/[PAMELA software]/eventviewer/ground/src/inter_B_inner.for
ViewVC logotype

Contents of /eventviewer/ground/src/inter_B_inner.for

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.1.1.1 - (show annotations) (download) (vendor branch)
Tue Dec 6 10:12:56 2005 UTC (19 years, 1 month ago) by mocchiut
Branch: MAIN, EventViewer
CVS Tags: start, v9r03, v8r00, HEAD
Changes since 1.1: +0 -0 lines
Imported sources

1 *************************************************************************
2 *
3 * Subroutine inter_B_inner.f
4 *
5 * it computes the magnetic field in a chosen point x,y,z inside the
6 * magnetic cavity, using a trilinear interpolation of
7 * B field measurements (read before by means of ./read_B.f)
8 * the value is computed for two different inner maps and then averaged
9 *
10 * needs:
11 * - ../common/common_B_inner.f
12 *
13 * input: coordinates in m
14 * output: magnetic field in T
15 *
16 *************************************************************************
17
18 subroutine inter_B_inner(x,y,z,res) !coordinates in m, magnetic field in T
19
20 implicit double precision (a-h,o-z)
21 include './common_B_inner.for'
22
23
24 c------------------------------------------------------------------------
25 c
26 c local variables
27 c
28 c------------------------------------------------------------------------
29
30 real*8 x,y,z !point of interpolation
31 real*8 res(3) !interpolated B components: res = (Bx, By, Bz)
32 real*8 res1(3),res2(3) !interpolated B components for the two maps
33
34 integer ic !index for B components:
35 ! ic=1 ---> Bx
36 ! ic=2 ---> By
37 ! ic=3 ---> Bz
38
39 integer cube(3) !vector of indexes identifying the cube
40 ! containing the point of interpolation
41 ! (see later...)
42
43 real*8 xl,xh,yl,yh,zl,zh !cube vertexes coordinates
44
45 real*8 xr,yr,zr !reduced variables (coordinates of the
46 ! point of interpolation inside the cube)
47
48 real*8 Bp(8) !vector of values of B component
49 ! being computed, on the eight cube vertexes
50
51
52 c------------------------------------------------------------------------
53 c
54 c *** FIRST MAP ***
55 c
56 c------------------------------------------------------------------------
57
58 do ic=1,3 !loops on the three B components
59
60 c------------------------------------------------------------------------
61 c
62 c chooses the coordinates interval containing the input point
63 c
64 c------------------------------------------------------------------------
65 c e.g.:
66 c
67 c x1 x2 x3 x4 x5...
68 c |-----|-+---|-----|-----|----
69 c ~~~~~~~~x
70 c
71 c in this case the right interval is identified by indexes 2-3, so the
72 c value assigned to cube variable is 2
73
74 cube(1)=INT((nx-1)*(x-px1min(ic))/(px1max(ic)-px1min(ic))) +1
75 cube(2)=INT((ny-1)*(y-py1min(ic))/(py1max(ic)-py1min(ic))) +1
76 cube(3)=INT((nz-1)*(z-pz1min(ic))/(pz1max(ic)-pz1min(ic))) +1
77
78 c------------------------------------------------------------------------
79 c
80 c if the point falls beyond the extremes of the grid...
81 c
82 c------------------------------------------------------------------------
83 c
84 c ~~~~~~~~~~x1 x2 x3...
85 c - - + - - |-----|-----|----
86 c ~~~~x
87 c
88 c in the case cube = 1
89 c
90 c
91 c ...nx-2 nx-1 nx
92 c ----|-----|-----| - - - + - -
93 c ~~~~~~~~~~~~~~~~~~~~~~~~x
94 c
95 c in this case cube = nx-1
96
97 if (cube(1).le.0) cube(1) = 1
98 if (cube(2).le.0) cube(2) = 1
99 if (cube(3).le.0) cube(3) = 1
100 if (cube(1).ge.nx) cube(1) = nx-1
101 if (cube(2).ge.ny) cube(2) = ny-1
102 if (cube(3).ge.nz) cube(3) = nz-1
103
104
105 c------------------------------------------------------------------------
106 c
