 15.31839265 604";
338     cTle *tle1 = new cTle(str1, str2, str3);
339    
340     // If we have to use a TLE file, call getTle().
341     if (tleFile != "")
342     tle1 = getTle(tleFile, offRes);
343    
344     cOrbit orbit(*tle1);
345     cEci eci;
346     cCoordGeo coo;
347    
348     // offRes is now "offset date" + timesync. Now I subtract the obt
349     // of the timesync. Remember that the time of the event from the
350     // tle date is:
351     // tle date - (offset date + timesync - obt timesync + obt event).
352     offRes.Set(offRes.Convert() - (UInt_t) obt_timesync);
353    
354     // Get the Julian date of the TLE epoch
355     string datetime = getTleDatetime(tle1);
356     TDatime tledate = TDatime(datetime.c_str());
357    
358     cJulian jdatetime = cJulian((int) (tle1->getField(cTle::FLD_EPOCHYEAR)+2e3), tle1->getField(cTle::FLD_EPOCHDAY));
359     int pYear, pMon; double pDOM;
360     jdatetime.getComponent(&pYear, &pMon, &pDOM);
361    
362     offsetTime = ((Long64_t) offRes.Convert() - (Long64_t) tledate.Convert());
363    
364     /********** Magnetic Field **************/
365     // Check that all this is correct!
366 pam-rm2 1.4 float br, btheta, bphi;
367 pam-rm2 1.1
368     // I can now compute the magnetic dipole moment at the actual date,
369     // using the cJulian date. I don't to recompute it for every event
370     // beacause changes are not relevant at all.
371     Int_t y = tledate.GetYear();
372     Int_t m = tledate.GetMonth();
373     Int_t d = tledate.GetDay();
374     float year = (float) y + (m*31+d)/365;
375    
376 pam-rm2 1.4 // Initialize common data for geopack
377 pam-rm2 1.6 if(field)
378     recalc_(y, m*31+d, 0, 0, 0);
379 pam-rm2 1.1 /********** Magnetic Field **************/
380    
381     tr = (TTree*)rootFile->Get("Physics");
382     TBranch *headBr = tr->GetBranch("Header");
383     tr->SetBranchAddress("Header", &eh);
384    
385     /********** Anticounter **************/
386     pamela::anticounter::AnticounterEvent *antiev = 0;
387     tr->SetBranchAddress("Anticounter", &antiev);
388    
389     Int_t oldCAS4 = 0;
390     Int_t diffCAS4 = 0;
391     Int_t oldCAS3 = 0;
392     Int_t diffCAS3 = 0;
393     /********** Anticounter **************/
394    
395     /********** Trigger **************/
396     pamela::trigger::TriggerEvent *trigger = 0;
397     tr->SetBranchAddress("Trigger", &trigger);
398    
399     Int_t oldtrigAndOr = 0;
400     Int_t oldtrigAndAnd = 0;
401     Int_t oldtrigS11andS12 = 0;
402     Int_t oldtrigS12andS21andS22 = 0;
403     Int_t oldtrigS111A = 0;
404     /********** Trigger **************/
405    
406     /********** ND **************/
407     Int_t tmpSize=0;
408     Int_t sumTrig=0;
409     Int_t sumUpperBackground=0;
410     Int_t sumBottomBackground=0;
411    
412     pamela::neutron::NeutronRecord *nr = 0;
413     pamela::neutron::NeutronEvent *ne = 0;
414     tr->SetBranchAddress("Neutron", &ne);
415     /********** ND **************/
416    
417     nevents = tr->GetEntries();
418    
419     for(UInt_t i = 0; i < nevents; i++) //Fill variables from root-ple
420     {
421     tr->GetEntry(i);
422     ph = eh->GetPscuHeader();
423    
424     // obt in ms
425 pam-rm2 1.6 UInt_t obt = (UInt_t) ph->GetOrbitalTime();
426 pam-rm2 1.1
427     // timeElapsedFromTLE is the difference, in seconds, between the
428     // event and the tle date. I use seconds and not milliseconds
429     // because the indetermination on the timesync is about 1s.
