| 1 |
bottai |
3.1 |
************************************************************************* |
| 2 |
|
|
* |
| 3 |
|
|
* Subroutine inter_B_outer.f |
| 4 |
|
|
* |
| 5 |
|
|
* it computes the magnetic field in a chosen point x,y,z OUTSIDE the |
| 6 |
|
|
* magnetic cavity, using a trilinear interpolation of |
| 7 |
|
|
* B field measurements (read before by means of ./read_B.f) |
| 8 |
|
|
* the value is computed for the outer map |
| 9 |
|
|
* |
| 10 |
|
|
* needs: |
| 11 |
|
|
* - ../common/common_B_outer.f |
| 12 |
|
|
* |
| 13 |
|
|
* input: coordinates in m |
| 14 |
|
|
* output: magnetic field in T |
| 15 |
|
|
* |
| 16 |
|
|
************************************************************************* |
| 17 |
|
|
|
| 18 |
|
|
subroutine inter_B_outer(x,y,z,res) !coordinates in m, magnetic field in T |
| 19 |
|
|
|
| 20 |
|
|
IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
| 21 |
|
|
#include "gpfield.inc" |
| 22 |
|
|
|
| 23 |
|
|
|
| 24 |
|
|
c------------------------------------------------------------------------ |
| 25 |
|
|
c |
| 26 |
|
|
c local variables |
| 27 |
|
|
c |
| 28 |
|
|
c------------------------------------------------------------------------ |
| 29 |
|
|
|
| 30 |
|
|
real*8 x,y,z !point of interpolation |
| 31 |
|
|
real*8 res(3) !interpolated B components: res = (Bx, By, Bz) |
| 32 |
|
|
real*8 zin |
| 33 |
|
|
|
| 34 |
|
|
integer ic |
| 35 |
|
|
c !index for B components: |
| 36 |
|
|
c ! ic=1 ---> Bx |
| 37 |
|
|
c ! ic=2 ---> By |
| 38 |
|
|
c ! ic=3 ---> Bz |
| 39 |
|
|
|
| 40 |
|
|
integer cube(3) |
| 41 |
|
|
c !vector of indexes identifying the cube |
| 42 |
|
|
c ! containing the point of interpolation |
| 43 |
|
|
c ! (see later...) |
| 44 |
|
|
|
| 45 |
|
|
real*8 xl,xh,yl,yh,zl,zh !cube vertexes coordinates |
| 46 |
|
|
|
| 47 |
|
|
real*8 xr,yr,zr |
| 48 |
|
|
c !reduced variables (coordinates of the |
| 49 |
|
|
c ! point of interpolation inside the cube) |
| 50 |
|
|
|
| 51 |
|
|
real*8 Bp(8) |
| 52 |
|
|
c !vector of values of B component |
| 53 |
|
|
c ! being computed, on the eight cube vertexes |
| 54 |
|
|
|
| 55 |
|
|
|
| 56 |
|
|
c LOWER MAP |
| 57 |
|
|
c ---> up/down simmetry |
| 58 |
|
|
zin=z |
| 59 |
|
|
if(zin.le.edgelzmax)z=-z |
| 60 |
|
|
|
| 61 |
|
|
c------------------------------------------------------------------------ |
| 62 |
|
|
c |
| 63 |
|
|
c *** MAP *** |
| 64 |
|
|
c |
| 65 |
|
|
c------------------------------------------------------------------------ |
| 66 |
|
|
|
| 67 |
|
|
do ic=1,3 !loops on the three B components |
| 68 |
|
|
|
| 69 |
|
|
c------------------------------------------------------------------------ |
| 70 |
|
|
c |
| 71 |
|
|
c chooses the coordinates interval containing the input point |
| 72 |
|
|
c |
| 73 |
|
|
c------------------------------------------------------------------------ |
| 74 |
|
|
c e.g.: |
| 75 |
|
|
c |
| 76 |
|
|
c x1 x2 x3 x4 x5... xN |
| 77 |
|
|
c |-----|-+---|-----|-----|---- ... ----|-----| |
| 78 |
|
|
c ~~~~~~~~x |
| 79 |
|
|
c |
| 80 |
|
|
c in this case the right interval is identified by indexes 2-3, so the |
| 81 |
|
|
c value assigned to cube variable is 2 |
| 82 |
|
|
|
| 83 |
|
|
cube(1)=INT((nox-1)*(x-poxmin(ic))/(poxmax(ic)-poxmin(ic))) +1 |
| 84 |
|
|
cube(2)=INT((noy-1)*(y-poymin(ic))/(poymax(ic)-poymin(ic))) +1 |
| 85 |
|
|
