*-- Author : Elena Taddei-Sergio Bottai 09/08/2005 SUBROUTINE GPUCOLLECTION(np,nt) *************************************************************************** * * * * * * * Here we calculate the signal appearing on each ADC channel * * starting from the charge collected on every strip of the silicon * * sensor. Noise is kept from data of beam test. Capacitive coupling * * between strips and energy to ADC calibration are introduced too. * * * * * * Called by: GPDSPE * * * *************************************************************************** #include "gpstripspe.inc" dimension stripqxtanti(nstripx) dimension stripqytanti(nstripy) ********zeroing************** do i=1,nstripx stripqxtanti(i)=0. enddo do i=1,nstripy stripqytanti(i)=0. enddo *************************** if(NT.eq.1.or.NT.eq.4) LADD=1 if(NT.eq.2.or.NT.eq.5) LADD=2 if(NT.eq.3.or.NT.eq.6) LADD=3 * * Odd strip, X side --> charge shared between adjacent strips * EFFCOUPL --> coupling efficiency (capacitance to backplane =0?) * SHIFTMASK --> asymmetry in charge division on X view * different in each sensor (mask) do j=(1+8),(nstripx-7),2 proxtanti(np,nt,j-1)= + proxtanti(np,nt,j-1)+ + 0.5*effcoupl*proxtanti(np,nt,j)*(1.-shiftmask) proxtanti(np,nt,j+1)= + proxtanti(np,nt,j+1)+ + 0.5*effcoupl*proxtanti(np,nt,j)*(1.+shiftmask) proxtanti(np,nt,j)=0. enddo * * Capacitive coupling: a fraction of the charge arriving at one strip * appears at the output of the neighbouring amplifiers * This fraction is about Cis/Cdec, where Cis is the interstrip * capacitance and Cdec is the decoupling capacitance (see Turchetta) * An algorithm has been chosen that is precise for low values of the * capacitive coupling, i.e. if the INDUCED charge on a given strip * is little compared with the COLLECTED one. * ******************** X side ************************* c=cistrx/cdec c2=cistrx2/cdec do j=8,nstripx-6,2 ! only even strips on X side jm2=1 IF(j-2.lt.8) jm2=0 jp2=1 IF(j+2.gt.(nstripx-6)) jp2=0 jm4=1 IF(j-4.lt.8) jm4=0 jp4=1 IF(j+4.gt.(nstripx-6)) jp4=0 stripqxtanti(j)=proxtanti(np,nt,j)*(1.-2.*(c+c2))+ + c*(1.-2.*c)*(jm2*proxtanti(np,nt,j-2) + +jp2*proxtanti(np,nt,j+2))+ + (c**2)*(jm4*proxtanti(np,nt,j-4)*(1.+c2/(c**2))+ + 2.*proxtanti(np,nt,j)+jp4*proxtanti(np,nt,j+4)*(1.+c2/(c**2))) if(stripqxtanti(j).gt.1.e-8) then NSTRPX=NSTRPX+1 floatadcx=stripqxtanti(j)*xcalib IF(NSTRPX.GT.MAXSTR) THEN WRITE(6,*) 'ERROR - NSTRPX > MAXSTR' NSTRPX=MAXSTR ENDIF NPSTRIPX(NSTRPX)=NP NTSTRIPX(NSTRPX)=NT ISTRIPX(NSTRPX)=(J/2)+(LADD-1)*1024 QSTRIPX(NSTRPX)=floatadcx XSTRIPX(NSTRPX)=GLOBSTRIPX(NP,NT,J) endif enddo ******************** Y side ************************* c=cistry/cdec do j=1,nstripy jmen1=j-1 jm1=1 if(jmen1.lt.1) then jm1=0 jmen1=1 endif jmen2=j-2 jm2=1 if(jmen2.lt.1) then jm2=0 jmen2=1 endif jpiu1=j+1 jp1=1 if(jpiu1.gt.nstripy) then jp1=0 jpiu1=nstripy endif jpiu2=j+2 jp2=1 if(jpiu2.gt.nstripy) then jp2=0 jpiu2=nstripy endif stripqytanti(j)=proytanti(np,nt,j)*(1.-2.*c)+ + c*(1.-2.*c)*(jm1*proytanti(np,nt,jmen1)+jp1* + proytanti(np,nt,jpiu1))+ + (c**2)*(jm2*proytanti(np,nt,jmen2)+2.*proytanti(np,nt,j)+ + jp2*proytanti(np,nt,jpiu2)) if(stripqytanti(j).gt.1.e-8) then NSTRPY=NSTRPY+1 IF(NSTRPY.GT.MAXSTR) THEN WRITE(6,*) 'ERROR - NSTRPY > MAXSTR' NSTRPY=MAXSTR ENDIF floatadcy=stripqytanti(j)*ycalib NPSTRIPY(NSTRPY)=NP NTSTRIPY(NSTRPY)=NT ISTRIPY(NSTRPY)=J+(LADD-1)*1024 QSTRIPY(NSTRPY)=FLOATADCY YSTRIPY(NSTRPY)=GLOBSTRIPY(NP,NT,J) endif enddo END