430     timeElapsedFromTLE = offsetTime + obt/1000;
431    
432     // I also need the abstime in seconds rounded to the lower
433     // value. Every second, we set a_second_is_over to true. Only
434     // in this case histograms with triggers are filled.
435     a_second_is_over = (timeElapsedFromTLE > oldtimeElapsedFromTLE) ? 1 : 0;
436     oldtimeElapsedFromTLE = timeElapsedFromTLE;
437    
438     // I need the acquisition time between two triggers to fill the
439     // obtBinTime (histo of time spent in the bin). The time is in
440     // second.
441     deltaTime = timeElapsedFromTLE - oldtimeElapsedFromTLE;
442     oldtimeElapsedFromTLE = timeElapsedFromTLE;
443    
444     // Finally, we get coordinates from absolute time the orbit
445     // object initialised with the TLE data. cOrbit::getPosition()
446     // requires the elapased time from the tle in minutes.
447     // Coordinates are stored in the structure eci.
448     orbit.getPosition(((double) timeElapsedFromTLE)/60., &eci);
449     coo = eci.toGeo();
450    
451     /********** ND **************/
452     // Summing over all stored pamela::neutron::NeutronRecords in
453     // this event *ne.
454     for(Int_t j = 0; j < ne->Records->GetEntries(); j++) {
455     nr = (pamela::neutron::NeutronRecord*)ne->Records->At(j);
456     sumTrig += (int)nr->trigPhysics;
457     sumUpperBackground += (int)nr->upperBack;
458     sumBottomBackground += (int)nr->bottomBack;
459     }
460     /********** ND **************/
461    
462     /********** Anticounter **************/
463     // Get the difference between the actual counter and the
464     // previous counter for anticoincidence, dealing with the
465     // overflow with solve_ac_overflow().
466     diffCAS4 = solve_ac_overflow(oldCAS4, antiev->counters[0][6]);
467     diffCAS3 = solve_ac_overflow(oldCAS3, antiev->counters[0][10]);
468     /********** Anticounter **************/
469    
470     // Build coordinates in the right range. We want to convert,
471     // just for aesthetic, longitude from (0, 2*pi) to (-pi, pi).
472     // We also want to convert from radians to degrees.
473     lon = (coo.m_Lon > PI) ? rad2deg(coo.m_Lon - 2*PI) : rad2deg(coo.m_Lon);
474     lat = rad2deg(coo.m_Lat);
475     alt = coo.m_Alt;
476    
477     /********** Magnetic Field **************/
478 pam-rm2 1.6 if(field)
479     igrf_geo__((coo.m_Alt+6371.2)/6371.2, M_PI/2.-coo.m_Lat, coo.m_Lon, br, btheta, bphi);
480 pam-rm2 1.4 // cout<<"("<<(coo.m_Alt+6371.2)/6371.2<<", "<<M_PI/2.-coo.m_Lat<<", "<<coo.m_Lon<<")"<<endl;
481 pam-rm2 1.1 /********** Magnetic Field **************/
482    
483     // serve fare il controllo deltatime < 1?
484     if (deltaTime > 1) cout << endl << "******** deltaTime<1 ********" << endl;
485     // Does nothing for the first two events or if acquisition time if more
486     // than 1s.
487 pam-rm2 1.3 if(i<1 || (deltaTime > 1)) continue;
488 pam-rm2 1.1
489     // CAS3 and CAS4 are not rates but only counters. So I fill
490     // with the bin with the difference beetween the actual counter
491     // and the previous one and then divide with the time (see
492     // below) to have rates.
493     if(diffCAS3>1e3) // additional cut to avoid the peaks after dead time
494     diffCAS3 = (Int_t) antiCAS3_counter->GetBinContent((Int_t)antiCAS3_counter->GetEntries()-1);
495     antiCAS3_counter->Fill(lon , lat, diffCAS3);
496    
497     if(diffCAS4>1e3) // additional cut to avoid the peaks after dead time
498     diffCAS4 = (Int_t) antiCAS4_counter->GetBinContent((Int_t) antiCAS4_counter->GetEntries()-1);
499     antiCAS4_counter->Fill(lon, lat, diffCAS4);
500    
501     // Magnetic field values should be handled a bit carefully.
