1 |
cafagna |
3.1 |
* |
2 |
|
|
* $Id$ |
3 |
|
|
* |
4 |
|
|
* $Log$ |
5 |
|
|
* |
6 |
|
|
*CMZ : 3.00/00 05/02/2002 12.51.38 by Unknown |
7 |
|
|
*-- Author : Marialuigia Ambriola 11/05/2001 |
8 |
|
|
SUBROUTINE GPXTR |
9 |
|
|
************************************************************************** |
10 |
|
|
* * |
11 |
|
|
* Generates and absorbs transition radiation spectrum in TRD * |
12 |
|
|
* * |
13 |
|
|
* * |
14 |
|
|
* * |
15 |
|
|
* Called by: GUSTEP * |
16 |
|
|
* Author: Marialuigia Ambriola 11/05/2001 * |
17 |
|
|
* * |
18 |
|
|
************************************************************************** |
19 |
|
|
#include "gpgene.inc" |
20 |
|
|
#include "gctrak.inc" |
21 |
|
|
#include "gctmed.inc" |
22 |
|
|
#include "gpmed.inc" |
23 |
|
|
#include "gpsed.inc" |
24 |
|
|
#include "gcsets.inc" |
25 |
|
|
#include "gpaltr.inc" |
26 |
|
|
#include "gckine.inc" |
27 |
|
|
#include "gcnum.inc" |
28 |
|
|
#include "gcflag.inc" |
29 |
|
|
#include "gptotr.inc" |
30 |
|
|
#include "gcunit.inc" |
31 |
|
|
EXTERNAL XTRYIELD |
32 |
|
|
EXTERNAL NPOISS |
33 |
|
|
EXTERNAL XTRINTER |
34 |
|
|
EXTERNAL XTRINTEG |
35 |
|
|
REAL CAM,RL,G,NF,WR,CR,SPH,CATT,W,E |
36 |
|
|
INTEGER INDEX,INDEXAIR,INDEXC,LAY |
37 |
|
|
c centimeter and GeV: |
38 |
|
|
DATA RL1/7.0E-4/,RL2/204.E-4/,N/71/,w1/31.59E-9/,w2/.7E-9/ |
39 |
|
|
DATA IEVOLD/-1/,NTMOLD/-1/ |
40 |
|
|
PARAMETER (ALPHA=1/137.,PG=3.1415926536,HTC=197.3269E-16) |
41 |
|
|
PARAMETER (C=3.E+10) |
42 |
|
|
************** |
43 |
|
|
*particle inside kapton, radiator or xenon? |
44 |
|
|
*if yes, calcolates the length of the track. |
45 |
|
|
*NUMED is the number of the tracking medium (common GCTMED) |
46 |
|
|
*MTRAD, MKAP and MXE are the numbers of radiator, kapton and xenon |
47 |
|
|
*tracking media, like defined by GPAMELA. |
48 |
|
|
IF(CHARGE.EQ.0) THEN |
49 |
|
|
RETURN |
50 |
|
|
ENDIF |
51 |
|
|
IF(AMASS.LE.0) THEN |
52 |
|
|
WRITE(CHMAIL,10000) AMASS |
53 |
|
|
CALL GMAIL(1,0) |
54 |
|
|
RETURN |
55 |
|
|
ENDIF |
56 |
|
|
G=GETOT/AMASS |
57 |
|
|
IF(G.LE.100.) THEN |
58 |
|
|
RETURN |
59 |
|
|
ENDIF |
60 |
|
|
IF((NUMED.EQ.MKAP.AND.IDET.EQ.IDTRSO).OR.NUMED.EQ. |
61 |
|
|
+ MTRAD.OR.NUMED.EQ.MXE) THEN |
62 |
|
|
IF(INWVOL.EQ.1.) THEN |
63 |
|
|
CAM=SLENG |
64 |
|
|
RETURN |
65 |
|
|
ELSEIF(INWVOL.EQ.2) THEN |
66 |
|
|
C # |
67 |
|
|
C # Calculate the layer number |
68 |
|
|
C # |
