1 |
********************************************************************** |
2 |
* |
3 |
* |
4 |
* routine per tracciare la particella di uno STEP |
5 |
* |
6 |
SUBROUTINE GRKUTA (CHARGE,STEP,VECT,VOUT) |
7 |
C. |
8 |
C. ****************************************************************** |
9 |
C. * * |
10 |
C. * Runge-Kutta method for tracking a particle through a magnetic * |
11 |
C. * field. Uses Nystroem algorithm (See Handbook Nat. Bur. of * |
12 |
C. * Standards, procedure 25.5.20) * |
13 |
C. * * |
14 |
C. * Input parameters * |
15 |
C. * CHARGE Particle charge * |
16 |
C. * STEP Step size * |
17 |
C. * VECT Initial co-ords,direction cosines,momentum * |
18 |
C. * Output parameters * |
19 |
C. * VOUT Output co-ords,direction cosines,momentum * |
20 |
C. * User routine called * |
21 |
C. * CALL GUFLD(X,F) * |
22 |
C. * * |
23 |
C. * ==>Called by : <USER>, GUSWIM * |
24 |
C. * Authors R.Brun, M.Hansroul ********* * |
25 |
C. * V.Perevoztchikov (CUT STEP implementation) * |
26 |
C. * * |
27 |
C. * * |
28 |
C. ****************************************************************** |
29 |
C. |
30 |
IMPLICIT DOUBLE PRECISION(A-H,O-Z) |
31 |
* |
32 |
REAL VVV(3),FFF(3) |
33 |
REAL*8 CHARGE, STEP, VECT(*), VOUT(*), F(4) |
34 |
REAL*8 XYZT(3), XYZ(3), X, Y, Z, XT, YT, ZT |
35 |
DIMENSION SECXS(4),SECYS(4),SECZS(4),HXP(3) |
36 |
EQUIVALENCE (X,XYZ(1)),(Y,XYZ(2)),(Z,XYZ(3)), |
37 |
+ (XT,XYZT(1)),(YT,XYZT(2)),(ZT,XYZT(3)) |
38 |
* |
39 |
PARAMETER (MAXIT = 1992, MAXCUT = 11) |
40 |
PARAMETER (EC=2.9979251D-4,DLT=1D-4,DLT32=DLT/32) |
41 |
PARAMETER (ZERO=0, ONE=1, TWO=2, THREE=3) |
42 |
PARAMETER (THIRD=ONE/THREE, HALF=ONE/TWO) |
43 |
PARAMETER (PISQUA=.986960440109D+01) |
44 |
PARAMETER (IX=1,IY=2,IZ=3,IPX=4,IPY=5,IPZ=6) |
45 |
|
46 |
*. |
47 |
*. ------------------------------------------------------------------ |
48 |
*. |
49 |
* This constant is for units CM,GEV/C and KGAUSS |
50 |
* |
51 |
c print *,'GRKUTA+++++ charge ',charge,' step ',step,' vect(3) ', |
52 |
c & vect(3) |
53 |
ITER = 0 |
54 |
NCUT = 0 |
55 |
DO 10 J=1,7 |
56 |
VOUT(J)=VECT(J) |
57 |
c print *,' grkuta j ',j,' vout ',vout(j) |
58 |
c print *,' grkuta j ',j,' vect ',vect(j) |
59 |
10 CONTINUE |
60 |
PINV = EC * CHARGE / VECT(7) |
61 |
TL = 0. |
62 |
H = STEP |
63 |
* |
64 |
* |
65 |
20 REST = STEP-TL |
66 |
IF (DABS(H).GT.DABS(REST)) H = REST |
67 |
DO I=1,3 |
68 |
VVV(I)=SNGL(VOUT(I)) |
69 |