502     // For every event I get a position and the related magnetic
503     // field values. I can fill the histograms lon x lat with
504     // this values but I need to count how many times I fill
505     // each bin. This is done by the histogram event_counter.
506     // I will normalize later.
507 pam-rm2 1.6 if(field) {
508     hbabs_counter->Fill(lon, lat, sqrt(br*br+btheta*btheta+bphi*bphi)*1e-5);
509     hbnorth_counter->Fill(lon, lat, -btheta*1e-5);
510     hbdown_counter->Fill(lon, lat, -br*1e-5);
511     hbeast_counter->Fill(lon, lat, bphi*1e-5);
512     }
513 pam-rm2 1.1 // This histograms is now filled with the number of entries.
514     // Below we will divide with the time (in seconds) to get
515     // event rate per bin.
516     event_counter->Fill(lon, lat);
517    
518     // counters about triggers are already rates (Hz). Only
519     // every second we fill fill with the mean over all values.
520     if(a_second_is_over) {
521     // This histograms will hold the time, in seconds, spent
522     // in the bin.
523     obtBinTime->Fill(lon, lat, 1);
524    
525     // get the means
526     mean_trigAndOr = getMean(vector_trigAndOr);
527     mean_trigAndAnd = getMean(vector_trigAndAnd);
528     mean_trigS11andS12 = getMean(vector_trigS11andS12);
529     mean_trigS12andS21andS22 = getMean(vector_trigS12andS21andS22);
530     mean_trigS111A = getMean(vector_trigS111A);
531    
532     // clear data about the last second
533     vector_trigAndOr.clear();
534     vector_trigAndAnd.clear();
535     vector_trigS11andS12.clear();
536     vector_trigS12andS21andS22.clear();
537     vector_trigS111A.clear();
538    
539     // Fill with the mean rate value
540     trigAndOr_counter->Fill(lon , lat, mean_trigAndOr);
541     trigAndAnd_counter->Fill(lon , lat, mean_trigAndAnd);
542     trigS11andS12_counter->Fill(lon , lat, mean_trigS11andS12);
543     trigS12andS21andS22_counter->Fill(lon , lat, mean_trigS12andS21andS22);
544     trigS111A_counter->Fill(lon, lat, mean_trigS111A);
545     }
546     else { // Collect values for all the second
547     vector_trigAndOr.push_back((1/4.)*trigger->trigrate[0]);
548     vector_trigAndAnd.push_back((1/4.)*trigger->trigrate[1]);
549     // pmtpl[0] is the rate every 60ms but I want Hz.
550     vector_trigS11andS12.push_back((1000./60.)*trigger->pmtpl[0]);
551     vector_trigS12andS21andS22.push_back((1/4.)*trigger->trigrate[4]);
552     vector_trigS111A.push_back(1.*trigger->pmtcount1[0]);
553     }
554    
555     // Now we discard ND data if:
556     // - NeutronEvent is corrupted.
557     if((ne->unpackError != 1))
558     nd_counter->Fill(lon, lat, 1.*(sumUpperBackground+sumTrig));
559    
560     // Reset counters for ND.
561     sumTrig = 0;
562     sumUpperBackground = 0;
563     sumBottomBackground = 0;
564     }
565    
566     // We now need to normalize the histograms to print something
567     // meaningful. I create similar histograms with the suffix _rate or
568     // _norm.
