1 |
* |
2 |
* $Id: gptrdv.F,v 3.1.1.1 2002/07/11 16:02:01 cafagna Exp $ |
3 |
* |
4 |
* $Log: gptrdv.F,v $ |
5 |
* Revision 3.1.1.1 2002/07/11 16:02:01 cafagna |
6 |
* First GPAMELA release on CVS |
7 |
* |
8 |
* |
9 |
*CMZ : 2.01/00 05/04/2000 14.35.18 by Marialuigia Ambriola |
10 |
*CMZ : 2.00/00 03/03/2000 15.39.05 by Francesco Cafagna |
11 |
*CMZ : 1.02/00 09/02/2000 13.11.57 by Francesco Cafagna |
12 |
*CMZ : 1.00/02 15/03/96 16.04.21 by Francesco Cafagna |
13 |
*-- Author : Francesco Cafagna 05/12/95 |
14 |
SUBROUTINE GPTRDV |
15 |
************************************************************************ |
16 |
* * |
17 |
* Volume definition for TRD * |
18 |
* Called by: GPGEO * |
19 |
* Author: Francesco Cafagna, 05/12/95 17.25.32 * |
20 |
* * |
21 |
************************************************************************ |
22 |
#include "gpgeo.inc" |
23 |
#include "gpmed.inc" |
24 |
* |
25 |
INTEGER IROT,IVOLU,N,NMED,NUM,NAN |
26 |
REAL X,Y,Z |
27 |
* |
28 |
* Define the TRDB volume |
29 |
* |
30 |
NMED=MN2 |
31 |
CALL GSVOLU('TRDB','BOX ',NMED,TRDB, 3,IVOLU) |
32 |
* |
33 |
* Define the TRAN volume |
34 |
* |
35 |
NMED=MAL |
36 |
CALL GSVOLU('TRAN','BOX ',NMED,TRAN, 3,IVOLU) |
37 |
* |
38 |
* Define the TRAI volume |
39 |
* |
40 |
NMED=MN2 |
41 |
CALL GSVOLU('TRAI','BOX ',NMED,TRAI, 3,IVOLU) |
42 |
* |
43 |
* Define the TRBS volumes |
44 |
* |
45 |
NMED=MN2 |
46 |
CALL GSVOLU('TRBS','BOX ',NMED,TRBS, 3,IVOLU) |
47 |
*ml: 10/11/66: |
48 |
* |
49 |
* Define the TRAL volumes |
50 |
* |
51 |
NMED=MAL |
52 |
CALL GSVOLU('TRAL','BOX ',NMED,TRAL, 3,IVOLU) |
53 |
*end ml. |
54 |
* |
55 |
* Define the TRSO volumes |
56 |
* |
57 |
NMED=MKAP |
58 |
CALL GSVOLU('TRSO','TUBE',NMED,TRSO, 3,IVOLU) |
59 |
* |
60 |
* Define the TRSI volumes |
61 |
* |
62 |
NMED=MXE |
63 |
CALL GSVOLU('TRSI','TUBE',NMED,TRSI, 3,IVOLU) |
64 |
* |
65 |
* Define the TRRA volumes |
66 |
* |
67 |
NMED=MTRAD |
68 |
CALL GSVOLU('TRRA','BOX ',NMED,TRRA, 3,IVOLU) |
69 |
c ml: 11/11/04: |
70 |
* |
71 |
* Define the TRR2 volumes |
72 |
* |
73 |
NMED=MTRAD |
74 |
CALL GSVOLU('TRR2','BOX ',NMED,TRR2, 3,IVOLU) |
75 |
* |
76 |
* Define the TRR0 volumes |
77 |
* |
78 |
NMED=MCF |
79 |
CALL GSVOLU('TRR0','BOX ',NMED,TRR0, 3,IVOLU) |
