1 |
* |
2 |
* $Id$ |
3 |
* |
4 |
* $Log$ |
5 |
* |
6 |
*CMZ : 2.01/00 05/04/2000 14.35.18 by Marialuigia Ambriola |
7 |
*CMZ : 2.00/00 03/03/2000 15.39.05 by Francesco Cafagna |
8 |
*CMZ : 1.02/00 09/02/2000 13.11.57 by Francesco Cafagna |
9 |
*CMZ : 1.00/02 15/03/96 16.04.21 by Francesco Cafagna |
10 |
*-- Author : Francesco Cafagna 05/12/95 |
11 |
SUBROUTINE GPTRDV |
12 |
************************************************************************ |
13 |
* * |
14 |
* Volume definition for TRD * |
15 |
* Called by: GPGEO * |
16 |
* Author: Francesco Cafagna, 05/12/95 17.25.32 * |
17 |
* * |
18 |
************************************************************************ |
19 |
#include "gpgeo.inc" |
20 |
#include "gpmed.inc" |
21 |
* |
22 |
INTEGER IROT,IVOLU,N,NMED,NUM,NAN |
23 |
REAL X,Y,Z |
24 |
* |
25 |
* Define the TRDB volume |
26 |
* |
27 |
NMED=MN2 |
28 |
CALL GSVOLU('TRDB','BOX ',NMED,TRDB, 3,IVOLU) |
29 |
* |
30 |
* Define the TRAN volume |
31 |
* |
32 |
NMED=MAL |
33 |
CALL GSVOLU('TRAN','BOX ',NMED,TRAN, 3,IVOLU) |
34 |
* |
35 |
* Define the TRAI volume |
36 |
* |
37 |
NMED=MN2 |
38 |
CALL GSVOLU('TRAI','BOX ',NMED,TRAI, 3,IVOLU) |
39 |
* |
40 |
* Define the TRBS volumes |
41 |
* |
42 |
NMED=MN2 |
43 |
CALL GSVOLU('TRBS','BOX ',NMED,TRBS, 3,IVOLU) |
44 |
* |
45 |
* Define the TRSO volumes |
46 |
* |
47 |
NMED=MKAP |
48 |
CALL GSVOLU('TRSO','TUBE',NMED,TRSO, 3,IVOLU) |
49 |
* |
50 |
* Define the TRSI volumes |
51 |
* |
52 |
NMED=MXE |
53 |
CALL GSVOLU('TRSI','TUBE',NMED,TRSI, 3,IVOLU) |
54 |
* |
55 |
* Define the TRRA volumes |
56 |
* |
57 |
NMED=MTRAD |
58 |
CALL GSVOLU('TRRA','BOX ',NMED,TRRA, 3,IVOLU) |
59 |
* |
60 |
* Define the TRFR volumes |
61 |
* |
62 |
NMED=MCF |
63 |
CALL GSVOLU('TRFR','BOX ',NMED,TRFR, 3,IVOLU) |
64 |
* |
65 |
* Define the TRFI volumes |
66 |
* |
67 |
NMED=MN2 |
68 |
CALL GSVOLU('TRFI','BOX ',NMED,TRFI, 3,IVOLU) |
69 |
* |
70 |
* Define the TRDT volumes |
71 |
* |
72 |
NMED=MAL |
73 |
CALL GSVOLU('TRDT','BOX ',NMED,TRDT, 3,IVOLU) |
74 |
* |
75 |
* Positioning volumes TRSI into mothers TRSO |
76 |
* |
77 |
N= 1 |
78 |
X= 0. |
79 |
Y= 0. |
80 |
Z= 0. |
81 |
* CALL GSPOS('TRSI',N,'TRSO',X,Y,Z,0,'ONLY') |
82 |
*Positioning volumes TRSO into mothers TRSI, because now TRSO is included in |
83 |
*TRSI and TRSI is included in TRBS |
84 |
CALL GSPOS('TRSO',N,'TRSI',X,Y,Z,0,'ONLY') |
85 |
* |
86 |
* |
87 |
* Positioning volumes TRSO into mothers TRBS. Remember we have to put |
88 |
* tubes one over each other |
89 |
* |
90 |
Y=0. |
91 |
NUM = 0 |
92 |
DO II=1,2 |
