********************************************************************** * * * routine per tracciare la particella di uno STEP * SUBROUTINE GRKUTA (CHARGE,STEP,VECT,VOUT) C. C. ****************************************************************** C. * * C. * Runge-Kutta method for tracking a particle through a magnetic * C. * field. Uses Nystroem algorithm (See Handbook Nat. Bur. of * C. * Standards, procedure 25.5.20) * C. * * C. * Input parameters * C. * CHARGE Particle charge * C. * STEP Step size * C. * VECT Initial co-ords,direction cosines,momentum * C. * Output parameters * C. * VOUT Output co-ords,direction cosines,momentum * C. * User routine called * C. * CALL GUFLD(X,F) * C. * * C. * ==>Called by : , GUSWIM * C. * Authors R.Brun, M.Hansroul ********* * C. * V.Perevoztchikov (CUT STEP implementation) * C. * * C. * * C. ****************************************************************** C. IMPLICIT DOUBLE PRECISION(A-H,O-Z) * REAL VVV(3),FFF(3) REAL*8 CHARGE, STEP, VECT(*), VOUT(*), F(4) REAL*8 XYZT(3), XYZ(3), X, Y, Z, XT, YT, ZT DIMENSION SECXS(4),SECYS(4),SECZS(4),HXP(3) EQUIVALENCE (X,XYZ(1)),(Y,XYZ(2)),(Z,XYZ(3)), + (XT,XYZT(1)),(YT,XYZT(2)),(ZT,XYZT(3)) * PARAMETER (MAXIT = 1992, MAXCUT = 11) PARAMETER (EC=2.9979251D-4,DLT=1D-4,DLT32=DLT/32) PARAMETER (ZERO=0, ONE=1, TWO=2, THREE=3) PARAMETER (THIRD=ONE/THREE, HALF=ONE/TWO) PARAMETER (PISQUA=.986960440109D+01) PARAMETER (IX=1,IY=2,IZ=3,IPX=4,IPY=5,IPZ=6) *. *. ------------------------------------------------------------------ *. * This constant is for units CM,GEV/C and KGAUSS * c print *,'GRKUTA+++++ charge ',charge,' step ',step,' vect(3) ', c & vect(3) ITER = 0 NCUT = 0 DO 10 J=1,7 VOUT(J)=VECT(J) c print *,' grkuta j ',j,' vout ',vout(j) c print *,' grkuta j ',j,' vect ',vect(j) 10 CONTINUE PINV = EC * CHARGE / VECT(7) TL = 0. H = STEP * * 20 REST = STEP-TL IF (DABS(H).GT.DABS(REST)) H = REST DO I=1,3 VVV(I)=SNGL(VOUT(I)) c print *,'grkuta i ',i,' vvv ',vvv(i) ENDDO c print *,'grkuta pinv ',pinv,' h ',h,' rest ',rest CALL GUFLD(VVV,FFF) DO I=1,3 F(I)=DBLE(FFF(I)) c print *,'grkuta i ',i,' f ',f(i) ENDDO * * Start of integration * X = VOUT(1) Y = VOUT(2) Z = VOUT(3) A = VOUT(4) B = VOUT(5) C = VOUT(6) c print *,' QUI A ',A,' B ',B,' C ',C c print *,' QUI x ',x,' y ',y,' z ',z * H2 = HALF * H H4 = HALF * H2 PH = PINV * H PH2 = HALF * PH SECXS(1) = (B * F(3) - C * F(2)) * PH2 SECYS(1) = (C * F(1) - A * F(3)) * PH2 SECZS(1) = (A * F(2) - B * F(1)) * PH2 