69 |
|
|
IF(NUMED.EQ.MXE) THEN |
70 |
|
|
IF(NUMBV(NVNAME-1).GE.29.AND.NUMBV(NVNAME-1).LE.32)LAY=2 |
71 |
|
|
IF(NUMBV(NVNAME-1).GE.25.AND.NUMBV(NVNAME-1).LE.28)LAY=4 |
72 |
|
|
IF(NUMBV(NVNAME-1).GE.21.AND.NUMBV(NVNAME-1).LE.24)LAY=6 |
73 |
|
|
IF(NUMBV(NVNAME-1).GE.17.AND.NUMBV(NVNAME-1).LE.20)LAY=8 |
74 |
|
|
IF(NUMBV(NVNAME-1).GE.13.AND.NUMBV(NVNAME-1).LE.16)LAY=10 |
75 |
|
|
IF(NUMBV(NVNAME-1).GE.10.AND.NUMBV(NVNAME-1).LE.12)LAY=12 |
76 |
|
|
IF(NUMBV(NVNAME-1).GE.7.AND.NUMBV(NVNAME-1).LE.9)LAY=14 |
77 |
|
|
IF(NUMBV(NVNAME-1).GE.4.AND.NUMBV(NVNAME-1).LE.6)LAY=16 |
78 |
|
|
IF(NUMBV(NVNAME-1).GE.1.AND.NUMBV(NVNAME-1).LE.3)LAY=18 |
79 |
|
|
IF(NUMBV(NVNAME).GT.16) THEN |
80 |
|
|
LAY = LAY - 1 |
81 |
|
|
ENDIF |
82 |
|
|
ENDIF |
83 |
|
|
CAM=SLENG-CAM |
84 |
|
|
ELSE |
85 |
|
|
RETURN |
86 |
|
|
ENDIF |
87 |
|
|
ELSE |
88 |
|
|
RETURN |
89 |
|
|
ENDIF |
90 |
|
|
**************** |
91 |
|
|
INDEX=0 |
92 |
|
|
INDEXAIR=0 |
93 |
|
|
INDEXC=0 |
94 |
|
|
IF(INWVOL.NE.2) RETURN |
95 |
|
|
IF(IEVOLD.NE.IEVENT.OR.NTMOLD.NE.NTMULT) THEN |
96 |
|
|
CALL VZERO(EY,115) |
97 |
|
|
ENDIF |
98 |
|
|
IEVOLD=IEVENT |
99 |
|
|
NTMOLD=NTMULT |
100 |
|
|
SPH=0. |
101 |
|
|
NPHTR=0 |
102 |
|
|
ENPHTR=0. |
103 |
|
|
IF(NUMED.EQ.MKAP.AND.IDET.EQ.IDTRSO) INDEX=4 |
104 |
|
|
IF(NUMED.EQ.MXE) INDEX=3 |
105 |
|
|
IF(NUMED.EQ.MTRAD) THEN |
106 |
|
|
INDEXAIR=1 |
107 |
|
|
INDEXC=2 |
108 |
|
|
RL=RL1+RL2 |
109 |
|
|
ENDIF |
110 |
|
|
**************** |
111 |
|
|
c radiator: |
112 |
|
|
IF(INDEX.EQ.0) THEN |
113 |
|
|
NF=CAM/RL |
114 |
|
|
DO I=1,115 |
115 |
|
|
XTREN=XTRYIELD(I,G) |
116 |
|
|
WR=0. |
117 |
|
|
CR=NF*(ATTTRD(I,INDEXAIR)*RL2+ATTTRD(I,INDEXC)*RL1) |
118 |
|
|
IF(CR.GT.0.) WR=EXP(-CR) |
119 |
|
|
c considering the whole radiator and the absorption. |
120 |
|
|
c when dividing for enatt I consider the number of photons per unit energy, |
121 |
|
|
c which are created and transmitted by the radiator. |
122 |
|
|
C remember that enatt is in keV unity. |
123 |
|
|
IF(CR.GT.0.AND.NF.GT.1) THEN |
124 |
|
|
XTREN=2*NF*XTREN*(1.-WR)/(CR*ENATT(I)) |
125 |
|
|
EY(I)=EY(I)*WR+XTREN |
126 |
|
|
SPH=SPH+EY(I) |
127 |
|
|
ENDIF |
128 |
|
|
ENDDO |
129 |
|
|
ENDIF |
130 |
|
|
goto 999 |
131 |
|
|
print*,'index,IEVENT,gamma,spettro' |
132 |
|
|
print*,index,IEVENT,g |
133 |
|
|
print*,(ey(i),i=1,4) |
134 |
|
|
print*,(ey(i),i=5,8) |
135 |
|
|
print*,(ey(i),i=9,12) |
