1 |
pam-rm2 |
1.1 |
/**************************************************************************** |
2 |
|
|
* F i l e D a t a |
3 |
|
|
* $Id: CRC.h,v 6.0 2006/02/07 17:11:06 kusanagi Exp $ |
4 |
|
|
* $Revision: 6.0 $ |
5 |
|
|
* $Date: 2006/02/07 17:11:06 $ |
6 |
|
|
* $RCSfile: CRC.h,v $ |
7 |
|
|
* |
8 |
|
|
**************************************************************************** |
9 |
|
|
* S W D e v e l o p m e n t E n v i r o n m e n t |
10 |
|
|
* |
11 |
|
|
* $Author: kusanagi $ |
12 |
|
|
* : |
13 |
|
|
*****************************************************************************/ |
14 |
|
|
|
15 |
|
|
#ifndef CRC_H |
16 |
|
|
#define CRC_H |
17 |
|
|
|
18 |
|
|
#define BYTE unsigned char |
19 |
|
|
#define UINT32 unsigned int |
20 |
|
|
#define UINT16 unsigned short |
21 |
|
|
|
22 |
|
|
|
23 |
|
|
/** Example of CAST macro at work. public domain demo by Bob Stout. |
24 |
|
|
* |
25 |
|
|
* Example of CAST macro at work |
26 |
|
|
* |
27 |
|
|
* union { |
28 |
|
|
* char ch[4]; |
29 |
|
|
* int i[2]; |
30 |
|
|
* } my_union; |
31 |
|
|
* |
32 |
|
|
* long longvar; |
33 |
|
|
* |
34 |
|
|
* longvar = (long)my_union; Illegal cast |
35 |
|
|
* longvar = CAST(long, my_union); Legal cast |
36 |
|
|
* |
37 |
|
|
*/ |
38 |
|
|
#define CM_CAST(new_type,old_object) (*((new_type *)&(old_object))) |
39 |
|
|
|
40 |
|
|
|
41 |
|
|
#define CM_HI_UINT16(x) ( (BYTE)( ((x) & 0xff00)>>8 ) ) |
42 |
|
|
#define CM_LO_UINT16(x) ( (BYTE)( ((x) & 0x00ff) ) ) |
43 |
|
|
|
44 |
|
|
#define CM_HI_UINT32(x) ( (UINT16)( ((x) & 0xffff0000)>>16 ) ) |
45 |
|
|
#define CM_LO_UINT32(x) ( (UINT16)( ((x) & 0x0000ffff) ) ) |
46 |
|
|
|
47 |
|
|
|
48 |
|
|
#define CM_HIHI_UINT32(x) ( (BYTE)( ((x) & 0xff000000)>>24 ) ) |
49 |
|
|
#define CM_LOHI_UINT32(x) ( (BYTE)( ((x) & 0x00ff0000)>>16 ) ) |
50 |
|
|
#define CM_HILO_UINT32(x) ( (BYTE)( ((x) & 0x0000ff00)>> 8 ) ) |
51 |
|
|
#define CM_LOLO_UINT32(x) ( (BYTE)( ((x) & 0x000000ff) ) ) |
52 |
|
|
|
53 |
|
|
|
54 |
|
|
|
55 |
|
|
/** |
56 |
|
|
Macro READ_NEXT_BITS_UINT(wordlen,p,offset,n,res) |
57 |
|
|
|
58 |
|
|
this mascro scans bits for a 'wordlen'-bit long word. 'wordlen' can be 8,16,32... |
59 |
|
|
It reads the next 'n' bits starting after the 'offset'-th bit of the 'wordlen'-bit word pointed by p. |
60 |
|
|
store the result in 'res', and increment properly both 'offset' and 'p' such that they can be reused |
61 |
|
|
in the text invocation of the macro. |
62 |
|
|
|
63 |
|
|
\a p unsigned 'wordlen'-bit pointer (ie. wordlen==16, then unsinged short int * in i386 arch) |
64 |
|
|
varibale name. |
65 |
|
|
it points to the word to scan. it is incremented automatically by the macro. |
66 |
|
|
\a offset unsigned 8 bit variable name (unsigned char?). Must be an l-value. |
67 |
|
|
it holds the number of bit already read in the most significant part of the |
68 |
|
|
current pointer (*p). Should be used always the same variable while a scanning |
69 |
|
|
session. This value must be initialized to zero and should be always less then 'wordlen'. |
70 |
|
|
\a n the number of bits to read. Can be a r-value. Must be 0 <= n <= 'wordlen'. |
