1 |
cafagna |
3.1 |
************************************************************************* |
2 |
|
|
* |
3 |
|
|
* Subroutine inter_B_inner.f (from tracker software analysis) |
4 |
|
|
* |
5 |
|
|
* it computes the magnetic field in a chosen point x,y,z inside the |
6 |
|
|
* magnetic cavity, using a trilinear interpolation of |
7 |
|
|
* B field measurements (read before by means of ./read_B.f) |
8 |
|
|
* the value is computed for two different inner maps and then averaged |
9 |
|
|
* |
10 |
|
|
* needs: |
11 |
|
|
* - ../common/common_B_inner.f |
12 |
|
|
* |
13 |
|
|
* input: coordinates in m |
14 |
|
|
* output: magnetic field in T |
15 |
|
|
* |
16 |
|
|
************************************************************************* |
17 |
|
|
|
18 |
|
|
subroutine inter_B_inner(x,y,z,res) !coordinates in m, magnetic field in T |
19 |
|
|
IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
20 |
|
|
#include "gpfield.inc" |
21 |
|
|
|
22 |
|
|
c------------------------------------------------------------------------ |
23 |
|
|
c |
24 |
|
|
c local variables |
25 |
|
|
c |
26 |
|
|
c------------------------------------------------------------------------ |
27 |
|
|
|
28 |
|
|
real*8 x,y,z !point of interpolation |
29 |
|
|
real*8 res(3) !interpolated B components: res = (Bx, By, Bz) |
30 |
|
|
real*8 res1(3),res2(3) !interpolated B components for the two maps |
31 |
|
|
|
32 |
|
|
integer ic !index for B components: |
33 |
|
|
! ic=1 ---> Bx |
34 |
|
|
! ic=2 ---> By |
35 |
|
|
! ic=3 ---> Bz |
36 |
|
|
|
37 |
|
|
integer cube(3) !vector of indexes identifying the cube |
38 |
|
|
! containing the point of interpolation |
39 |
|
|
! (see later...) |
40 |
|
|
|
41 |
|
|
real*8 xl,xh,yl,yh,zl,zh !cube vertexes coordinates |
42 |
|
|
|
43 |
|
|
real*8 xr,yr,zr !reduced variables (coordinates of the |
44 |
|
|
! point of interpolation inside the cube) |
45 |
|
|
|
46 |
|
|
real*8 Bp(8) !vector of values of B component |
47 |
|
|
! being computed, on the eight cube vertexes |
48 |
|
|
|
49 |
|
|
|
50 |
|
|
c------------------------------------------------------------------------ |
51 |
|
|
c |
52 |
|
|
c *** FIRST MAP *** |
53 |
|
|
c |
54 |
|
|
c------------------------------------------------------------------------ |
55 |
|
|
|
56 |
|
|
do ic=1,3 !loops on the three B components |
57 |
|
|
|
58 |
|
|
c------------------------------------------------------------------------ |
59 |
|
|
c |
60 |
|
|
c chooses the coordinates interval containing the input point |
61 |
|
|
c |
62 |
|
|
c------------------------------------------------------------------------ |
63 |
|
|
c e.g.: |
64 |
|
|
c |
65 |
|
|
c x1 x2 x3 x4 x5... |
66 |
|
|
c |-----|-+---|-----|-----|---- |
67 |
|
|
c ~~~~~~~~x |
68 |
|
|
c |
69 |
|
|
c in this case the right interval is identified by indexes 2-3, so the |
70 |
|
|
c value assigned to cube variable is 2 |
71 |
|
|
|
72 |
|
|