136 |
|
|
print*,(ey(i),i=13,16) |
137 |
|
|
print*,(ey(i),i=17,20) |
138 |
|
|
print*,(ey(i),i=21,24) |
139 |
|
|
print*,(ey(i),i=25,28) |
140 |
|
|
print*,(ey(i),i=29,32) |
141 |
|
|
print*,(ey(i),i=33,36) |
142 |
|
|
print*,(ey(i),i=37,40) |
143 |
|
|
print*,(ey(i),i=41,44) |
144 |
|
|
print*,(ey(i),i=45,48) |
145 |
|
|
print*,(ey(i),i=49,52) |
146 |
|
|
print*,(ey(i),i=53,56) |
147 |
|
|
print*,(ey(i),i=57,60) |
148 |
|
|
print*,(ey(i),i=61,64) |
149 |
|
|
print*,(ey(i),i=65,68) |
150 |
|
|
print*,(ey(i),i=69,72) |
151 |
|
|
print*,(ey(i),i=73,76) |
152 |
|
|
print*,(ey(i),i=77,80) |
153 |
|
|
print*,(ey(i),i=81,84) |
154 |
|
|
print*,(ey(i),i=85,88) |
155 |
|
|
print*,(ey(i),i=89,92) |
156 |
|
|
print*,(ey(i),i=93,96) |
157 |
|
|
print*,(ey(i),i=97,100) |
158 |
|
|
print*,(ey(i),i=101,104) |
159 |
|
|
print*,(ey(i),i=105,108) |
160 |
|
|
print*,(ey(i),i=109,112) |
161 |
|
|
print*,(ey(i),i=113,115) |
162 |
|
|
999 continue |
163 |
|
|
****************** |
164 |
|
|
C now the spectrum is propagated in the other absorbent media in the TRD: |
165 |
|
|
c the absorber could be the kapton or the Xe-CO2 or the gas in between (here |
166 |
|
|
c not considered): |
167 |
|
|
IF(INDEX.NE.0) THEN |
168 |
|
|
CALL VZERO(EA,115) |
169 |
|
|
CALL VZERO(ER,115) |
170 |
|
|
DO I=1,115 |
171 |
|
|
CATT=ATTTRD(I,INDEX)*CAM |
172 |
|
|
W=0 |
173 |
|
|
W=EXP(-CATT) |
174 |
|
|
C PRINT*,'EY(I),I,CATT,ATT',EY(I),I,CATT,ATTTRD(I,INDEX) |
175 |
|
|
c absorbed spectrum: |
176 |
|
|
EA(I)=EY(I)*(1-W) |
177 |
|
|
c transmitted spectrum: |
178 |
|
|
EY(I)=EY(I)*W |
179 |
|
|
C PRINT*,'W,EA(I),EY(I),I,INDEX',W,EA(I),EY(I),I,INDEX |
180 |
|
|
ENDDO |
181 |
|
|
ENDIF |
182 |
|
|
C finally the sensitive gas: |
183 |
|
|
IF(INDEX.EQ.3) THEN |
184 |
|
|
goto 998 |
185 |
|
|
print*,'index,IEVENT,gamma,spettro assorbito' |
186 |
|
|
print*,index,IEVENT,g |
187 |
|
|
print*,(ea(i),i=1,4) |
188 |
|
|
print*,(ea(i),i=5,8) |
189 |
|
|
print*,(ea(i),i=9,12) |
190 |
|
|
print*,(ea(i),i=13,16) |
191 |
|
|
print*,(ea(i),i=17,20) |
192 |
|
|
print*,(ea(i),i=21,24) |
193 |
|
|
print*,(ea(i),i=25,28) |
194 |
|
|
print*,(ea(i),i=29,32) |
195 |
|
|
print*,(ea(i),i=33,36) |
196 |
|
|
print*,(ea(i),i=37,40) |
197 |
|
|
print*,(ea(i),i=41,44) |
198 |
|
|
print*,(ea(i),i=45,48) |
199 |
|
|
print*,(ea(i),i=49,52) |
200 |
|
|
print*,(ea(i),i=53,56) |
201 |
|
|
print*,(ea(i),i=57,60) |
202 |