71 |
|
|
if n is zero (senseless), both 'p' and 'offset' are unchanged and 0 is returned in 'res'. |
72 |
|
|
\a res unsigned 'wordlen'-bit variable name (i.e wordlen==16, then unsigned short int? on i386 arch) |
73 |
|
|
in which to store the requested 'n' bits. |
74 |
|
|
they are returned in the less significat part of 'res'. If n<'wordlen', then the most |
75 |
|
|
significant bits of 'res' are padded to zero. |
76 |
|
|
|
77 |
|
|
before using he macro the first time you have to: (let's assume 'wordlen' fixed to 16 and an i386 arch.) |
78 |
|
|
1) choose an unsigned short pointer to pass as 'p', and initialize it to the sequence |
79 |
|
|
of bits to scan from. |
80 |
|
|
2) choose an unsigned char variable to pass as 'offset' and initialize it to zero |
81 |
|
|
(or some other value X<16, if you want to skip the first X bits) |
82 |
|
|
3) choose an unsigned short to return the result. |
83 |
|
|
|
84 |
|
|
*/ |
85 |
|
|
|
86 |
|
|
#define CM_READ_NEXT_BITS_UINT(wordlen,p,offset,n,res) \ |
87 |
|
|
do { \ |
88 |
|
|
res = (*p << offset); \ |
89 |
|
|
res >>= (wordlen-(n)); \ |
90 |
|
|
if(n<=wordlen-offset) { \ |
91 |
|
|
offset=(offset+(n))%wordlen; \ |
92 |
|
|
if(offset==0) \ |
93 |
|
|
p++; \ |
94 |
|
|
}else{ \ |
95 |
|
|
p++; \ |
96 |
|
|
res |= *p>>(wordlen*2-offset-(n)); \ |
97 |
|
|
offset+=(n)-wordlen; \ |
98 |
|
|
} \ |
99 |
|
|
}while(0) |
100 |
|
|
|
101 |
|
|
/* Wrapper to 8,16,32,64 bit link wrapper to READ_NEXT_BITS_UINT : */ |
102 |
|
|
#define CM_READ_NEXT_BITS_UINT8(p,offset,n,res) CM_READ_NEXT_BITS_UINT(8 ,p,offset,n,res) |
103 |
|
|
#define CM_READ_NEXT_BITS_UINT16(p,offset,n,res) CM_READ_NEXT_BITS_UINT(16,p,offset,n,res) |
104 |
|
|
#define CM_READ_NEXT_BITS_UINT32(p,offset,n,res) CM_READ_NEXT_BITS_UINT(32,p,offset,n,res) |
105 |
|
|
#define CM_READ_NEXT_BITS_UINT64(p,offset,n,res) CM_READ_NEXT_BITS_UINT(64,p,offset,n,res) |
106 |
|
|
|
107 |
|
|
#define CM_GET_BIT(exp,n) (((exp) >> ((n)-1)) & 0x1) |
108 |
|
|
|
109 |
|
|
|
110 |
|
|
|
111 |
|
|
|
112 |
|
|
/* Thees macros write a 16 or 32 bits in BigEndian fascion in a (unsigned char*) avoiding the |
113 |
|
|
addressing alignement problem and also increment ptr |
114 |
|
|
- ptr must be a (unsigned char*) pointer (l-value) |
115 |
|
|
- byte must be a (unsigned char) (r-value) |
116 |
|
|
- word must be a (unsigned short int) (r-value) |
117 |
|
|
- dword must be a (unsigned int) (r-value) |
118 |
|
|
*/ |
119 |
|
|
#define CM_WRITE_BE_UINT8(ptr,byte) do { *ptr = (unsigned char)(byte); ptr++;} while(0) |
120 |
|
|
|
121 |
|
|
#define CM_WRITE_BE_UINT16(ptr,word) do { \ |
122 |
|
|
CM_WRITE_BE_UINT8(ptr,((word)>>8)); \ |
123 |
|
|
CM_WRITE_BE_UINT8(ptr,(word)); \ |
124 |
|
|
} while(0) |
125 |
|
|
|
126 |
|
|
#define CM_WRITE_BE_UINT32(ptr,dword) do { \ |
127 |
|
|
CM_WRITE_BE_UINT8(ptr,(dword)>>24); \ |
128 |
|
|
CM_WRITE_BE_UINT8(ptr,(dword)>>16); \ |
129 |
|
|
CM_WRITE_BE_UINT8(ptr,(dword)>>8); \ |
130 |
|
|
CM_WRITE_BE_UINT8(ptr,(dword)); \ |
131 |
|
|
} while(0) |
132 |
|
|
|
133 |
|
|
/* Thees macros read a 16 or 32 bits in BigEndian fascion from a (unsigned char*) avoiding the |