cube(1)=INT((nx-1)*(x-px1min(ic))/(px1max(ic)-px1min(ic))) +1 |
73 |
|
|
cube(2)=INT((ny-1)*(y-py1min(ic))/(py1max(ic)-py1min(ic))) +1 |
74 |
|
|
cube(3)=INT((nz-1)*(z-pz1min(ic))/(pz1max(ic)-pz1min(ic))) +1 |
75 |
|
|
|
76 |
|
|
c------------------------------------------------------------------------ |
77 |
|
|
c |
78 |
|
|
c if the point falls beyond the extremes of the grid... |
79 |
|
|
c |
80 |
|
|
c------------------------------------------------------------------------ |
81 |
|
|
c |
82 |
|
|
c ~~~~~~~~~~x1 x2 x3... |
83 |
|
|
c - - + - - |-----|-----|---- |
84 |
|
|
c ~~~~x |
85 |
|
|
c |
86 |
|
|
c in the case cube = 1 |
87 |
|
|
c |
88 |
|
|
c |
89 |
|
|
c ...nx-2 nx-1 nx |
90 |
|
|
c ----|-----|-----| - - - + - - |
91 |
|
|
c ~~~~~~~~~~~~~~~~~~~~~~~~x |
92 |
|
|
c |
93 |
|
|
c in this case cube = nx-1 |
94 |
|
|
|
95 |
|
|
if (cube(1).le.0) cube(1) = 1 |
96 |
|
|
if (cube(2).le.0) cube(2) = 1 |
97 |
|
|
if (cube(3).le.0) cube(3) = 1 |
98 |
|
|
if (cube(1).ge.nx) cube(1) = nx-1 |
99 |
|
|
if (cube(2).ge.ny) cube(2) = ny-1 |
100 |
|
|
if (cube(3).ge.nz) cube(3) = nz-1 |
101 |
|
|
|
102 |
|
|
|
103 |
|
|
c------------------------------------------------------------------------ |
104 |
|
|
c |
105 |
|
|
c temporary variables definition for field computation |
106 |
|
|
c |
107 |
|
|
c------------------------------------------------------------------------ |
108 |
|
|
|
109 |
|
|
xl = px1(cube(1),ic) !X coordinates of cube vertexes |
110 |
|
|
xh = px1(cube(1)+1,ic) |
111 |
|
|
|
112 |
|
|
yl = py1(cube(2),ic) !Y coordinates of cube vertexes |
113 |
|
|
yh = py1(cube(2)+1,ic) |
114 |
|
|
|
115 |
|
|
zl = pz1(cube(3),ic) !Z coordinates of cube vertexes |
116 |
|
|
zh = pz1(cube(3)+1,ic) |
117 |
|
|
|
118 |
|
|
xr = (x-xl) / (xh-xl) !reduced variables |
119 |
|
|
yr = (y-yl) / (yh-yl) |
120 |
|
|
zr = (z-zl) / (zh-zl) |
121 |
|
|
|
122 |
|
|
Bp(1) = b1(cube(1) ,cube(2) ,cube(3) ,ic) !ic-th component of B |
123 |
|
|
Bp(2) = b1(cube(1)+1,cube(2) ,cube(3) ,ic) ! on the eight cube |
124 |
|
|
Bp(3) = b1(cube(1) ,cube(2)+1,cube(3) ,ic) ! vertexes |
125 |
|
|
Bp(4) = b1(cube(1)+1,cube(2)+1,cube(3) ,ic) |
126 |
|
|
Bp(5) = b1(cube(1) ,cube(2) ,cube(3)+1,ic) |
127 |
|
|
Bp(6) = b1(cube(1)+1,cube(2) ,cube(3)+1,ic) |
128 |
|
|
Bp(7) = b1(cube(1) ,cube(2)+1,cube(3)+1,ic) |
129 |
|
|
Bp(8) = b1(cube(1)+1,cube(2)+1,cube(3)+1,ic) |
130 |
|
|
|
131 |
|
|
c------------------------------------------------------------------------ |
132 |
|
|
c |
133 |
|
|
c computes interpolated ic-th component of B in (x,y,z) |
134 |
|
|
c |
135 |
|
|
c------------------------------------------------------------------------ |
136 |
|
|
|
137 |
|
|
res1(ic) = |
138 |
|
|
+ Bp(1)*(1-xr)*(1-yr)*(1-zr) + |
139 |
|
|
+ Bp(2)*xr*(1-yr)*(1-zr) + |
140 |
|
|
+ Bp(3)*(1-xr)*yr*(1-zr) + |
141 |
|
|
+ Bp(4)*xr*yr*(1-zr) + |
142 |
|
|
+ Bp(5)*(1-xr)*(1-yr)*zr + |
143 |
|
|
+ Bp(6)*xr*(1-yr)*zr + |
144 |
|
|
+ Bp(7)*(1-xr)*yr*zr + |
145 |