80 |
* |
81 |
* Define the TRI0 volumes |
82 |
* |
83 |
NMED=MN2 |
84 |
CALL GSVOLU('TRI0','BOX ',NMED,TRI0, 3,IVOLU) |
85 |
* |
86 |
* Define the TRRF volumes |
87 |
* |
88 |
NMED=MMAG |
89 |
CALL GSVOLU('TRRF','BOX ',NMED,TRRF, 3,IVOLU) |
90 |
* |
91 |
* Define the TRRI volumes |
92 |
* |
93 |
NMED=MN2 |
94 |
CALL GSVOLU('TRRI','BOX ',NMED,TRRI, 3,IVOLU) |
95 |
c end ml. |
96 |
* |
97 |
* Define the TRFR volumes |
98 |
* |
99 |
NMED=MCF |
100 |
CALL GSVOLU('TRFR','BOX ',NMED,TRFR, 3,IVOLU) |
101 |
c ml: 12/11/04: |
102 |
c* |
103 |
c* Define the TRFI volumes |
104 |
c* |
105 |
c NMED=MN2 |
106 |
c CALL GSVOLU('TRFI','BOX ',NMED,TRFI, 3,IVOLU) |
107 |
* |
108 |
* Define the TRFD volumes |
109 |
* |
110 |
NMED=MCF |
111 |
CALL GSVOLU('TRFD','BOX ',NMED,TRFD, 3,IVOLU) |
112 |
* |
113 |
* Define the TRFU volumes |
114 |
* |
115 |
NMED=MCF |
116 |
CALL GSVOLU('TRFU','BOX ',NMED,TRFU, 3,IVOLU) |
117 |
* |
118 |
* Define the TRFM volumes |
119 |
* |
120 |
NMED=MCF |
121 |
CALL GSVOLU('TRFM','BOX ',NMED,TRFM, 3,IVOLU) |
122 |
* |
123 |
* Define the TRFL volumes |
124 |
* |
125 |
NMED=MCF |
126 |
CALL GSVOLU('TRFL','BOX ',NMED,TRFL, 3,IVOLU) |
127 |
c end ml. |
128 |
* |
129 |
* Define the TRDT volumes |
130 |
* |
131 |
NMED=MAL |
132 |
CALL GSVOLU('TRDT','BOX ',NMED,TRDT, 3,IVOLU) |
133 |
*ml: 10/11/04: |
134 |
* |
135 |
* Positioning the volumes TRAL into mothers TRBS |
136 |
* |
137 |
X=0. |
138 |
Z=0. |
139 |
DO I=1,2 |
140 |
Y=(-1)**I*(TRBS(2)-TRAL(2)) |
141 |
C # print*,'gptrdv.F: tral: y=',y |
142 |
CALL GSPOS('TRAL',I,'TRBS',X,Y,Z,0,'ONLY') |
143 |
ENDDO |
144 |
*end ml. |
145 |
|
146 |
* |
147 |
* Positioning volumes TRSI into mothers TRSO |
148 |
* |
149 |
N= 1 |
150 |
X= 0. |
151 |
Y= 0. |
152 |
Z= 0. |
153 |
* CALL GSPOS('TRSI',N,'TRSO',X,Y,Z,0,'ONLY') |
154 |
*Positioning volumes TRSO into mothers TRSI, because now TRSO is included in |
155 |
*TRSI and TRSI is included in TRBS |
156 |
CALL GSPOS('TRSO',N,'TRSI',X,Y,Z,0,'ONLY') |
157 |
* |
158 |
* |
159 |
* Positioning volumes TRSO into mothers TRBS. Remember we have to put |
160 |
* tubes one over each other |
161 |
* |
162 |
Y=0. |
163 |
NUM = 0 |
164 |
DO II=1,2 |
165 |
#if defined(GPAMELA_UNIX) |
