1 |
************************************************************************* |
2 |
* |
3 |
* Subroutine inter_B_outer.f |
4 |
* |
5 |
* it computes the magnetic field in a chosen point x,y,z OUTSIDE the |
6 |
* magnetic cavity, using a trilinear interpolation of |
7 |
* B field measurements (read before by means of ./read_B.f) |
8 |
* the value is computed for the outer map |
9 |
* |
10 |
* needs: |
11 |
* - ../common/common_B_outer.f |
12 |
* |
13 |
* input: coordinates in m |
14 |
* output: magnetic field in T |
15 |
* |
16 |
************************************************************************* |
17 |
|
18 |
subroutine inter_B_outer(x,y,z,res) !coordinates in m, magnetic field in T |
19 |
|
20 |
implicit double precision (a-h,o-z) |
21 |
include './common_B_outer.for' |
22 |
|
23 |
|
24 |
c------------------------------------------------------------------------ |
25 |
c |
26 |
c local variables |
27 |
c |
28 |
c------------------------------------------------------------------------ |
29 |
|
30 |
real*8 x,y,z !point of interpolation |
31 |
real*8 res(3) !interpolated B components: res = (Bx, By, Bz) |
32 |
real*8 zin |
33 |
|
34 |
integer ic |
35 |
c !index for B components: |
36 |
c ! ic=1 ---> Bx |
37 |
c ! ic=2 ---> By |
38 |
c ! ic=3 ---> Bz |
39 |
|
40 |
integer cube(3) |
41 |
c !vector of indexes identifying the cube |
42 |
c ! containing the point of interpolation |
43 |
c ! (see later...) |
44 |
|
45 |
real*8 xl,xh,yl,yh,zl,zh !cube vertexes coordinates |
46 |
|
47 |
real*8 xr,yr,zr |
48 |
c !reduced variables (coordinates of the |
49 |
c ! point of interpolation inside the cube) |
50 |
|
51 |
real*8 Bp(8) |
52 |
c !vector of values of B component |
53 |
c ! being computed, on the eight cube vertexes |
54 |
|
55 |
|
56 |
c LOWER MAP |
57 |
c ---> up/down simmetry |
58 |
zin=z |
59 |
if(zin.le.edgelzmax)z=-z |
60 |
|
61 |
c------------------------------------------------------------------------ |
62 |
c |
63 |
c *** MAP *** |
64 |
c |
65 |
c------------------------------------------------------------------------ |
66 |
|
67 |
do ic=1,3 !loops on the three B components |
68 |
|
69 |
c------------------------------------------------------------------------ |
70 |
c |
71 |
c chooses the coordinates interval containing the input point |
72 |
c |
73 |
c------------------------------------------------------------------------ |
74 |
c e.g.: |
75 |
c |
76 |
c x1 x2 x3 x4 x5... xN |
77 |
c |-----|-+---|-----|-----|---- ... ----|-----| |
78 |
c ~~~~~~~~x |
79 |
c |
80 |
c in this case the right interval is identified by indexes 2-3, so the |
81 |
c value assigned to cube variable is 2 |
82 |
|
83 |
cube(1)=INT((nox-1)*(x-poxmin(ic))/(poxmax(ic)-poxmin(ic))) +1 |
84 |
cube(2)=INT((noy-1)*(y-poymin(ic))/(poymax(ic)-poymin(ic))) +1 |
85 |
cube(3)=INT((noz-1)*(z-pozmin(ic))/(pozmax(ic)-pozmin(ic))) +1 |
86 |
|
87 |
c------------------------------------------------------------------------ |
88 |
c |
89 |
c if the point falls beyond the extremes of the grid... |
90 |
c |
91 |
c------------------------------------------------------------------------ |
92 |
c |
93 |
c ~~~~~~~~~~x1 x2 x3... |
94 |
c - - + - - |-----|-----|---- |
95 |
c ~~~~x |
96 |
c |
97 |
c in the case cube = 1 |
98 |
c |
99 |
c |
100 |
c ...nx-2 nx-1 nx |
101 |
c ----|-----|-----| - - - + - - |
102 |
c ~~~~~~~~~~~~~~~~~~~~~~~~x |
103 |
c |
104 |
c in this case cube = nx-1 |
105 |
|
106 |
if (cube(1).le.0) cube(1) = 1 |
107 |
if (cube(2).le.0) cube(2) = 1 |
108 |
if (cube(3).le.0) cube(3) = 1 |
109 |
if (cube(1).ge.nox) cube(1) = nox-1 |
110 |
if (cube(2).ge.noy) cube(2) = noy-1 |
111 |
if (cube(3).ge.noz) cube(3) = noz-1 |
112 |
|
113 |
|
114 |
c------------------------------------------------------------------------ |
115 |
c |
116 |
c temporary variables definition for field computation |
117 |
c |
118 |
c------------------------------------------------------------------------ |
119 |
|
120 |
xl = pox(cube(1),ic) !X coordinates of cube vertexes |
121 |
xh = pox(cube(1)+1,ic) |
122 |
|
123 |
yl = poy(cube(2),ic) !Y coordinates of cube vertexes |
124 |
yh = poy(cube(2)+1,ic) |
125 |
|
126 |
zl = poz(cube(3),ic) !Z coordinates of cube vertexes |
127 |
zh = poz(cube(3)+1,ic) |
128 |
|
129 |
xr = (x-xl) / (xh-xl) !reduced variables |
130 |
yr = (y-yl) / (yh-yl) |
131 |
zr = (z-zl) / (zh-zl) |
132 |
|
133 |
Bp(1) = bo(cube(1) ,cube(2) ,cube(3) ,ic) !ic-th component of B |
134 |
Bp(2) = bo(cube(1)+1,cube(2) ,cube(3) ,ic) ! on the eight cube |
135 |
Bp(3) = bo(cube(1) ,cube(2)+1,cube(3) ,ic) ! vertexes |
136 |
Bp(4) = bo(cube(1)+1,cube(2)+1,cube(3) ,ic) |
137 |
Bp(5) = bo(cube(1) ,cube(2) ,cube(3)+1,ic) |
138 |
Bp(6) = bo(cube(1)+1,cube(2) ,cube(3)+1,ic) |
139 |
Bp(7) = bo(cube(1) ,cube(2)+1,cube(3)+1,ic) |
140 |
Bp(8) = bo(cube(1)+1,cube(2)+1,cube(3)+1,ic) |
141 |
|
142 |
c------------------------------------------------------------------------ |
143 |
c |
144 |
c computes interpolated ic-th component of B in (x,y,z) |
145 |
c |
146 |
c------------------------------------------------------------------------ |
147 |
|
148 |
res(ic) = |
149 |
+ Bp(1)*(1-xr)*(1-yr)*(1-zr) + |
150 |
+ Bp(2)*xr*(1-yr)*(1-zr) + |
151 |
+ Bp(3)*(1-xr)*yr*(1-zr) + |
152 |
+ Bp(4)*xr*yr*(1-zr) + |
153 |
+ Bp(5)*(1-xr)*(1-yr)*zr + |
154 |
+ Bp(6)*xr*(1-yr)*zr + |
155 |
+ Bp(7)*(1-xr)*yr*zr + |
156 |
+ Bp(8)*xr*yr*zr |
157 |
|
158 |
|
159 |
enddo |
160 |
|
161 |
c LOWER MAP |
162 |
c ---> up/down simmetry |
163 |
if(zin.le.edgelzmax)then |
164 |
z=-z !back to initial ccoordinate |
165 |
res(3)=-res(3) !invert BZ component |
166 |
endif |
167 |
|
168 |
return |
169 |
end |