569     TH2F *event_rate = (TH2F*) event_counter->Clone("event_rate");
570     TH2F *trigS111A_rate = (TH2F*) trigS111A_counter->Clone("trigS111A_rate");
571     TH2F *antiCAS4_rate = (TH2F*) antiCAS4_counter->Clone("antiCAS4_rate");
572     TH2F *antiCAS3_rate = (TH2F*) antiCAS3_counter->Clone("antiCAS3_rate");
573     TH2F *trigS11andS12_rate = (TH2F*) trigS11andS12_counter->Clone("trigS11andS12_rate");
574     TH2F *trigS12andS21andS22_rate = (TH2F*) trigS12andS21andS22_counter->Clone("trigS12andS21andS22_rate");
575     TH2F *trigAndOr_rate = (TH2F*) trigAndOr_counter->Clone("trigAndOr_rate");
576     TH2F *trigAndAnd_rate = (TH2F*) trigAndAnd_counter->Clone("trigAndAnd_rate");
577     TH2F *nd_rate = (TH2F*) nd_counter->Clone("nd_rate");
578 pam-rm2 1.6
579     TH2F *hbabs_norm;
580     TH2F *hbnorth_norm;
581     TH2F *hbdown_norm;
582     TH2F *hbeast_norm;
583    
584     if(field) {
585     hbabs_norm = (TH2F*) hbabs_counter->Clone("hbabs_norm");
586     hbnorth_norm = (TH2F*) hbnorth_counter->Clone("hbnorth_norm");
587     hbdown_norm = (TH2F*) hbabs_counter->Clone("hbdown_norm");
588     hbeast_norm = (TH2F*) hbabs_counter->Clone("hbeast_norm");
589     }
590 pam-rm2 1.1
591     // Now we divide each histogram _counter with the time histogram
592     // obtBinTime to have an histogram _rate. Note that, when a second
593     // is passed in the above cycle, we fill the histogram obtBinTime
594     // with 1 (second) together with all the other histograms. So
595     // dividing here does make sense.
596     //
597     // Then we call printHist() for each filled TH2F. These are
598     // refered to the root file we're now reading. We also build up a
599     // filename to be passed to the function. Pay attention that the
600     // filename must end with a file format (such as .png or .pdf)
601     // recognised by TPad::SaveAs().
602     trigS111A_rate->Divide(trigS111A_counter, obtBinTime, 1, 1, "");
603     oss.str("");
604     oss << basename.Data() << "_orbit_trigS111A.png";
605 pam-rm2 1.3 trigS111A_rate->SetMinimum(9);
606 pam-rm2 1.1 printHist(trigS111A_rate, mapFile, outDirectory, oss.str().c_str(), "S111A (Hz)", -width, height, true, 0);
607    
608     antiCAS4_rate->Divide(antiCAS4_counter, obtBinTime, 1, 1, "");
609     oss.str("");
610     oss << basename.Data() << "_orbit_CAS4.png";
611 pam-rm2 1.3 antiCAS4_rate->SetMinimum(99);
612 pam-rm2 1.1 printHist(antiCAS4_rate, mapFile, outDirectory, oss.str().c_str(), "CAS4 (Hz)", -width, height, true, 0);
613    
614     antiCAS3_rate->Divide(antiCAS3_counter, obtBinTime, 1, 1, "");
615     oss.str("");
616     oss << basename.Data() << "_orbit_CAS3.png";
617 pam-rm2 1.3 antiCAS3_rate->SetMinimum(99);
618 pam-rm2 1.1 printHist(antiCAS3_rate, mapFile, outDirectory, oss.str().c_str(), "CAS3 (Hz)", -width, height, true, 0);
619    
620     event_rate->Divide(event_counter, obtBinTime, 1, 1, "");
621     oss.str("");
622     oss << basename.Data() << "_orbit_EventRate.png";
623     printHist(event_rate, mapFile, outDirectory, oss.str().c_str(), "Event rate (Hz)", -width, height, 0, 0);
624    
625     trigS11andS12_rate->Divide(trigS11andS12_counter, obtBinTime, 1, 1, "");
626     oss.str("");
627     oss << basename.Data() << "_orbit_trigS11andS12.png";
628 pam-rm2 1.3 trigS11andS12_rate->SetMinimum(99);
629 pam-rm2 1.1 printHist(trigS11andS12_rate, mapFile, outDirectory, oss.str().c_str(), "(S11*S12) (Hz)", -width, height, 1, 0);
630    
631     trigS12andS21andS22_rate->Divide(trigS12andS21andS22_counter, obtBinTime, 1, 1, "");
632     oss.str("");
633     oss << basename.Data() << "_orbit_trigS12andS21andS22.png";