166 |
Z= TRSO(2) * COS(30./180.*ACOS(-1.)) * (-1)**II |
167 |
#endif |
168 |
#if !defined(GPAMELA_UNIX) |
169 |
Z= TRSO(2) * COSD(30.) * (-1)**II |
170 |
#endif |
171 |
DO I=1, 16 |
172 |
NUM = NUM + 1 |
173 |
X= -TRBS(1) + II*TRSO(2) + (I-1)*2.*TRSO(2) |
174 |
* CALL GSPOS('TRSO',NUM,'TRBS',X,Y,Z,2,'ONLY') |
175 |
*now TRSI is into TRBS (I don't change TRSO(2) in TRSI(2) because they |
176 |
*are equal and the velue of X does not change: |
177 |
CALL GSPOS('TRSI',NUM,'TRBS',X,Y,Z,2,'ONLY') |
178 |
ENDDO |
179 |
ENDDO |
180 |
c ml: 11/11/04: |
181 |
C* |
182 |
C* Positioning volumes TRFI into mothers TRFR |
183 |
C* |
184 |
C N= 1 |
185 |
C X= 0. |
186 |
C Y= 0. |
187 |
C Z= 0. |
188 |
C CALL GSPOS('TRFI',N,'TRFR',X,Y,Z,0,'ONLY') |
189 |
* |
190 |
* Positioning volume TRI0 into mother TRR0 |
191 |
* |
192 |
N= 1 |
193 |
X= 0. |
194 |
Y= 0. |
195 |
c Z= 0. |
196 |
c CALL GSPOS('TRI0',N,'TRR0',X,Y,Z,0,'ONLY') |
197 |
ZTRI0=TRR0(3)-TRI0(3) |
198 |
CALL GSPOS('TRI0',N,'TRR0',X,Y,ZTRI0,0,'MANY') |
199 |
* |
200 |
* Positioning volume TRRI into mother TRRF |
201 |
* |
202 |
N= 1 |
203 |
X= 0. |
204 |
Y= 0. |
205 |
Z= 0. |
206 |
CALL GSPOS('TRRI',N,'TRRF',X,Y,Z,0,'ONLY') |
207 |
* |
208 |
* Positioning volume TRRF into mother TRR0 |
209 |
* |
210 |
N= 1 |
211 |
X= 0. |
212 |
Y= 0. |
213 |
C Z= 0. |
214 |
Z=-TRR0(3)+TRRF(3) |
215 |
CALL GSPOS('TRRF',N,'TRR0',X,Y,Z,0,'ONLY') |
216 |
c end ml. |
217 |
* |
218 |
* Positioning volumes TRAI into mothers TRAN |
219 |
* |
220 |
c ml: 17/11/04: |
221 |
N= 1 |
222 |
c X= 0. |
223 |
c Y= TRAN(2)-TRAI(2) |
224 |
X=0.8 |
225 |
Y=0.8 |
226 |
Z= 0. |
227 |
CALL GSPOS('TRAI',N,'TRAN',X,Y,Z,0,'ONLY') |
228 |
*end ml. |
229 |
* |
230 |
* Positioning volumes TRAI, TRFR, TRBS&TRRA into the mother TRDB |
231 |
* |
232 |
NAN = 0 |
233 |
c ml: 12/11/04: |
234 |
c positioning TRRO (frame 0 del TRD) |
235 |
X=0. |
236 |
Y=0. |
237 |
c Z= -TRDB(3) + TRAN(3) |
238 |
Z= -TRDB(3) + TRR0(3) |
239 |
C CALL GSPOS('TRR0',1,'TRDB',X,Y,Z,0,'ONLY') |
240 |
CALL GSPOS('TRR0',1,'TRDB',X,Y,Z,0,'MANY') |
241 |
C Z=Z+TRR0(3) |
242 |
Z=Z+TRR0(3)-0.1 |
243 |
M=3 |
244 |
num=0 |
245 |
DO I=1,4 |
246 |
C # print*,'z,ztrfu=',z,ztrfu |
247 |
Z=Z+TRAN(3) |
248 |
ZTRBS=Z |