|
|
+ Bp(8)*xr*yr*zr |
146 |
|
|
|
147 |
|
|
|
148 |
|
|
enddo |
149 |
|
|
|
150 |
|
|
c------------------------------------------------------------------------ |
151 |
|
|
c |
152 |
|
|
c *** SECOND MAP *** |
153 |
|
|
c |
154 |
|
|
c------------------------------------------------------------------------ |
155 |
|
|
|
156 |
|
|
c second map is rotated by 180 degree along the Z axis. so change sign |
157 |
|
|
c of x and y coordinates and then change sign to Bx and By components |
158 |
|
|
c to obtain the correct result |
159 |
|
|
|
160 |
|
|
x=-x |
161 |
|
|
y=-y |
162 |
|
|
|
163 |
|
|
do ic=1,3 |
164 |
|
|
|
165 |
|
|
cube(1)=INT((nx-1)*(x-px2min(ic))/(px2max(ic)-px2min(ic))) +1 |
166 |
|
|
cube(2)=INT((ny-1)*(y-py2min(ic))/(py2max(ic)-py2min(ic))) +1 |
167 |
|
|
cube(3)=INT((nz-1)*(z-pz2min(ic))/(pz2max(ic)-pz2min(ic))) +1 |
168 |
|
|
|
169 |
|
|
if (cube(1).le.0) cube(1) = 1 |
170 |
|
|
if (cube(2).le.0) cube(2) = 1 |
171 |
|
|
if (cube(3).le.0) cube(3) = 1 |
172 |
|
|
if (cube(1).ge.nx) cube(1) = nx-1 |
173 |
|
|
if (cube(2).ge.ny) cube(2) = ny-1 |
174 |
|
|
if (cube(3).ge.nz) cube(3) = nz-1 |
175 |
|
|
|
176 |
|
|
xl = px2(cube(1),ic) |
177 |
|
|
xh = px2(cube(1)+1,ic) |
178 |
|
|
|
179 |
|
|
yl = py2(cube(2),ic) |
180 |
|
|
yh = py2(cube(2)+1,ic) |
181 |
|
|
|
182 |
|
|
zl = pz2(cube(3),ic) |
183 |
|
|
zh = pz2(cube(3)+1,ic) |
184 |
|
|
|
185 |
|
|
xr = (x-xl) / (xh-xl) |
186 |
|
|
yr = (y-yl) / (yh-yl) |
187 |
|
|
zr = (z-zl) / (zh-zl) |
188 |
|
|
|
189 |
|
|
Bp(1) = b2(cube(1) ,cube(2) ,cube(3) ,ic) |
190 |
|
|
Bp(2) = b2(cube(1)+1,cube(2) ,cube(3) ,ic) |
191 |
|
|
Bp(3) = b2(cube(1) ,cube(2)+1,cube(3) ,ic) |
192 |
|
|
Bp(4) = b2(cube(1)+1,cube(2)+1,cube(3) ,ic) |
193 |
|
|
Bp(5) = b2(cube(1) ,cube(2) ,cube(3)+1,ic) |
194 |
|
|
Bp(6) = b2(cube(1)+1,cube(2) ,cube(3)+1,ic) |
195 |
|
|
Bp(7) = b2(cube(1) ,cube(2)+1,cube(3)+1,ic) |
196 |
|
|
Bp(8) = b2(cube(1)+1,cube(2)+1,cube(3)+1,ic) |
197 |
|
|
|
198 |
|
|
res2(ic) = |
199 |
|
|
+ Bp(1)*(1-xr)*(1-yr)*(1-zr) + |
200 |
|
|
+ Bp(2)*xr*(1-yr)*(1-zr) + |
201 |
|
|
+ Bp(3)*(1-xr)*yr*(1-zr) + |
202 |
|
|
+ Bp(4)*xr*yr*(1-zr) + |
203 |
|
|
+ Bp(5)*(1-xr)*(1-yr)*zr + |
204 |
|
|
+ Bp(6)*xr*(1-yr)*zr + |
205 |
|
|
+ Bp(7)*(1-xr)*yr*zr + |
206 |
|
|
+ Bp(8)*xr*yr*zr |
207 |
|
|
|
208 |
|
|
enddo |
209 |
|
|
|
210 |
|
|
c change Bx and By components sign |
211 |
|
|
res2(1)=-res2(1) |
212 |
|
|
res2(2)=-res2(2) |
213 |
|
|
|
214 |
|
|
c change back the x and y coordinate signs |
215 |
|
|
x=-x |
216 |
|
|
y=-y |
217 |
|
|
|
218 |
|
|
|
219 |
|
|
c------------------------------------------------------------------------ |
220 |
|
|
c |
221 |
|
|
c average the two maps results |
222 |
|
|
c |
223 |
|
|
c------------------------------------------------------------------------ |
224 |
|
|
|
225 |
|
|
do ic=1,3 |
226 |
|
|
res(ic)=(res1(ic)+res2(ic))/2 |
227 |
|
|
enddo |
228 |
|
|
|
229 |
|
|
|
230 |
|
|
return |
231 |
|
|
end |