634 pam-rm2 1.3 trigS12andS21andS22_rate->SetMinimum(9);
635 pam-rm2 1.1 printHist(trigS12andS21andS22_rate, mapFile, outDirectory, oss.str().c_str(), "(S12*S12*S21) (Hz)", -width, height, true, 0);
636    
637     trigAndOr_rate->Divide(trigAndOr_counter, obtBinTime, 1, 1, "");
638     oss.str("");
639     oss << basename.Data() << "_orbit_trigANDofOR.png";
640     printHist(trigAndOr_rate, mapFile, outDirectory, oss.str().c_str(), "(S11+S12)*(S21+S22)*(S31+S32) (Hz)", -width, height, 0, 0);
641    
642     trigAndAnd_rate->Divide(trigAndAnd_counter, obtBinTime, 1, 1, "");
643     oss.str("");
644     oss << basename.Data() << "_orbit_trigANDofAND.png";
645     printHist(trigAndAnd_rate, mapFile, outDirectory, oss.str().c_str(), "(S11*S12)*(S21*S22)*(S31*S32) (Hz)", -width, height, 0, 0);
646    
647     nd_rate->Divide(nd_counter, obtBinTime, 1, 1, "");
648     oss.str("");
649     oss << basename.Data() << "_orbit_ND.png";
650     printHist(nd_rate, mapFile, outDirectory, oss.str().c_str(), "Neutron rate (Hz)", -width, height, 0, 0);
651    
652     // Also normalize histograms about magnetic fields. Beacause we
653     // fill the bins with the values of the magnetic field for each
654     // event, we need to divide with the number of fills done, that is
655     // event_counter.
656 pam-rm2 1.6 if(field) {
657     hbabs_norm->Divide(hbabs_counter, event_counter, 1, 1, "");
658     oss.str("");
659     oss << basename.Data() << "_orbit_Babs.png";
660     printHist(hbabs_norm, mapFile, outDirectory, oss.str().c_str(), "B abs (G)", -width, height, 0, 0);
661    
662     hbnorth_norm->Divide(hbnorth_counter, event_counter, 1, 1, "");
663     oss.str("");
664     oss << basename.Data() << "_orbit_Bnorth.png";
665     printHist(hbnorth_norm, mapFile, outDirectory, oss.str().c_str(), "B north (G)", -width, height, 0, 1);
666    
667     hbdown_norm->Divide(hbdown_counter, event_counter, 1, 1, "");
668     oss.str("");
669     oss << basename.Data() << "_orbit_Bdown.png";
670     printHist(hbdown_norm, mapFile, outDirectory, oss.str().c_str(), "B down (G)", -width, height, 0, 1);
671    
672     hbeast_norm->Divide(hbeast_counter, event_counter, 1, 1, "");
673     oss.str("");
674     oss << basename.Data() << "_orbit_Beast.png";
675     printHist(hbeast_norm, mapFile, outDirectory, oss.str().c_str(), "B east (G)", -width, height, 0, 1);
676     }
677 pam-rm2 1.1
678     delete obtBinTime;
679     delete event_counter;
680    
681     delete nd_counter;
682     delete antiCAS4_counter;
683     delete antiCAS3_counter;
684     delete trigAndOr_counter;
685     delete trigAndAnd_counter;
686     delete trigS11andS12_counter;
687     delete trigS111A_counter;
688     delete trigS12andS21andS22_counter;
689    
690     delete event_rate;
691     delete nd_rate;
692     delete antiCAS4_rate;
693     delete antiCAS3_rate;
694     delete trigAndOr_rate;
695     delete trigAndAnd_rate;
696     delete trigS11andS12_rate;
697     delete trigS111A_rate;
698     delete trigS12andS21andS22_rate;
699    
700 pam-rm2 1.6 if(field) {
701     delete hbabs_counter;
702     delete hbnorth_counter;
703     delete hbdown_counter;
704     delete hbeast_counter;
705     delete hbabs_norm;
706     delete hbnorth_norm;
707     delete hbdown_norm;
708     delete hbeast_norm;
709     }
710 pam-rm2 1.1
711     rootFile->Close();
712     }
713    
714    
715     // Print the istogram *h on the file outputfilename in the direcotry
716     // outDirectory, using mapFile as background image, sizing the image
717     // width per height. Log scale will be used if use_log is true.