c print *,'grkuta i ',i,' vvv ',vvv(i) |
70 |
ENDDO |
71 |
c print *,'grkuta pinv ',pinv,' h ',h,' rest ',rest |
72 |
|
73 |
CALL GUFLD(VVV,FFF) |
74 |
DO I=1,3 |
75 |
F(I)=DBLE(FFF(I)) |
76 |
c print *,'grkuta i ',i,' f ',f(i) |
77 |
ENDDO |
78 |
* |
79 |
* Start of integration |
80 |
* |
81 |
X = VOUT(1) |
82 |
Y = VOUT(2) |
83 |
Z = VOUT(3) |
84 |
A = VOUT(4) |
85 |
B = VOUT(5) |
86 |
C = VOUT(6) |
87 |
c print *,' QUI A ',A,' B ',B,' C ',C |
88 |
c print *,' QUI x ',x,' y ',y,' z ',z |
89 |
* |
90 |
H2 = HALF * H |
91 |
H4 = HALF * H2 |
92 |
PH = PINV * H |
93 |
PH2 = HALF * PH |
94 |
SECXS(1) = (B * F(3) - C * F(2)) * PH2 |
95 |
SECYS(1) = (C * F(1) - A * F(3)) * PH2 |
96 |
SECZS(1) = (A * F(2) - B * F(1)) * PH2 |
97 |
ANG2 = (SECXS(1)**2 + SECYS(1)**2 + SECZS(1)**2) |
98 |
IF (ANG2.GT.PISQUA) GO TO 40 |
99 |
DXT = H2 * A + H4 * SECXS(1) |
100 |
DYT = H2 * B + H4 * SECYS(1) |
101 |
DZT = H2 * C + H4 * SECZS(1) |
102 |
XT = X + DXT |
103 |
YT = Y + DYT |
104 |
ZT = Z + DZT |
105 |
* |
106 |
* Second intermediate point |
107 |
* |
108 |
EST = DABS(DXT)+DABS(DYT)+DABS(DZT) |
109 |
IF (EST.GT.H) GO TO 30 |
110 |
|
111 |
DO I=1,3 |
112 |
VVV(I)=SNGL(XYZT(I)) |
113 |
ENDDO |
114 |
CALL GUFLD(VVV,FFF) |
115 |
DO I=1,3 |
116 |
F(I)=DBLE(FFF(I)) |
117 |
c print *,'2grkuta i ',i,' f ',f(i) |
118 |
ENDDO |
119 |
C CALL GUFLD(XYZT,F) |
120 |
AT = A + SECXS(1) |
121 |
BT = B + SECYS(1) |
122 |
CT = C + SECZS(1) |
123 |
* |
124 |
SECXS(2) = (BT * F(3) - CT * F(2)) * PH2 |
125 |
SECYS(2) = (CT * F(1) - AT * F(3)) * PH2 |
126 |
SECZS(2) = (AT * F(2) - BT * F(1)) * PH2 |
127 |
c print *,'1 at ',xt,' bt ',yt,' ct ',zt |
128 |
AT = A + SECXS(2) |
129 |
BT = B + SECYS(2) |
130 |
CT = C + SECZS(2) |
131 |
c print *,'2 at ',xt,' bt ',yt,' ct ',zt |
132 |
SECXS(3) = (BT * F(3) - CT * F(2)) * PH2 |
133 |
SECYS(3) = (CT * F(1) - AT * F(3)) * PH2 |
134 |
SECZS(3) = (AT * F(2) - BT * F(1)) * PH2 |
135 |
DXT = H * (A + SECXS(3)) |
136 |
DYT = H * (B + SECYS(3)) |
137 |
DZT = H * (C + SECZS(3)) |
138 |
XT = X + DXT |
139 |
YT = Y + DYT |
140 |
ZT = Z + DZT |
141 |
c print *,' xt ',xt,' yt ',yt,' zt ',zt |
142 |
c print *,' dxt ',xt,' dyt ',yt,' dzt ',zt |
143 |
c print *,' at ',xt,' bt ',yt,' ct ',zt |
144 |
AT = A + TWO*SECXS(3) |
145 |
BT = B + TWO*SECYS(3) |
146 |
CT = C + TWO*SECZS(3) |
147 |
* |
148 |
EST = ABS(DXT)+ABS(DYT)+ABS(DZT) |
149 |
IF (EST.GT.2.*ABS(H)) GO TO 30 |
150 |
|
151 |
DO I=1,3 |
152 |