249 |
c positioning TRAN: |
250 |
c ml:17/11/04: |
251 |
c DO III = 1,2 |
252 |
c X = (-1)**(III-1)*TRAN(1)+ (-1)**III*TRDB(1) |
253 |
c Y = -TRAN(2)+ TRDB(2) |
254 |
c NAN = NAN + 1 |
255 |
c CALL GSPOS('TRAN',NAN,'TRDB',X,Y,Z,0,'ONLY') |
256 |
c Y = +TRAN(2)- TRDB(2) |
257 |
c NAN = NAN + 1 |
258 |
c CALL GSPOS('TRAN',NAN,'TRDB',X,Y,Z,4,'ONLY') |
259 |
c ENDDO |
260 |
X = -TRFR(1)+TRAN(1) |
261 |
Y = -TRFR(2)+ TRAN(2) |
262 |
NAN = NAN + 1 |
263 |
CALL GSPOS('TRAN',NAN,'TRDB',X,Y,Z,0,'ONLY') |
264 |
X = -TRFR(1)+TRAN(1) |
265 |
Y = +TRFR(2)- TRAN(2) |
266 |
NAN = NAN + 1 |
267 |
CALL GSPOS('TRAN',NAN,'TRDB',X,Y,Z,6,'ONLY') |
268 |
X = TRFR(1)-TRAN(1) |
269 |
Y = +TRFR(2)- TRAN(2) |
270 |
NAN = NAN + 1 |
271 |
CALL GSPOS('TRAN',NAN,'TRDB',X,Y,Z,4,'ONLY') |
272 |
X = TRFR(1)-TRAN(1) |
273 |
Y = -TRFR(2)+ TRAN(2) |
274 |
NAN = NAN + 1 |
275 |
CALL GSPOS('TRAN',NAN,'TRDB',X,Y,Z,1,'ONLY') |
276 |
Z= Z + TRAN(3) |
277 |
c positioning TRBS (the modules): |
278 |
Y=0. |
279 |
DO II=1, M |
280 |
NUM = NUM + 1 |
281 |
* shift of modules to have the right overlap: |
282 |
X= (II-1)*2.*TRBS(1) - ( M*TRBS(1) - TRBS(1) ) - |
283 |
+ (II-2)*TRSI(2) |
284 |
* now there two different volumes interested at same time: |
285 |
* CALL GSPOS('TRBS',NUM,'TRDB',X,Y,Z,0,'ONLY') |
286 |
CALL GSPOS('TRBS',NUM,'TRDB',X,Y,ZTRBS,0,'MANY') |
287 |
ENDDO |
288 |
c end ml. |
289 |
c positioning TRFD: |
290 |
X=0. |
291 |
ZTRFD=Z-TRFD(3) |
292 |
CALL GSPOS('TRFD',I,'TRDB',X,Y,ZTRFD,0,'MANY') |
293 |
C # print*,'gptrdv: n. of trfd: i=',i |
294 |
c positioning TRFR: |
295 |
Z= Z + TRFR(3) |
296 |
ZRAD=Z |
297 |
CALL GSPOS('TRFR',I,'TRDB',X,Y,Z,0,'MANY') |
298 |
C Z= Z + TRFR(3) + TRBS(3) |
299 |
Z=Z+TRFR(3) |
300 |
c positioning TRFU: |
301 |
ZTRFU= Z + TRFU(3) |
302 |
CALL GSPOS('TRFU',I,'TRDB',X,Y,ZTRFU,0,'MANY') |
303 |
X = 0. |
304 |
Y = 0. |
305 |
cc Z = Z + TRSO(2)*( 1 + COS(30./180.*ACOS(-1.))) + TRRA(3) |
306 |
cc print*,'z del radiatore=',z |
307 |
C # print*,'cos(1+....)=',1 + COS(30./180.*ACOS(-1.)) |
308 |
C # Z= Z + 2*TRSO(2) + TRRA(3) |
309 |
c CALL GSPOS('TRRA',I,'TRDB',X,Y,Z,0,'ONLY') |
310 |
CALL GSPOS('TRRA',I,'TRDB',X,Y,ZRAD,0,'ONLY') |
311 |
C # Z= Z - (2*TRSO(2) + TRRA(3)) + TRBS(3) |