93 |
#if defined(GPAMELA_UNIX) |
94 |
Z= TRSO(2) * COS(30./180.*ACOS(-1.)) * (-1)**II |
95 |
#endif |
96 |
#if !defined(GPAMELA_UNIX) |
97 |
Z= TRSO(2) * COSD(30.) * (-1)**II |
98 |
#endif |
99 |
DO I=1, 16 |
100 |
NUM = NUM + 1 |
101 |
X= -TRBS(1) + II*TRSO(2) + (I-1)*2.*TRSO(2) |
102 |
* CALL GSPOS('TRSO',NUM,'TRBS',X,Y,Z,2,'ONLY') |
103 |
*now TRSI is into TRBS (I don't change TRSO(2) in TRSI(2) because they |
104 |
*are equal and the velue of X does not change: |
105 |
CALL GSPOS('TRSI',NUM,'TRBS',X,Y,Z,2,'ONLY') |
106 |
ENDDO |
107 |
ENDDO |
108 |
* |
109 |
* Positioning volumes TRFI into mothers TRFR |
110 |
* |
111 |
N= 1 |
112 |
X= 0. |
113 |
Y= 0. |
114 |
Z= 0. |
115 |
CALL GSPOS('TRFI',N,'TRFR',X,Y,Z,0,'ONLY') |
116 |
* |
117 |
* Positioning volumes TRAI into mothers TRAN |
118 |
* |
119 |
N= 1 |
120 |
X= 0. |
121 |
Y= TRAN(2)-TRAI(2) |
122 |
Z= 0. |
123 |
CALL GSPOS('TRAI',N,'TRAN',X,Y,Z,0,'ONLY') |
124 |
* |
125 |
* Positioning volumes TRAI, TRFR, TRBS&TRRA into the mother TRDB |
126 |
* |
127 |
NAN = 0 |
128 |
Z= -TRDB(3) + TRAN(3) |
129 |
DO I = 1,2 |
130 |
X = (-1)**(I-1)*TRAN(1)+ (-1)**I*TRDB(1) |
131 |
Y = -TRAN(2)+ TRDB(2) |
132 |
NAN = NAN + 1 |
133 |
CALL GSPOS('TRAN',NAN,'TRDB',X,Y,Z,0,'ONLY') |
134 |
Y = +TRAN(2)- TRDB(2) |
135 |
NAN = NAN + 1 |
136 |
CALL GSPOS('TRAN',NAN,'TRDB',X,Y,Z,4,'ONLY') |
137 |
ENDDO |
138 |
Y= 0. |
139 |
* Z= -TRDB(3) + TRRA(3) + GAPTRD |
140 |
NUM = 0 |
141 |
M=3 |
142 |
Z = Z + TRAN(3) |
143 |
DO I=1,4 |
144 |
X= 0. |
145 |
Z= Z + TRFR(3) |
146 |
CALL GSPOS('TRFR',I,'TRDB',X,Y,Z,0,'ONLY') |
147 |
Z= Z + TRFR(3) + TRBS(3) |
148 |
DO II=1, M |
149 |
NUM = NUM + 1 |
150 |
*shift of modules to have the right overlap: |
151 |
X= (II-1)*2.*TRBS(1) - ( M*TRBS(1) - TRBS(1) ) - |
152 |
+ (II-2)*TRSI(2) |
153 |
*now there two different volumes interested at same time: |
154 |
* CALL GSPOS('TRBS',NUM,'TRDB',X,Y,Z,0,'ONLY') |
155 |
CALL GSPOS('TRBS',NUM,'TRDB',X,Y,Z,0,'MANY') |
156 |
ENDDO |
157 |
DO III = 1,2 |
158 |
X = (-1)**(III-1)*TRAN(1)+ (-1)**III*TRDB(1) |
159 |
Y = -TRAN(2)+ TRDB(2) |
160 |
NAN = NAN + 1 |
161 |
CALL GSPOS('TRAN',NAN,'TRDB',X,Y,Z,0,'ONLY') |
162 |
Y = TRAN(2) - TRDB(2) |
163 |
NAN = NAN + 1 |
164 |
CALL GSPOS('TRAN',NAN,'TRDB',X,Y,Z,4,'ONLY') |
165 |
ENDDO |
166 |
X = 0. |
167 |
Y = 0. |
168 |
Z = Z + TRSO(2)*( 1 + COS(30./180.*ACOS(-1.))) + TRRA(3) |
169 |
C # Z= Z + 2*TRSO(2) + TRRA(3) |
170 |
CALL GSPOS('TRRA',I,'TRDB',X,Y,Z,0,'ONLY') |
171 |
C # Z= Z - (2*TRSO(2) + TRRA(3)) + TRBS(3) |
172 |