VVV(I)=SNGL(XYZT(I)) |
153 |
c print *,'3grkuta i ',i,' vvv ',vvv(i) |
154 |
c print *,'3grkuta i ',i,' xyzt ',xyzt(i) |
155 |
ENDDO |
156 |
CALL GUFLD(VVV,FFF) |
157 |
DO I=1,3 |
158 |
F(I)=DBLE(FFF(I)) |
159 |
c print *,'3grkuta i ',i,' f ',f(i) |
160 |
c print *,'3grkuta i ',i,' fff ',fff(i) |
161 |
ENDDO |
162 |
C CALL GUFLD(XYZT,F) |
163 |
* |
164 |
Z = Z + (C + (SECZS(1) + SECZS(2) + SECZS(3)) * THIRD) * H |
165 |
Y = Y + (B + (SECYS(1) + SECYS(2) + SECYS(3)) * THIRD) * H |
166 |
X = X + (A + (SECXS(1) + SECXS(2) + SECXS(3)) * THIRD) * H |
167 |
* |
168 |
SECXS(4) = (BT*F(3) - CT*F(2))* PH2 |
169 |
c print *,'secxs4 bt ',bt,' ct ',ct,' ph2 ',ph2 |
170 |
SECYS(4) = (CT*F(1) - AT*F(3))* PH2 |
171 |
SECZS(4) = (AT*F(2) - BT*F(1))* PH2 |
172 |
A = A+(SECXS(1)+SECXS(4)+TWO * (SECXS(2)+SECXS(3))) * THIRD |
173 |
c print *,'=> a ',a,' secxs 1 ',SECXS(1),' 4 ',SECXS(4),' 2 ', |
174 |
c & SECXS(2),' 3 ',SECXS(3),' third ',third |
175 |
B = B+(SECYS(1)+SECYS(4)+TWO * (SECYS(2)+SECYS(3))) * THIRD |
176 |
C = C+(SECZS(1)+SECZS(4)+TWO * (SECZS(2)+SECZS(3))) * THIRD |
177 |
* |
178 |
EST = ABS(SECXS(1)+SECXS(4) - (SECXS(2)+SECXS(3))) |
179 |
++ ABS(SECYS(1)+SECYS(4) - (SECYS(2)+SECYS(3))) |
180 |
++ ABS(SECZS(1)+SECZS(4) - (SECZS(2)+SECZS(3))) |
181 |
* |
182 |
IF (EST.GT.DLT .AND. ABS(H).GT.1.E-4) GO TO 30 |
183 |
ITER = ITER + 1 |
184 |
NCUT = 0 |
185 |
* If too many iterations, go to HELIX |
186 |
IF (ITER.GT.MAXIT) GO TO 40 |
187 |
* |
188 |
TL = TL + H |
189 |
IF (EST.LT.(DLT32)) THEN |
190 |
H = H*TWO |
191 |
ENDIF |
192 |
CBA = ONE/ SQRT(A*A + B*B + C*C) |
193 |
VOUT(1) = X |
194 |
VOUT(2) = Y |
195 |
VOUT(3) = Z |
196 |
VOUT(4) = CBA*A |
197 |
VOUT(5) = CBA*B |
198 |
VOUT(6) = CBA*C |
199 |
REST = STEP - TL |
200 |
IF (STEP.LT.0.) REST = -REST |
201 |
IF (REST .GT. 1.E-5*DABS(STEP)) GO TO 20 |
202 |
* |
203 |
c print *,' x ',x,' y ',y,' z ',z,' cba ',cba, |
204 |
c & ' a ',a,' b ',b,' c ',c,' step ',step, |
205 |
c & ' tl ',tl,' rest ',rest,' est ',est, |
206 |
c & ' h ',h,' two ',two,' one ',one |
207 |
GO TO 999 |
208 |
* |
209 |
** CUT STEP |
210 |
30 NCUT = NCUT + 1 |
211 |
* If too many cuts , go to HELIX |
212 |
IF (NCUT.GT.MAXCUT) GO TO 40 |
213 |
H = H*HALF |
214 |
GO TO 20 |
215 |
* |
216 |
** ANGLE TOO BIG, USE HELIX |
217 |
40 F1 = F(1) |
218 |
F2 = F(2) |
219 |
F3 = F(3) |
220 |
F4 = DSQRT(F1**2+F2**2+F3**2) |
221 |
RHO = -F4*PINV |
222 |
TET = RHO * STEP |
223 |