312 |
CC Z = Z - ( TRSO(2)*( 1 + COS(30./180.*ACOS(-1.))) + TRRA(3)) |
313 |
CC + + TRBS(3) |
314 |
cc GOTO 151 |
315 |
cc DO III = 1,2 |
316 |
cc X = (-1)**(III-1)*TRAN(1)+ (-1)**III*TRDB(1) |
317 |
cc Y = -TRAN(2)+ TRDB(2) |
318 |
cc NAN = NAN + 1 |
319 |
cc CALL GSPOS('TRAN',NAN,'TRDB',X,Y,Z,0,'ONLY') |
320 |
cc Y = TRAN(2) - TRDB(2) |
321 |
cc NAN = NAN + 1 |
322 |
cc CALL GSPOS('TRAN',NAN,'TRDB',X,Y,Z,4,'ONLY') |
323 |
cc ENDDO |
324 |
cc X = 0. |
325 |
cc Y = 0. |
326 |
cc Z = Z + TRSO(2)*( 1 + COS(30./180.*ACOS(-1.))) + TRRA(3) |
327 |
C # Z= Z + 2*TRSO(2) + TRRA(3) |
328 |
cc CALL GSPOS('TRRA',I,'TRDB',X,Y,Z,0,'ONLY') |
329 |
C # Z= Z - (2*TRSO(2) + TRRA(3)) + TRBS(3) |
330 |
cc Z = Z - ( TRSO(2)*( 1 + COS(30./180.*ACOS(-1.))) + TRRA(3)) |
331 |
cc + + TRBS(3) |
332 |
ENDDO |
333 |
M=4 |
334 |
DO I=1,5 |
335 |
Z=Z+TRAN(3) |
336 |
ZTRBS=Z |
337 |
c positioning TRAN: |
338 |
c ml:17/11/04: |
339 |
c DO III = 1,2 |
340 |
c X = (-1)**(III-1)*TRAN(1)+ (-1)**III*TRDB(1) |
341 |
c Y = -TRAN(2)+ TRDB(2) |
342 |
c NAN = NAN + 1 |
343 |
c CALL GSPOS('TRAN',NAN,'TRDB',X,Y,Z,0,'ONLY') |
344 |
c Y = +TRAN(2)- TRDB(2) |
345 |
c NAN = NAN + 1 |
346 |
c CALL GSPOS('TRAN',NAN,'TRDB',X,Y,Z,4,'ONLY') |
347 |
c ENDDO |
348 |
X = -TRFR(1)+TRAN(1) |
349 |
Y = -TRFR(2)+ TRAN(2) |
350 |
NAN = NAN + 1 |
351 |
CALL GSPOS('TRAN',NAN,'TRDB',X,Y,Z,0,'ONLY') |
352 |
X = -TRFR(1)+TRAN(1) |
353 |
Y = +TRFR(2)- TRAN(2) |
354 |
NAN = NAN + 1 |
355 |
CALL GSPOS('TRAN',NAN,'TRDB',X,Y,Z,6,'ONLY') |
356 |
X = TRFR(1)-TRAN(1) |
357 |
Y = +TRFR(2)- TRAN(2) |
358 |
NAN = NAN + 1 |
359 |
CALL GSPOS('TRAN',NAN,'TRDB',X,Y,Z,4,'ONLY') |
360 |
X = TRFR(1)-TRAN(1) |
361 |
Y = -TRFR(2)+ TRAN(2) |
362 |
NAN = NAN + 1 |
363 |
CALL GSPOS('TRAN',NAN,'TRDB',X,Y,Z,1,'ONLY') |
364 |
Z=Z+TRAN(3) |
365 |
c positioning TRBS (the modules): |
366 |
Y=0. |
367 |
DO II=1, M |
368 |
NUM = NUM + 1 |
369 |
* shift of modules to have the right overlap: |
370 |
X= (II-1)*2.*TRBS(1) - ( M*TRBS(1) - TRBS(1) ) - |
371 |
+ (II-2)*TRSI(2) |
372 |
* now there two different volumes interested at same time: |
373 |
* CALL GSPOS('TRBS',NUM,'TRDB',X,Y,Z,0,'ONLY') |
374 |
CALL GSPOS('TRBS',NUM,'TRDB',X,Y,ZTRBS,0,'MANY') |
375 |
ENDDO |
