************************************************************************* * * Subroutine inter_B_outer.f * * it computes the magnetic field in a chosen point x,y,z OUTSIDE the * magnetic cavity, using a trilinear interpolation of * B field measurements (read before by means of ./read_B.f) * the value is computed for the outer map * * needs: * - ../common/common_B_outer.f * * input: coordinates in m * output: magnetic field in T * ************************************************************************* subroutine inter_B_outer(x,y,z,res) !coordinates in m, magnetic field in T implicit double precision (a-h,o-z) include './common_B_outer.for' c------------------------------------------------------------------------ c c local variables c c------------------------------------------------------------------------ real*8 x,y,z !point of interpolation real*8 res(3) !interpolated B components: res = (Bx, By, Bz) real*8 zin integer ic c !index for B components: c ! ic=1 ---> Bx c ! ic=2 ---> By c ! ic=3 ---> Bz integer cube(3) c !vector of indexes identifying the cube c ! containing the point of interpolation c ! (see later...) real*8 xl,xh,yl,yh,zl,zh !cube vertexes coordinates real*8 xr,yr,zr c !reduced variables (coordinates of the c ! point of interpolation inside the cube) real*8 Bp(8) c !vector of values of B component c ! being computed, on the eight cube vertexes c LOWER MAP c ---> up/down simmetry zin=z if(zin.le.edgelzmax)z=-z c------------------------------------------------------------------------ c c *** MAP *** c c------------------------------------------------------------------------ do ic=1,3 !loops on the three B components c------------------------------------------------------------------------ c c chooses the coordinates interval containing the input point c c------------------------------------------------------------------------ c e.g.: c c x1 x2 x3 x4 x5... xN c |-----|-+---|-----|-----|---- ... ----|-----| c ~~~~~~~~x c c in this case the right interval is identified by indexes 2-3, so the c value assigned to cube variable is 2 cube(1)=INT((nox-1)*(x-poxmin(ic))/(poxmax(ic)-poxmin(ic))) +1 cube(2)=INT((noy-1)*(y-poymin(ic))/(poymax(ic)-poymin(ic))) +1 cube(3)=INT((noz-1)*(z-pozmin(ic))/(pozmax(ic)-pozmin(ic))) +1 c------------------------------------------------------------------------ c c if the point falls beyond the extremes of the grid... c c------------------------------------------------------------------------ c c ~~~~~~~~~~x1 x2 x3... c - - + - - |-----|-----|---- c ~~~~x c c in the case cube = 1 c c c ...nx-2 nx-1 nx c ----|-----|-----| - - - + - - c ~~~~~~~~~~~~~~~~~~~~~~~~x c c in this case cube = nx-1 if (cube(1).le.0) cube(1) = 1 if (cube(2).le.0) cube(2) = 1 if (cube(3).le.0) cube(3) = 1 if (cube(1).ge.nox) cube(1) = nox-1 if (cube(2).ge.noy) cube(2) = noy-1 if (cube(3).ge.noz) cube(3) = noz-1 c------------------------------------------------------------------------ c c temporary variables definition for field computation c c------------------------------------------------------------------------ xl = pox(cube(1),ic) !X coordinates of cube vertexes xh = pox(cube(1)+1,ic) yl = poy(cube(2),ic) !Y coordinates of cube vertexes yh = poy(cube(2)+1,ic) zl = poz(cube(3),ic) !Z coordinates of cube vertexes zh = poz(cube(3)+1,ic) xr = (x-xl) / (xh-xl) !reduced variables yr = (y-yl) / (yh-yl) zr = (z-zl) / (zh-zl) Bp(1) = bo(cube(1) ,cube(2) ,cube(3) ,ic) !ic-th component of B Bp(2) = bo(cube(1)+1,cube(2) ,cube(3) ,ic) ! on the eight cube Bp(3) = bo(cube(1) ,cube(2)+1,cube(3) ,ic) ! vertexes Bp(4) = bo(cube(1)+1,cube(2)+1,cube(3) ,ic) Bp(5) = bo(cube(1) ,cube(2) ,cube(3)+1,ic) Bp(6) = bo(cube(1)+1,cube(2) ,cube(3)+1,ic) Bp(7) = bo(cube(1) ,cube(2)+1,cube(3)+1,ic) Bp(8) = bo(cube(1)+1,cube(2)+1,cube(3)+1,ic) c------------------------------------------------------------------------ c c computes interpolated ic-th component of B in (x,y,z) c c------------------------------------------------------------------------ res(ic) = + Bp(1)*(1-xr)*(1-yr)*(1-zr) + + Bp(2)*xr*(1-yr)*(1-zr) + + Bp(3)*(1-xr)*yr*(1-zr) + + Bp(4)*xr*yr*(1-zr) + + Bp(5)*(1-xr)*(1-yr)*zr + + Bp(6)*xr*(1-yr)*zr + + Bp(7)*(1-xr)*yr*zr + + Bp(8)*xr*yr*zr enddo c LOWER MAP c ---> up/down simmetry if(zin.le.edgelzmax)then z=-z !back to initial ccoordinate res(3)=-res(3) !invert BZ component endif return end