107 c temporary variables definition for field computation
108 c
109 c------------------------------------------------------------------------
110
111 xl = px1(cube(1),ic) !X coordinates of cube vertexes
112 xh = px1(cube(1)+1,ic)
113
114 yl = py1(cube(2),ic) !Y coordinates of cube vertexes
115 yh = py1(cube(2)+1,ic)
116
117 zl = pz1(cube(3),ic) !Z coordinates of cube vertexes
118 zh = pz1(cube(3)+1,ic)
119
120 xr = (x-xl) / (xh-xl) !reduced variables
121 yr = (y-yl) / (yh-yl)
122 zr = (z-zl) / (zh-zl)
123
124 Bp(1) = b1(cube(1) ,cube(2) ,cube(3) ,ic) !ic-th component of B
125 Bp(2) = b1(cube(1)+1,cube(2) ,cube(3) ,ic) ! on the eight cube
126 Bp(3) = b1(cube(1) ,cube(2)+1,cube(3) ,ic) ! vertexes
127 Bp(4) = b1(cube(1)+1,cube(2)+1,cube(3) ,ic)
128 Bp(5) = b1(cube(1) ,cube(2) ,cube(3)+1,ic)
129 Bp(6) = b1(cube(1)+1,cube(2) ,cube(3)+1,ic)
130 Bp(7) = b1(cube(1) ,cube(2)+1,cube(3)+1,ic)
131 Bp(8) = b1(cube(1)+1,cube(2)+1,cube(3)+1,ic)
132
133 c------------------------------------------------------------------------
134 c
135 c computes interpolated ic-th component of B in (x,y,z)
136 c
137 c------------------------------------------------------------------------
138
139 res1(ic) =
140 + Bp(1)*(1-xr)*(1-yr)*(1-zr) +
141 + Bp(2)*xr*(1-yr)*(1-zr) +
142 + Bp(3)*(1-xr)*yr*(1-zr) +
143 + Bp(4)*xr*yr*(1-zr) +
144 + Bp(5)*(1-xr)*(1-yr)*zr +
145 + Bp(6)*xr*(1-yr)*zr +
146 + Bp(7)*(1-xr)*yr*zr +
147 + Bp(8)*xr*yr*zr
148
149
150 enddo
151
152 c------------------------------------------------------------------------
153 c
154 c *** SECOND MAP ***
155 c
156 c------------------------------------------------------------------------
157
158 c second map is rotated by 180 degree along the Z axis. so change sign
159 c of x and y coordinates and then change sign to Bx and By components
160 c to obtain the correct result
161
162 x=-x
163 y=-y
164
165 do ic=1,3
166
167 cube(1)=INT((nx-1)*(x-px2min(ic))/(px2max(ic)-px2min(ic))) +1
168 cube(2)=INT((ny-1)*(y-py2min(ic))/(py2max(ic)-py2min(ic))) +1
169 cube(3)=INT((nz-1)*(z-pz2min(ic))/(pz2max(ic)-pz2min(ic))) +1
170
171 if (cube(1).le.0) cube(1) = 1
172 if (cube(2).le.0) cube(2) = 1
173 if (cube(3).le.0) cube(3) = 1
174 if (cube(1).ge.nx) cube(1) = nx-1
175 if (cube(2).ge.ny) cube(2) = ny-1
176 if (cube(3).ge.nz) cube(3) = nz-1
177
178 xl = px2(cube(1),ic)
179 xh = px2(cube(1)+1,ic)
180
181 yl = py2(cube(2),ic)
182 yh = py2(cube(2)+1,ic)
183
184 zl = pz2(cube(3),ic)
185 zh = pz2(cube(3)+1,ic)
186
187 xr = (x-xl) / (xh-xl)
188 yr = (y-yl) / (yh-yl)
189 zr = (z-zl) / (zh-zl)
190
191 Bp(1) = b2(cube(1) ,cube(2) ,cube(3) ,ic)
192 Bp(2) = b2(cube(1)+1,cube(2) ,cube(3) ,ic)
193 Bp(3) = b2(cube(1) ,cube(2)+1,cube(3) ,ic)
194 Bp(4) = b2(cube(1)+1,cube(2)+1,cube(3) ,ic)
195 Bp(5) = b2(cube(1) ,cube(2) ,cube(3)+1,ic)
196 Bp(6) = b2(cube(1)+1,cube(2) ,cube(3)+1,ic)
197 Bp(7) = b2(cube(1) ,cube(2)+1,cube(3)+1,ic)
198 Bp(8) = b2(cube(1)+1,cube(2)+1,cube(3)+1,ic)
199
200 res2(ic) =
201 + Bp(1)*(1-xr)*(1-yr)*(1-zr) +
202 + Bp(2)*xr*(1-yr)*(1-zr) +
203 + Bp(3)*(1-xr)*yr*(1-zr) +
204 + Bp(4)*xr*yr*(1-zr) +
205 + Bp(5)*(1-xr)*(1-yr)*zr +
206 + Bp(6)*xr*(1-yr)*zr +
207 + Bp(7)*(1-xr)*yr*zr +
208 + Bp(8)*xr*yr*zr
209
210 enddo
211
212 c change Bx and By components sign
213 res2(1)=-res2(1)
214 res2(2)=-res2(2)
215
216 c change back the x and y coordinate signs
217 x=-x
218 y=-y
219
220
221 c------------------------------------------------------------------------
222 c
223 c average the two maps results
224 c
225 c------------------------------------------------------------------------
226
227 do ic=1,3
228 res(ic)=(res1(ic)+res2(ic))/2
229 enddo
230
231
232 return
233 end

  ViewVC Help
Powered by ViewVC 1.1.23