134 |
|
|
addressing alignement problem and also increment ptr |
135 |
|
|
- ptr must be a (unsigned char*) pointer (l-value) |
136 |
|
|
- byte and temp must be a (unsigned char) (l-value) |
137 |
|
|
- word must be a (unsigned short int) (l-value) |
138 |
|
|
- dword must be a (unsigned int) (l-value) |
139 |
|
|
*/ |
140 |
|
|
#define CM_READ_BE_UINT8(ptr,byte) do { byte = *(ptr); (ptr)++; } while(0) |
141 |
|
|
|
142 |
|
|
#define CM_READ_BE_UINT16(ptr,word,temp) do { \ |
143 |
|
|
CM_READ_BE_UINT8(ptr,temp); \ |
144 |
|
|
word = ((unsigned short int)temp) << 8; \ |
145 |
|
|
CM_READ_BE_UINT8(ptr,temp); \ |
146 |
|
|
word |= temp; \ |
147 |
|
|
} while(0) |
148 |
|
|
|
149 |
|
|
#define CM_READ_BE_UINT32(ptr,word,temp) do { \ |
150 |
|
|
CM_READ_BE_UINT8(ptr,temp); \ |
151 |
|
|
word = ((unsigned int)temp) << 24; \ |
152 |
|
|
CM_READ_BE_UINT8(ptr,temp); \ |
153 |
|
|
word |= ((unsigned int)temp) << 16; \ |
154 |
|
|
CM_READ_BE_UINT8(ptr,temp); \ |
155 |
|
|
word |= ((unsigned int)temp) << 8; \ |
156 |
|
|
CM_READ_BE_UINT8(ptr,temp); \ |
157 |
|
|
word |= ((unsigned int)temp); \ |
158 |
|
|
} while(0) |
159 |
|
|
|
160 |
|
|
|
161 |
|
|
/** Univeral BIT converter to 2 registers set with different resolution. |
162 |
|
|
Used in Microsecond to register converte for data time out and event time |
163 |
|
|
out and other same-style register. |
164 |
|
|
|
165 |
|
|
\a v is the value in some unit |
166 |
|
|
\a unit_h is the resolution of the MSD-part. must be in same unit of v. |
167 |
|
|
\a no_bit_h is the number of bits of the MSD-part. |
168 |
|
|
\a unit_l is the resolution of the LSD-part. must be in same unit of v. |
169 |
|
|
\a no_bit_l is the number of bits of the LSD-part. |
170 |
|
|
|
171 |
|
|
\example (case of ETO) |
172 |
|
|
Suppose to have 2 8-bit registers ETO1 (8 bit,LSB) and ETO2 (8 bit,HSB): |
173 |
|
|
ETO2 have a resoluion of 65 microsec; |
174 |
|
|
ETOHSB have a resolution of 16 millisec; |
175 |
|
|
|
176 |
|
|
This will format a value of 1 millisecond (unit is in microsecond) |
177 |
|
|
the usage is: CM_TIME2REG(1000,16*1000,8,65,8) |
178 |
|
|
|
179 |
|
|
*/ |
180 |
|
|
|
181 |
|
|
//#define CM_TIME2REG(v,unit_h,no_bit_h,unit_l,no_bit_l) ((((v)/(unit_h))<<(no_bit_l) ) | ((((v)%(unit_h))/(unit_l)) & ~((0xffffffff)<<((no_bit_l)+(no_bit_h))))) |
182 |
|
|
|
183 |
|
|
//#define CM_INT_UNUSED 0 |
184 |
|
|
|
185 |
|
|
|
186 |
|
|
/** |
187 |
|
|
Compute a 8 bit CRC based on a \a data, whith a \a old pre-computed crc. |
188 |
|
|
*/ |
189 |
|
|
/** old ---> the old pre-computed crc */ |
190 |
|
|
/** data ---> the data to compute crc for */ |
191 |
|
|
BYTE CM_crc8_8(BYTE old, BYTE data); |
192 |
|
|
|
193 |
|
|
UINT32 CM_Compute_CRC8_8(UINT32 oldcrc |
194 |
|
|
,BYTE *buffer |
195 |
|
|
,UINT32 length |
196 |
|
|
); |
197 |
|
|
|
198 |
|
|
|
199 |
|
|
UINT16 CM_CRC16(BYTE* adrs, UINT16 Crc); |
200 |
|
|
UINT16 CM_Compute_CRC16(UINT16 oldcrc,BYTE *buffer,UINT32 length); |
201 |
|
|
|
202 |
|
|
BYTE* charToUnsignedChar(char buffer[], UINT32 length); |
203 |
|
|
|
204 |
|
|
#endif /* CRC_H */ |
205 |
|
|
|
206 |
|
|
|
207 |
|
|
|