718     //
719     // If bool_shift is true a further process is performed to solve a
720     // problem with actual root version (5.12). This should be used when
721     // the histrogram is filled also with negative values, because root
722     // draws zero filled bins (so I have all the pad colorized and this is
723     // really weird!). To avoid this problem I shift all the values in a
724     // positive range and draw again using colz. Now I will not have zero
725     // filled bins painted but the scale will be wrong. This is why I
726     // need to draw a new axis along the palette.
727     //
728     // Pay attention: you cannot use a mapFile different from the provided
729     // one without adjusting the scaling and position of the image (see
730     // Scale() and Merge()).
731     //
732     // This function depends on InitStyle();
733     int printHist(TH2F *h, TString mapFile, TString outDirectory, TString outputFilename, char *title, int width, int height, bool use_log, bool bool_shift)
734     {
735     InitStyle();
736    
737     // Create a canvas and draw the TH2F with a nice colormap for z
738     // values, using log scale for z values, if requested, and setting
739     // some title.
740 pam-rm2 1.3 TCanvas *canvas = new TCanvas("h", "h histogram", width*2, height*2);
741 pam-rm2 1.1
742 pam-rm2 1.3 if(use_log) canvas->SetLogz();
743 pam-rm2 1.1
744     h->SetTitle(title);
745     h->SetXTitle("Longitude (deg)");
746     h->SetYTitle("Latitude (deg)");
747     h->SetLabelColor(0, "X");
748     h->SetAxisColor(0, "X");
749     h->SetLabelColor(0, "Y");
750     h->SetAxisColor(0, "Y");
751     h->SetLabelColor(0, "Z");
752     h->SetAxisColor(0, "Z");
753    
754     h->Draw("colz");
755     canvas->Update(); // Update! Otherwise we can't get any palette.
756    
757     // If shift in a positive range required (see comment above).
758     if(bool_shift) {
759     // Remember the minimum and maximum in this graph.
760     Float_t min = h->GetMinimum();
761     Float_t max = h->GetMaximum();
762    
763     // Shift the graph up by 100. Increase the value if you still get
764     // negative filled bins.
765     h = shiftHist(h, 100.0);
766     h->SetMinimum(min+100.0);
767     h->SetMaximum(max+100.0);
768    
769     // Hide the current axis of the palette
770     TPaletteAxis *palette = (TPaletteAxis*) h->GetListOfFunctions()->FindObject("palette");
771     if(!palette) cout << "palette is null" << endl;
772     TGaxis *ax = (TGaxis*) palette->GetAxis();
773     if(!ax) cout << "ax is null" << endl;
774     ax->SetLabelOffset(999);
775     ax->SetTickSize(0);
776    
777     // Create a new axis of the palette using the right min and max and draw it.
778     TGaxis *gaxis = new TGaxis(palette->GetX2(), palette->GetY1(), palette->GetX2(), palette->GetY2(), min, max, 510,"+L");
779     gaxis->SetLabelColor(0);
780     gaxis->Draw();
781    
782     // Update again.
783     canvas->Update();
784     }
785    
786     // We merge two images: the image of the earth read from a file on
787     // that one of the TPad of canvas (the histogram). The first one is
788     // scaled and adjusted to fit well inside the frame of the second
789     // one. Finally we draw them both.
790     //
791     // Here there's a trick to avoid blurring during the merging
792     // operation. We get the image from a canvas sized (width*2 x
793     // height*2) and draw it on a canvas sized (width x height).
794    
795     TCanvas *mergeCanvas = new TCanvas("", "", width, height);
796     TImage *img = TImage::Create();
797     TImage *terra = TImage::Create();
798     img->FromPad(canvas); // get the TCanvas canvas as TImage
799     terra->ReadImage(mapFile, TImage::kPng); // get the png file as TImage
800     terra->Scale(1304,830);
801     img->Merge(terra, "add", 166, 112); // add image terra to image img
802     img->Draw("X"); // see what we get, eXpanding img all over mergeCanvas.