cube(3)=INT((noz-1)*(z-pozmin(ic))/(pozmax(ic)-pozmin(ic))) +1 |
| 86 |
|
|
|
| 87 |
|
|
c------------------------------------------------------------------------ |
| 88 |
|
|
c |
| 89 |
|
|
c if the point falls beyond the extremes of the grid... |
| 90 |
|
|
c |
| 91 |
|
|
c------------------------------------------------------------------------ |
| 92 |
|
|
c |
| 93 |
|
|
c ~~~~~~~~~~x1 x2 x3... |
| 94 |
|
|
c - - + - - |-----|-----|---- |
| 95 |
|
|
c ~~~~x |
| 96 |
|
|
c |
| 97 |
|
|
c in the case cube = 1 |
| 98 |
|
|
c |
| 99 |
|
|
c |
| 100 |
|
|
c ...nx-2 nx-1 nx |
| 101 |
|
|
c ----|-----|-----| - - - + - - |
| 102 |
|
|
c ~~~~~~~~~~~~~~~~~~~~~~~~x |
| 103 |
|
|
c |
| 104 |
|
|
c in this case cube = nx-1 |
| 105 |
|
|
|
| 106 |
|
|
if (cube(1).le.0) cube(1) = 1 |
| 107 |
|
|
if (cube(2).le.0) cube(2) = 1 |
| 108 |
|
|
if (cube(3).le.0) cube(3) = 1 |
| 109 |
|
|
if (cube(1).ge.nox) cube(1) = nox-1 |
| 110 |
|
|
if (cube(2).ge.noy) cube(2) = noy-1 |
| 111 |
|
|
if (cube(3).ge.noz) cube(3) = noz-1 |
| 112 |
|
|
|
| 113 |
|
|
|
| 114 |
|
|
c------------------------------------------------------------------------ |
| 115 |
|
|
c |
| 116 |
|
|
c temporary variables definition for field computation |
| 117 |
|
|
c |
| 118 |
|
|
c------------------------------------------------------------------------ |
| 119 |
|
|
|
| 120 |
|
|
xl = pox(cube(1),ic) !X coordinates of cube vertexes |
| 121 |
|
|
xh = pox(cube(1)+1,ic) |
| 122 |
|
|
|
| 123 |
|
|
yl = poy(cube(2),ic) !Y coordinates of cube vertexes |
| 124 |
|
|
yh = poy(cube(2)+1,ic) |
| 125 |
|
|
|
| 126 |
|
|
zl = poz(cube(3),ic) !Z coordinates of cube vertexes |
| 127 |
|
|
zh = poz(cube(3)+1,ic) |
| 128 |
|
|
|
| 129 |
|
|
xr = (x-xl) / (xh-xl) !reduced variables |
| 130 |
|
|
yr = (y-yl) / (yh-yl) |
| 131 |
|
|
zr = (z-zl) / (zh-zl) |
| 132 |
|
|
|
| 133 |
|
|
Bp(1) = bo(cube(1) ,cube(2) ,cube(3) ,ic) !ic-th component of B |
| 134 |
|
|
Bp(2) = bo(cube(1)+1,cube(2) ,cube(3) ,ic) ! on the eight cube |
| 135 |
|
|
Bp(3) = bo(cube(1) ,cube(2)+1,cube(3) ,ic) ! vertexes |
| 136 |
|
|
Bp(4) = bo(cube(1)+1,cube(2)+1,cube(3) ,ic) |
| 137 |
|
|
Bp(5) = bo(cube(1) ,cube(2) ,cube(3)+1,ic) |
| 138 |
|
|
Bp(6) = bo(cube(1)+1,cube(2) ,cube(3)+1,ic) |
| 139 |
|
|
Bp(7) = bo(cube(1) ,cube(2)+1,cube(3)+1,ic) |
| 140 |
|
|
Bp(8) = bo(cube(1)+1,cube(2)+1,cube(3)+1,ic) |
| 141 |
|
|
|
| 142 |
|
|
c------------------------------------------------------------------------ |
| 143 |
|
|
c |
| 144 |
|
|
c computes interpolated ic-th component of B in (x,y,z) |
| 145 |
|
|
c |
| 146 |
|
|
c------------------------------------------------------------------------ |
| 147 |
|
|
|
| 148 |
|
|
res(ic) = |
| 149 |
|
|
+ Bp(1)*(1-xr)*(1-yr)*(1-zr) + |
| 150 |
|
|
+ Bp(2)*xr*(1-yr)*(1-zr) + |
| 151 |
|
|
+ Bp(3)*(1-xr)*yr*(1-zr) + |
| 152 |
|
|
+ Bp(4)*xr*yr*(1-zr) + |
| 153 |
|
|
+ Bp(5)*(1-xr)*(1-yr)*zr + |
| 154 |
|
|
+ Bp(6)*xr*(1-yr)*zr + |
| 155 |
|
|
+ Bp(7)*(1-xr)*yr*zr + |
| 156 |
|
|
+ Bp(8)*xr*yr*zr |
| 157 |
|
|
|
| 158 |
|
|
|
| 159 |
|
|
enddo |
| 160 |
|
|
|
| 161 |
|
|
c LOWER MAP |
| 162 |
|
|
c ---> up/down simmetry |
| 163 |
|
|
if(zin.le.edgelzmax)then |
| 164 |
|
|
z=-z !back to initial ccoordinate |
| 165 |
|
|
res(3)=-res(3) !invert BZ component |
| 166 |
|
|
endif |
| 167 |
|
|
|
| 168 |
|
|
return |
| 169 |
|
|
end |