|
|
print*,(ea(i),i=61,64) |
203 |
|
|
print*,(ea(i),i=65,68) |
204 |
|
|
print*,(ea(i),i=69,72) |
205 |
|
|
print*,(ea(i),i=73,76) |
206 |
|
|
print*,(ea(i),i=77,80) |
207 |
|
|
print*,(ea(i),i=81,84) |
208 |
|
|
print*,(ea(i),i=85,88) |
209 |
|
|
print*,(ea(i),i=89,92) |
210 |
|
|
print*,(ea(i),i=93,96) |
211 |
|
|
print*,(ea(i),i=97,100) |
212 |
|
|
print*,(ea(i),i=101,104) |
213 |
|
|
print*,(ea(i),i=105,108) |
214 |
|
|
print*,(ea(i),i=109,112) |
215 |
|
|
print*,(ea(i),i=113,115) |
216 |
|
|
998 continue |
217 |
|
|
c considering the escape peak in Xe-CO2; |
218 |
|
|
CALL XESCAPE(ENATT,EA,ER,115) |
219 |
|
|
SPH=0. |
220 |
|
|
goto 997 |
221 |
|
|
print*,'index,IEVENT,gamma,spettro con escape' |
222 |
|
|
print*,index,IEVENT,g |
223 |
|
|
print*,(er(i),i=1,4) |
224 |
|
|
print*,(er(i),i=5,8) |
225 |
|
|
print*,(er(i),i=9,12) |
226 |
|
|
print*,(er(i),i=13,16) |
227 |
|
|
print*,(er(i),i=17,20) |
228 |
|
|
print*,(er(i),i=21,24) |
229 |
|
|
print*,(er(i),i=25,28) |
230 |
|
|
print*,(er(i),i=29,32) |
231 |
|
|
print*,(er(i),i=33,36) |
232 |
|
|
print*,(er(i),i=37,40) |
233 |
|
|
print*,(er(i),i=41,44) |
234 |
|
|
print*,(er(i),i=45,48) |
235 |
|
|
print*,(er(i),i=49,52) |
236 |
|
|
print*,(er(i),i=53,56) |
237 |
|
|
print*,(er(i),i=57,60) |
238 |
|
|
print*,(er(i),i=61,64) |
239 |
|
|
print*,(er(i),i=65,68) |
240 |
|
|
print*,(er(i),i=69,72) |
241 |
|
|
print*,(er(i),i=73,76) |
242 |
|
|
print*,(er(i),i=77,80) |
243 |
|
|
print*,(er(i),i=81,84) |
244 |
|
|
print*,(er(i),i=85,88) |
245 |
|
|
print*,(er(i),i=89,92) |
246 |
|
|
print*,(er(i),i=93,96) |
247 |
|
|
print*,(er(i),i=97,100) |
248 |
|
|
print*,(er(i),i=101,104) |
249 |
|
|
print*,(er(i),i=105,108) |
250 |
|
|
print*,(er(i),i=109,112) |
251 |
|
|
print*,(er(i),i=113,115) |
252 |
|
|
997 continue |
253 |
|
|
c yes escape peak: |
254 |
|
|
ccc SPH=XTRINTEG(ENATT,ER,EINT,115) |
255 |
|
|
SPH=XTRINTEG(ENATT,ER,EINT,75) |
256 |
|
|
c if you don't consider the escape-peak, don't comment the next row: |
257 |
|
|
C SPH=XTRINTEG(ENATT,EA,EINT,115) |
258 |
|
|
C 28/9/2001: FINE TUNING OF TR: |
259 |
|
|
c for PS ALFA=0.65 (momentum.lt.40. GeV/c) |
260 |
|
|
c per SPS ALFA=0.69 (momentum.ge.40. GeV/c): |
261 |
|
|
IF(ALFATR.NE.-9999.) THEN |
262 |
|
|
SPH=ALFATR*SPH |
263 |
|
|
ELSE |
264 |
|
|
TROK=.FALSE. |
265 |
|
|
WRITE(CHMAIL,10100) ALFATR |
266 |
|
|
CALL GMAIL(1,0) |
267 |
|
|