803    
804     stringstream oss;
805     oss << outDirectory.Data() << "/" << outputFilename.Data();
806    
807     mergeCanvas->SaveAs(oss.str().c_str());
808     mergeCanvas->Close();
809     canvas->Close();
810    
811     return EXIT_SUCCESS;
812     }
813    
814     void saveHist(TH1 *h, TString savetorootfile)
815     {
816     TFile *file = new TFile(savetorootfile.Data(), "update");
817    
818     h->Write();
819     file->Close();
820     }
821    
822    
823     // Get the TLE from tleFile. The right TLE is that one with the
824     // closest previous date to offRes, that is the date at the time of
825     // the first timesync found in the root file.
826     //
827     // Warning: you must use a tle file obtained by space-track.org
828     // querying the database with the RESURS DK-1 id number 29228,
829     // selecting the widest timespan, including the satellite name in the
830     // results.
831     cTle *getTle(TString tleFile, TDatime offRes)
832     {
833     Float_t tledatefromfile, tledatefromroot;
834     fstream tlefile(tleFile.Data(), ios::in);
835     vector<cTle*> ctles;
836     vector<cTle*>::iterator iter;
837    
838    
839     // Build a vector of *cTle
840     while(1) {
841     cTle *tlef;
842     string str1, str2, str3;
843    
844     getline(tlefile, str1);
845     if(tlefile.eof()) break;
846    
847     getline(tlefile, str2);
848     if(tlefile.eof()) break;
849    
850     getline(tlefile, str3);
851     if(tlefile.eof()) break;
852    
853     // We now have three good lines for a cTle.
854     tlef = new cTle(str1, str2, str3);
855     ctles.push_back(tlef);
856     }
857    
858     // Sort by date
859     sort(ctles.begin(), ctles.end(), compTLE);
860    
861     tledatefromroot = (offRes.GetYear()-2000)*1e3 + (offRes.Convert() - (TDatime(offRes.GetYear(), 1, 1, 0, 0, 0)).Convert())/ (24.*3600.);
862    
863     for(iter = ctles.begin(); iter != ctles.end(); iter++) {
864     cTle *tle = *iter;
865    
866     tledatefromfile = getTleJulian(tle);
867    
868     if(tledatefromroot > tledatefromfile) {
869     tlefile.close();
870     cTle *thisTle = tle;
871     ctles.clear();
872    
873     return thisTle;
874     }
875     }
876    
877     // File ended withoud founding a TLE with a date after offRes. We'll use the last aviable date.
878     cerr << "Warning: using last available TLE in " << tleFile.Data() << ". Consider updating your tle file." << endl;
879    
880     tlefile.close();
881     cTle *thisTle = ctles[ctles.size()-1];
882     ctles.clear();
883    
884     return thisTle;
885     }
886    
887    
888     // Return whether the first TLE is older than the second
889     bool compTLE (cTle *tle1, cTle *tle2)
890     {
891     return getTleJulian(tle1) > getTleJulian(tle2);
892     }
893    
894    
895     // Return the date of the tle using the format (year-2000)*1e3 +
896     // julian day. e.g. 6364.5 is the 31th Dec 2006 12:00:00.
897     // It does *not* return a cJulian date.
898     float getTleJulian(cTle *tle) {
899     return tle->getField(cTle::FLD_EPOCHYEAR)*1e3 + tle->getField(cTle::FLD_EPOCHDAY);
900     }
901    
902    
903     // Look for a timesync in the TFile rootFile. Set timesync and
904     // obt_timesync. Returns 1 if timesync is found, 0 otherwise.
905 pam-rm2 1.7 UInt_t lookforTimesync(TFile *rootFile, Float_t *timesync, Float_t *obt_timesync) {
906 pam-rm2 1.1 *timesync = -1; // will be != -1 if found
907    
908     ULong64_t nevents = 0;
909     pamela::McmdRecord *mcmdrc = 0;
910     pamela::McmdEvent *mcmdev = 0;
911     TArrayC *mcmddata;
912     TTree *tr = (TTree*) rootFile->Get("Mcmd");
913    
914     tr->SetBranchAddress("Mcmd", &mcmdev);
915    
916     nevents = tr->GetEntries();
917    
918     // Looking for a timesync. We stop at the first one found.