376 |
c end ml. |
377 |
c IF((I+4).LE.8)THEN |
378 |
c positioning TRFD: |
379 |
X=0. |
380 |
ZTRFD=Z-TRFD(3) |
381 |
CALL GSPOS('TRFD',I+4,'TRDB',X,Y,ZTRFD,0,'MANY') |
382 |
C # print*,'gptrdv: n. of trfd: i+4=',i+4,ztrfd |
383 |
IF((I+4).LE.8)THEN |
384 |
c positioning TRFR: |
385 |
Z= Z + TRFR(3) |
386 |
ZRAD=Z |
387 |
CALL GSPOS('TRFR',I+4,'TRDB',X,Y,Z,0,'MANY') |
388 |
C Z= Z + TRFR(3) + TRBS(3) |
389 |
Z=Z+TRFR(3) |
390 |
c positioning TRFU: |
391 |
ZTRFU= Z + TRFU(3) |
392 |
CALL GSPOS('TRFU',I+4,'TRDB',X,Y,ZTRFU,0,'MANY') |
393 |
ELSE |
394 |
ZRAD=Z-TRFD(3)+TRFM(3)+TRFL(3) |
395 |
c positioning TRFD: |
396 |
c X=0. |
397 |
c ZTRFD=Z-TRFD(3) |
398 |
c CALL GSPOS('TRFD',I+4,'TRDB',X,Y,ZTRFD,0,'MANY') |
399 |
c print*,'gptrdv: n. of trfd: i+4=',i+4,ztrfd |
400 |
c positioning TRFM: |
401 |
Z= Z + TRFM(3) |
402 |
C ZRAD=Z |
403 |
CALL GSPOS('TRFM',I+4,'TRDB',X,Y,Z,0,'MANY') |
404 |
C Z= Z + TRFR(3) + TRBS(3) |
405 |
Z=Z+TRFM(3) |
406 |
c positioning TRFL: |
407 |
ZTRFL= Z + TRFL(3) |
408 |
CALL GSPOS('TRFL',I+4,'TRDB',X,Y,ZTRFL,0,'MANY') |
409 |
ENDIF |
410 |
X = 0. |
411 |
Y = 0. |
412 |
cc Z = Z + TRSO(2)*( 1 + COS(30./180.*ACOS(-1.))) + TRRA(3) |
413 |
cc print*,'z del radiatore=',z |
414 |
C # print*,'cos(1+....)=',1 + COS(30./180.*ACOS(-1.)) |
415 |
C # Z= Z + 2*TRSO(2) + TRRA(3) |
416 |
c CALL GSPOS('TRRA',I,'TRDB',X,Y,Z,0,'ONLY') |
417 |
IF((I+4).LE.8) THEN |
418 |
CALL GSPOS('TRRA',I+4,'TRDB',X,Y,ZRAD,0,'ONLY') |
419 |
ELSE |
420 |
CALL GSPOS('TRR2',I+4,'TRDB',X,Y,ZRAD,0,'ONLY') |
421 |
ENDIF |
422 |
ENDDO |
423 |
goto 151 |
424 |
M=4 |
425 |
DO I=1,5 |
426 |
X= 0. |
427 |
Z= Z + TRFR(3) |
428 |
CALL GSPOS('TRFR',(I+4),'TRDB',X,Y,Z,0,'ONLY') |
429 |
Z= Z + TRFR(3) + TRBS(3) |
430 |
DO II=1, M |
431 |
NUM = NUM + 1 |
432 |
*shift of modules to have the right overlap: |
433 |
X= (II-1)*2.*TRBS(1) - ( M*TRBS(1) - TRBS(1) ) |
434 |
+ + (3/2 -(II-1))*TRSI(2) |
435 |
*now there two different volumes interested at same time: |
436 |
* CALL GSPOS('TRBS',NUM,'TRDB',X,Y,Z,0,'ONLY') |
437 |
CALL GSPOS('TRBS',NUM,'TRDB',X,Y,Z,0,'MANY') |
438 |
ENDDO |
439 |
DO III = 1,2 |
440 |
X = (-1)**(III-1)*TRAN(1)+ (-1)**III*TRDB(1) |
441 |
Y = -TRAN(2)+ TRDB(2) |
442 |
NAN = NAN + 1 |