RETURN |
268 |
|
|
ENDIF |
269 |
|
|
c end 28/9/2001. |
270 |
|
|
NPHTR=NPOISS(SPH) |
271 |
|
|
c print*,'lay=',lay,'sph,nph=',sph,nph |
272 |
|
|
c PRINT*,'Xe-CO2: XTRINTEG,NPOISS:',SPH,NPHTR |
273 |
|
|
IF(NPHTR.GT.0) THEN |
274 |
|
|
DO I=1,NPHTR |
275 |
|
|
ccc 10 E=XTRINTER(RNDM(1)*SPH,EINT,ENATT,115) |
276 |
|
|
10 E=XTRINTER(RNDM(1)*SPH,EINT,ENATT,75) |
277 |
|
|
C 28/9/2001: TENTATIVO DI FINE TUNING DELLA TR: |
278 |
|
|
******** NEI DATI REALI NON VEDO FOTONI CON ENERGIA MAGGIORE DI 60 keV: |
279 |
|
|
c fine modifica 28/9/2001 |
280 |
|
|
IF(E.GT.45.) THEN |
281 |
|
|
PRINT*,'Extracted energy' |
282 |
|
|
PRINT*,E |
283 |
|
|
GOTO 10 |
284 |
|
|
ENDIF |
285 |
|
|
ENPHTR=ENPHTR+E |
286 |
|
|
ENDDO |
287 |
|
|
c PRINT*,'Energy (keV) and photons absorbed, for event:' |
288 |
|
|
c + ,IEVENT,ENPHTR,NPHTR ,'layer=',lay |
289 |
|
|
C NTRHIT=NPHTR |
290 |
|
|
C ENEHIT=ENPHTR*1.E-6 |
291 |
|
|
C* ML: SOTTRAE LA ENERGIA PERSA NEL TRD. |
292 |
|
|
GEKINT=GEKIN-ENPHTR*1.E-6 |
293 |
|
|
GEKIN=GEKINT |
294 |
|
|
GETOT=GEKIN +AMASS |
295 |
|
|
VECT(7)= SQRT((GETOT+AMASS)*GEKIN) |
296 |
|
|
C Routine to find bin number in kinetic energy table stored in ELOW(NEKBIN) |
297 |
|
|
CALL GEKBIN |
298 |
|
|
C* END ML. |
299 |
|
|
ELSE |
300 |
|
|
c PRINT*,'no photons converted in the straw' |
301 |
|
|
ENDIF |
302 |
|
|
IF (LAY.GT.0.AND.LAY.LE.18) THEN |
303 |
|
|
ENTRTOT = ENTRTOT + ENPHTR |
304 |
|
|
ENLAY(LAY) = ENLAY(LAY) + ENPHTR |
305 |
|
|
NPHTOTR = NPHTOTR + NPHTR |
306 |
|
|
NPHLAY(LAY)= NPHLAY(LAY) + NPHTR |
307 |
|
|
ILI=NUMBV(NVNAME-1) |
308 |
|
|
IHI=NUMBV(NVNAME) |
309 |
|
|
ENTRSTRAW(ILI,IHI) = ENTRSTRAW(ILI,IHI)+ ENPHTR |
310 |
|
|
NTRSTRAW(ILI,IHI) = NTRSTRAW(ILI,IHI)+ NPHTR |
311 |
|
|
c PRINT*,'NPHTOTR,LAY,ENPHTR,ENTRTOT',NPHTOTR,LAY,ENPHTR,ENTRTOT |
312 |
|
|
C PRINT*,'NTRSTRAW',NTRSTRAW(ILI,IHI),ILI,IHI |
313 |
|
|
C PRINT*,'ENTRSTRAW,ENPHTR',ENTRSTRAW(ILI,IHI),ENPHTR |
314 |
|
|
ELSE |
315 |
|
|
WRITE(CHMAIL,10200)LAY |
316 |
|
|
CALL GMAIL(1,0) |
317 |
|
|
C PRINT*,' ERROR IN LAYER CALCULATION',LAY |
318 |
|
|
ENDIF |
319 |
|
|
ENDIF |
320 |
|
|
10000 FORMAT('GPXTR error: negative mass =',F10.3) |
321 |
|
|
10100 FORMAT('GPXTR error: ALFATR not set, TR process ', |
322 |
|
|
+ 'and his tuning will be ignored, ALFATR =',F10.3) |
323 |
|
|
10200 FORMAT('GPXTR error in layer calculation =',F10.3) |
324 |
|
|
RETURN |
325 |
|
|
END |