ANG2 = (SECXS(1)**2 + SECYS(1)**2 + SECZS(1)**2) IF (ANG2.GT.PISQUA) GO TO 40 DXT = H2 * A + H4 * SECXS(1) DYT = H2 * B + H4 * SECYS(1) DZT = H2 * C + H4 * SECZS(1) XT = X + DXT YT = Y + DYT ZT = Z + DZT * * Second intermediate point * EST = DABS(DXT)+DABS(DYT)+DABS(DZT) IF (EST.GT.H) GO TO 30 DO I=1,3 VVV(I)=SNGL(XYZT(I)) ENDDO CALL GUFLD(VVV,FFF) DO I=1,3 F(I)=DBLE(FFF(I)) c print *,'2grkuta i ',i,' f ',f(i) ENDDO C CALL GUFLD(XYZT,F) AT = A + SECXS(1) BT = B + SECYS(1) CT = C + SECZS(1) * SECXS(2) = (BT * F(3) - CT * F(2)) * PH2 SECYS(2) = (CT * F(1) - AT * F(3)) * PH2 SECZS(2) = (AT * F(2) - BT * F(1)) * PH2 c print *,'1 at ',xt,' bt ',yt,' ct ',zt AT = A + SECXS(2) BT = B + SECYS(2) CT = C + SECZS(2) c print *,'2 at ',xt,' bt ',yt,' ct ',zt SECXS(3) = (BT * F(3) - CT * F(2)) * PH2 SECYS(3) = (CT * F(1) - AT * F(3)) * PH2 SECZS(3) = (AT * F(2) - BT * F(1)) * PH2 DXT = H * (A + SECXS(3)) DYT = H * (B + SECYS(3)) DZT = H * (C + SECZS(3)) XT = X + DXT YT = Y + DYT ZT = Z + DZT c print *,' xt ',xt,' yt ',yt,' zt ',zt c print *,' dxt ',xt,' dyt ',yt,' dzt ',zt c print *,' at ',xt,' bt ',yt,' ct ',zt AT = A + TWO*SECXS(3) BT = B + TWO*SECYS(3) CT = C + TWO*SECZS(3) * EST = ABS(DXT)+ABS(DYT)+ABS(DZT) IF (EST.GT.2.*ABS(H)) GO TO 30 DO I=1,3 VVV(I)=SNGL(XYZT(I)) c print *,'3grkuta i ',i,' vvv ',vvv(i) c print *,'3grkuta i ',i,' xyzt ',xyzt(i) ENDDO CALL GUFLD(VVV,FFF) DO I=1,3 F(I)=DBLE(FFF(I)) c print *,'3grkuta i ',i,' f ',f(i) c print *,'3grkuta i ',i,' fff ',fff(i) ENDDO C CALL GUFLD(XYZT,F) * Z = Z + (C + (SECZS(1) + SECZS(2) + SECZS(3)) * THIRD) * H Y = Y + (B + (SECYS(1) + SECYS(2) + SECYS(3)) * THIRD) * H X = X + (A + (SECXS(1) + SECXS(2) + SECXS(3)) * THIRD) * H * SECXS(4) = (BT*F(3) - CT*F(2))* PH2 c print *,'secxs4 bt ',bt,' ct ',ct,' ph2 ',ph2 SECYS(4) = (CT*F(1) - AT*F(3))* PH2 SECZS(4) = (AT*F(2) - BT*F(1))* PH2 A = A+(SECXS(1)+SECXS(4)+TWO * (SECXS(2)+SECXS(3))) * THIRD c print *,'=> a ',a,' secxs 1 ',SECXS(1),' 4 ',SECXS(4),' 2 ', c & SECXS(2),' 3 ',SECXS(3),' third ',third B = B+(SECYS(1)+SECYS(4)+TWO * (SECYS(2)+SECYS(3))) * THIRD C = C+(SECZS(1)+SECZS(4)+TWO * (SECZS(2)+SECZS(3))) * THIRD * EST = ABS(SECXS(1)+SECXS(4) - (SECXS(2)+SECXS(3))) ++ ABS(SECYS(1)+SECYS(4) - (SECYS(2)+SECYS(3))) ++ ABS(SECZS(1)+SECZS(4) - (SECZS(2)+SECZS(3))) * IF (EST.GT.DLT .AND. ABS(H).GT.1.E-4) GO TO 30 ITER = ITER + 1 NCUT = 0 * If too many iterations, go to HELIX IF (ITER.GT.MAXIT) GO TO 40 * TL = TL + H IF (EST.LT.