Z = Z - ( TRSO(2)*( 1 + COS(30./180.*ACOS(-1.))) + TRRA(3)) |
173 |
+ + TRBS(3) |
174 |
ENDDO |
175 |
M=4 |
176 |
DO I=1,5 |
177 |
X= 0. |
178 |
Z= Z + TRFR(3) |
179 |
CALL GSPOS('TRFR',(I+4),'TRDB',X,Y,Z,0,'ONLY') |
180 |
Z= Z + TRFR(3) + TRBS(3) |
181 |
DO II=1, M |
182 |
NUM = NUM + 1 |
183 |
*shift of modules to have the right overlap: |
184 |
X= (II-1)*2.*TRBS(1) - ( M*TRBS(1) - TRBS(1) ) |
185 |
+ + (3/2 -(II-1))*TRSI(2) |
186 |
*now there two different volumes interested at same time: |
187 |
* CALL GSPOS('TRBS',NUM,'TRDB',X,Y,Z,0,'ONLY') |
188 |
CALL GSPOS('TRBS',NUM,'TRDB',X,Y,Z,0,'MANY') |
189 |
ENDDO |
190 |
DO III = 1,2 |
191 |
X = (-1)**(III-1)*TRAN(1)+ (-1)**III*TRDB(1) |
192 |
Y = -TRAN(2)+ TRDB(2) |
193 |
NAN = NAN + 1 |
194 |
CALL GSPOS('TRAN',NAN,'TRDB',X,Y,Z,0,'ONLY') |
195 |
Y = TRAN(2) - TRDB(2) |
196 |
NAN = NAN + 1 |
197 |
CALL GSPOS('TRAN',NAN,'TRDB',X,Y,Z,4,'ONLY') |
198 |
ENDDO |
199 |
X= 0. |
200 |
Y= 0. |
201 |
Z = Z + TRSO(2)*( 1 + COS(30./180.*ACOS(-1.))) + TRRA(3) |
202 |
C # Z= Z + 2*TRSO(2) + TRRA(3) |
203 |
CALL GSPOS('TRRA',(I+4),'TRDB',X,Y,Z,0,'ONLY') |
204 |
C # Z= Z - (2*TRSO(2) + TRRA(3)) +TRBS(3) |
205 |
Z = Z - (TRSO(2)*( 1 + COS(30./180.*ACOS(-1.))) + TRRA(3) ) |
206 |
+ + TRBS(3) |
207 |
ENDDO |
208 |
* |
209 |
* Positioning an extra radiator plane on top |
210 |
* |
211 |
Z = Z - TRBS(3) + TRSO(2)*( 1 + COS(30./180.*ACOS(-1.))) |
212 |
+ + 3*TRRA(3) |
213 |
CALL GSPOS('TRRA',NUM,'TRDB',X,Y,Z,0,'ONLY') |
214 |
Z = Z + TRBS(3) -( TRSO(2)*( 1 + COS(30./180.*ACOS(-1.))) |
215 |
+ + 3*TRRA(3) ) |
216 |
* |
217 |
* Positioning the TOP frame |
218 |
* |
219 |
X = 0. |
220 |
Y = 0. |
221 |
Z = Z + TRFR(3) |
222 |
CALL GSPOS('TRFR',10,'TRDB',X,Y,Z,0,'ONLY') |
223 |
* |
224 |
* Positioning the angular pieces to hold the TOF. TRAN & TRDT |
225 |
* |
226 |
Z = Z + TRFR(3) + TRAN(3) |
227 |
DO I = 1,2 |
228 |
X = (-1)**(I-1)*TRAN(1)+ (-1)**I*TRDB(1) |
229 |
Y = -TRAN(2)+ TRDB(2) |
230 |
NAN = NAN + 1 |
231 |
CALL GSPOS('TRAN',NAN,'TRDB',X,Y,Z,0,'ONLY') |
232 |
Y = +TRAN(2)- TRDB(2) |
233 |
NAN = NAN + 1 |
234 |
CALL GSPOS('TRAN',NAN,'TRDB',X,Y,Z,4,'ONLY') |
235 |
ENDDO |
236 |
Z = Z + TRAN(3) + TRDT(3) |
237 |
NDT = 0 |
238 |
DO I = 1,2 |
239 |
X = (-1)**(I-1)*(2*TRAN(1)-TRDT(1))+ (-1)**I*TRDB(1) |
240 |
Y = -(2*TRAN(2)-TRDT(2)) + TRDB(2) |
241 |
NDT = NDT + 1 |
242 |
CALL GSPOS('TRDT',NDT,'TRDB',X,Y,Z,0,'ONLY') |
243 |
Y = +(2*TRAN(2)-TRDT(2)) - TRDB(2) |
244 |
NDT = NDT + 1 |
245 |
CALL GSPOS('TRDT',NDT,'TRDB',X,Y,Z,0,'ONLY') |
246 |
ENDDO |
247 |
RETURN |
248 |
END |