919     long int recEntries;
920    
921     for(UInt_t i = 0; i < nevents; i++) {
922     tr->GetEntry(i);
923     recEntries = mcmdev->Records->GetEntries();
924    
925     for(UInt_t j = 0; j < recEntries; j++) {
926     mcmdrc = (pamela::McmdRecord*)mcmdev->Records->At(j);
927    
928     if ((mcmdrc != 0) && (mcmdrc->ID1 == 0xE0)) //Is it a TimeSync?
929     {
930     mcmddata = mcmdrc->McmdData;
931     *timesync = (((unsigned int)mcmddata->At(0)<<24)&0xFF000000)
932     + (((unsigned int)mcmddata->At(1)<<16)&0x00FF0000)
933     + (((unsigned int)mcmddata->At(2)<<8)&0x0000FF00)
934     + (((unsigned int)mcmddata->At(3))&0x000000FF);
935     *obt_timesync = (mcmdrc->MCMD_RECORD_OBT)*(1./1000.);
936    
937     goto out; // a timesync is found
938     }
939     }
940     }
941    
942     out:
943    
944     if (*timesync == -1)
945     return 0;
946     else
947     return 1;
948     }
949    
950    
951     // Returns the mean value of the elements stored in the vector v.
952     double getMean(vector<Double_t> v)
953     {
954     double mean = 0;
955    
956     for(int i=0; i < v.size(); i++)
957     mean += v.at(i);
958    
959     return mean/v.size();
960     }
961    
962    
963     // Shift all non zero bins by shift.
964     TH2F* shiftHist(TH2F* h, Float_t shift)
965     {
966     // Global bin number.
967     Int_t nBins = h->GetBin(h->GetNbinsX(), h->GetNbinsY());
968    
969     for(int i = 0; i < nBins; i++)
970     if(h->GetBinContent(i)) h->AddBinContent(i, shift);
971    
972     return h;
973     }
974    
975    
976     // Return a string like YYYY-MM-DD hh:mm:ss, a datetime format.
977     string getTleDatetime(cTle *tle)
978     {
979     int year, mon, day, hh, mm, ss;
980     double dom; // day of month (is double!)
981     stringstream date; // date in datetime format
982    
983     // create a cJulian from the date in tle
984     cJulian jdate = cJulian( 2000 + (int) tle->getField(cTle::FLD_EPOCHYEAR), tle->getField(cTle::FLD_EPOCHDAY));
985    
986     // get year, month, day of month
987     jdate.getComponent(&year, &mon, &dom);
988    
989     // build a datetime YYYY-MM-DD hh:mm:ss
990     date.str("");
991     day = (int) floor(dom);
992     hh = (int) floor( (dom - day) * 24);
993     mm = (int) floor( ((dom - day) * 24 - hh) * 60);
994     ss = (int) floor( ((((dom - day) * 24 - hh) * 60 - mm) * 60));
995     // ms = (int) floor( (((((dom - day) * 24 - hh) * 60 - mm) * 60) - ss) * 1000);
996    
997     date << year << "-" << mon << "-" << day << " " << hh << ":" << mm << ":" << ss;
998    
999     return date.str();
1000     }
1001    
1002     //
1003     // Solve the overflow for anticoincidence because this counter is
1004     // stored in 2 bytes so counts from 0 to 65535.
1005     //
1006     // counter is the actual value.
1007     // oldValue is meant to be the previous value of counter.
1008     //
1009     // Example:
1010     // for(...) {
1011     // ...
1012     // corrected_diff = solve_ac_overflow(oldValueOfTheCounter, actualValue);
1013     // ...
1014     // }
1015     //
1016     //
1017     // Returns the corrected difference between counter and oldValue and
1018     // set oldValue to the value of counter.
1019     // Attention: oldValue is a reference.
1020     Int_t solve_ac_overflow(Int_t& oldValue, Int_t counter)
1021     {
1022     Int_t truediff = 0;
1023    
1024     if (counter < oldValue) // overflow!
1025     truediff = 0xFFFF - oldValue + counter;
1026     else
1027     truediff = counter - oldValue;
1028    
1029     oldValue = counter;
1030    
1031     return truediff;
1032     }

  ViewVC Help
Powered by ViewVC 1.1.23