(DLT32)) THEN H = H*TWO ENDIF CBA = ONE/ SQRT(A*A + B*B + C*C) VOUT(1) = X VOUT(2) = Y VOUT(3) = Z VOUT(4) = CBA*A VOUT(5) = CBA*B VOUT(6) = CBA*C REST = STEP - TL IF (STEP.LT.0.) REST = -REST IF (REST .GT. 1.E-5*DABS(STEP)) GO TO 20 * c print *,' x ',x,' y ',y,' z ',z,' cba ',cba, c & ' a ',a,' b ',b,' c ',c,' step ',step, c & ' tl ',tl,' rest ',rest,' est ',est, c & ' h ',h,' two ',two,' one ',one GO TO 999 * ** CUT STEP 30 NCUT = NCUT + 1 * If too many cuts , go to HELIX IF (NCUT.GT.MAXCUT) GO TO 40 H = H*HALF GO TO 20 * ** ANGLE TOO BIG, USE HELIX 40 F1 = F(1) F2 = F(2) F3 = F(3) F4 = DSQRT(F1**2+F2**2+F3**2) RHO = -F4*PINV TET = RHO * STEP IF(TET.NE.0.) THEN HNORM = ONE/F4 F1 = F1*HNORM F2 = F2*HNORM F3 = F3*HNORM * HXP(1) = F2*VECT(IPZ) - F3*VECT(IPY) HXP(2) = F3*VECT(IPX) - F1*VECT(IPZ) HXP(3) = F1*VECT(IPY) - F2*VECT(IPX) HP = F1*VECT(IPX) + F2*VECT(IPY) + F3*VECT(IPZ) * RHO1 = ONE/RHO SINT = DSIN(TET) COST = TWO*DSIN(HALF*TET)**2 * G1 = SINT*RHO1 G2 = COST*RHO1 G3 = (TET-SINT) * HP*RHO1 G4 = -COST G5 = SINT G6 = COST * HP VOUT(IX) = VECT(IX) + (G1*VECT(IPX) + G2*HXP(1) + G3*F1) VOUT(IY) = VECT(IY) + (G1*VECT(IPY) + G2*HXP(2) + G3*F2) VOUT(IZ) = VECT(IZ) + (G1*VECT(IPZ) + G2*HXP(3) + G3*F3) c print *,' iz ',iz,' vect ',vect(iz),' g1 ',g1,' ipz ',ipz, c & ' vect ',vect(ipz),' g2 ',g2,' hxp ',hxp(3),' g3 ',g3, c & ' f3 ',f3 VOUT(IPX) = VECT(IPX) + (G4*VECT(IPX) + G5*HXP(1) + G6*F1) VOUT(IPY) = VECT(IPY) + (G4*VECT(IPY) + G5*HXP(2) + G6*F2) VOUT(IPZ) = VECT(IPZ) + (G4*VECT(IPZ) + G5*HXP(3) + G6*F3) * ELSE VOUT(IX) = VECT(IX) + STEP*VECT(IPX) VOUT(IY) = VECT(IY) + STEP*VECT(IPY) VOUT(IZ) = VECT(IZ) + STEP*VECT(IPZ) c print *,' iz ',iz,' vect ',vect(iz),' step ',step,' ipz ',ipz, c & ' vect ',vect(ipz) * ENDIF * 999 END * * ********************************************************************** * * gives the value of the magnetic field in the tracking point * ********************************************************************** subroutine gufld(v,f) !coordinates in cm, B field in kGauss real v(3),f(3) !coordinates in cm, B field in kGauss, error in kGauss real*8 vv(3),ff(3) !inter_B.f works in double precision do i=1,3 vv(i)=v(i)/100. !inter_B.f works in meters c print *,'IN gufld i ',i,' v ',v(i) enddo c inter_B: coordinates in m, B field in Tesla call inter_B(vv(1),vv(2),vv(3),ff) do i=1,3 !change back the field in kGauss f(i)=ff(i)*10. enddo c do i=1,3 c print *,'OUT gufld i ',i,' v ',v(i) c enddo return end