IF(TET.NE.0.) THEN |
224 |
HNORM = ONE/F4 |
225 |
F1 = F1*HNORM |
226 |
F2 = F2*HNORM |
227 |
F3 = F3*HNORM |
228 |
* |
229 |
HXP(1) = F2*VECT(IPZ) - F3*VECT(IPY) |
230 |
HXP(2) = F3*VECT(IPX) - F1*VECT(IPZ) |
231 |
HXP(3) = F1*VECT(IPY) - F2*VECT(IPX) |
232 |
|
233 |
HP = F1*VECT(IPX) + F2*VECT(IPY) + F3*VECT(IPZ) |
234 |
* |
235 |
RHO1 = ONE/RHO |
236 |
SINT = DSIN(TET) |
237 |
COST = TWO*DSIN(HALF*TET)**2 |
238 |
* |
239 |
G1 = SINT*RHO1 |
240 |
G2 = COST*RHO1 |
241 |
G3 = (TET-SINT) * HP*RHO1 |
242 |
G4 = -COST |
243 |
G5 = SINT |
244 |
G6 = COST * HP |
245 |
|
246 |
VOUT(IX) = VECT(IX) + (G1*VECT(IPX) + G2*HXP(1) + G3*F1) |
247 |
VOUT(IY) = VECT(IY) + (G1*VECT(IPY) + G2*HXP(2) + G3*F2) |
248 |
VOUT(IZ) = VECT(IZ) + (G1*VECT(IPZ) + G2*HXP(3) + G3*F3) |
249 |
c print *,' iz ',iz,' vect ',vect(iz),' g1 ',g1,' ipz ',ipz, |
250 |
c & ' vect ',vect(ipz),' g2 ',g2,' hxp ',hxp(3),' g3 ',g3, |
251 |
c & ' f3 ',f3 |
252 |
|
253 |
VOUT(IPX) = VECT(IPX) + (G4*VECT(IPX) + G5*HXP(1) + G6*F1) |
254 |
VOUT(IPY) = VECT(IPY) + (G4*VECT(IPY) + G5*HXP(2) + G6*F2) |
255 |
VOUT(IPZ) = VECT(IPZ) + (G4*VECT(IPZ) + G5*HXP(3) + G6*F3) |
256 |
* |
257 |
ELSE |
258 |
VOUT(IX) = VECT(IX) + STEP*VECT(IPX) |
259 |
VOUT(IY) = VECT(IY) + STEP*VECT(IPY) |
260 |
VOUT(IZ) = VECT(IZ) + STEP*VECT(IPZ) |
261 |
c print *,' iz ',iz,' vect ',vect(iz),' step ',step,' ipz ',ipz, |
262 |
c & ' vect ',vect(ipz) |
263 |
* |
264 |
ENDIF |
265 |
* |
266 |
999 END |
267 |
* |
268 |
* |
269 |
|
270 |
|
271 |
|
272 |
********************************************************************** |
273 |
* |
274 |
* gives the value of the magnetic field in the tracking point |
275 |
* |
276 |
********************************************************************** |
277 |
|
278 |
subroutine gufld(v,f) !coordinates in cm, B field in kGauss |
279 |
|
280 |
real v(3),f(3) !coordinates in cm, B field in kGauss, error in kGauss |
281 |
|
282 |
real*8 vv(3),ff(3) !inter_B.f works in double precision |
283 |
|
284 |
|
285 |
do i=1,3 |
286 |
vv(i)=v(i)/100. !inter_B.f works in meters |
287 |
c print *,'IN gufld i ',i,' v ',v(i) |
288 |
enddo |
289 |
c inter_B: coordinates in m, B field in Tesla |
290 |
call inter_B(vv(1),vv(2),vv(3),ff) |
291 |
do i=1,3 !change back the field in kGauss |
292 |
f(i)=ff(i)*10. |
293 |
enddo |
294 |
c do i=1,3 |
295 |
c print *,'OUT gufld i ',i,' v ',v(i) |
296 |
c enddo |
297 |
return |
298 |
end |
299 |
|