443 |
CALL GSPOS('TRAN',NAN,'TRDB',X,Y,Z,0,'ONLY') |
444 |
Y = TRAN(2) - TRDB(2) |
445 |
NAN = NAN + 1 |
446 |
CALL GSPOS('TRAN',NAN,'TRDB',X,Y,Z,4,'ONLY') |
447 |
ENDDO |
448 |
X= 0. |
449 |
Y= 0. |
450 |
c ml: 12/11/04: |
451 |
IF((I+4).LE.8) THEN |
452 |
c end ml. |
453 |
Z = Z + TRSO(2)*( 1 + COS(30./180.*ACOS(-1.))) + TRRA(3) |
454 |
CALL GSPOS('TRRA',(I+4),'TRDB',X,Y,Z,0,'ONLY') |
455 |
Z = Z - (TRSO(2)*( 1 + COS(30./180.*ACOS(-1.))) + TRRA(3) ) |
456 |
+ + TRBS(3) |
457 |
c ml: |
458 |
ELSE |
459 |
* |
460 |
* Positioning an extra radiator plane on top |
461 |
* |
462 |
Z = Z + TRSO(2)*( 1 + COS(30./180.*ACOS(-1.))) + TRR2(3) |
463 |
NUM=1 |
464 |
CALL GSPOS('TRR2',NUM,'TRDB',X,Y,Z,0,'ONLY') |
465 |
Z = Z + TRBS(3) -( TRSO(2)*( 1 + COS(30./180.*ACOS(-1.))) |
466 |
+ + 3*TRR2(3) ) |
467 |
ENDIF |
468 |
C end ml. |
469 |
ENDDO |
470 |
c ml: 12/11/04: |
471 |
C* |
472 |
C* Positioning an extra radiator plane on top |
473 |
C* |
474 |
C Z = Z - TRBS(3) + TRSO(2)*( 1 + COS(30./180.*ACOS(-1.))) |
475 |
C + + 3*TRRA(3) |
476 |
C CALL GSPOS('TRRA',NUM,'TRDB',X,Y,Z,0,'ONLY') |
477 |
C Z = Z + TRBS(3) -( TRSO(2)*( 1 + COS(30./180.*ACOS(-1.))) |
478 |
C + + 3*TRRA(3) ) |
479 |
C end ml. |
480 |
* |
481 |
* Positioning the TOP frame |
482 |
* |
483 |
X = 0. |
484 |
Y = 0. |
485 |
Z = Z + TRFR(3) |
486 |
CALL GSPOS('TRFR',10,'TRDB',X,Y,Z,0,'ONLY') |
487 |
* |
488 |
* Positioning the angular pieces to hold the TOF. TRAN & TRDT |
489 |
* |
490 |
Z = Z + TRFR(3) + TRAN(3) |
491 |
DO I = 1,2 |
492 |
X = (-1)**(I-1)*TRAN(1)+ (-1)**I*TRDB(1) |
493 |
Y = -TRAN(2)+ TRDB(2) |
494 |
NAN = NAN + 1 |
495 |
CALL GSPOS('TRAN',NAN,'TRDB',X,Y,Z,0,'ONLY') |
496 |
Y = +TRAN(2)- TRDB(2) |
497 |
NAN = NAN + 1 |
498 |
CALL GSPOS('TRAN',NAN,'TRDB',X,Y,Z,4,'ONLY') |
499 |
ENDDO |
500 |
Z = Z + TRAN(3) + TRDT(3) |
501 |
NDT = 0 |
502 |
DO I = 1,2 |
503 |
X = (-1)**(I-1)*(2*TRAN(1)-TRDT(1))+ (-1)**I*TRDB(1) |
504 |
Y = -(2*TRAN(2)-TRDT(2)) + TRDB(2) |
505 |
NDT = NDT + 1 |
506 |
CALL GSPOS('TRDT',NDT,'TRDB',X,Y,Z,0,'ONLY') |
507 |
Y = +(2*TRAN(2)-TRDT(2)) - TRDB(2) |
508 |
NDT = NDT + 1 |
509 |
CALL GSPOS('TRDT',NDT,'TRDB',X,Y,Z,0,'ONLY') |
510 |
ENDDO |
511 |
151 continue |
512 |
RETURN |
513 |
END |