1 |
// |
2 |
// globals.cpp |
3 |
// |
4 |
#include <sgp4.h> |
5 |
#include <cstring> |
6 |
|
7 |
////////////////////////////////////////////////////////////////////////////// |
8 |
double sqr(const double x) |
9 |
{ |
10 |
return (x * x); |
11 |
} |
12 |
|
13 |
////////////////////////////////////////////////////////////////////////////// |
14 |
double Fmod2p(const double arg) |
15 |
{ |
16 |
double modu = fmod(arg, TWOPI); |
17 |
|
18 |
if (modu < 0.0) |
19 |
modu += TWOPI; |
20 |
|
21 |
return modu; |
22 |
} |
23 |
|
24 |
////////////////////////////////////////////////////////////////////////////// |
25 |
// AcTan() |
26 |
// ArcTangent of sin(x) / cos(x). The advantage of this function over arctan() |
27 |
// is that it returns the correct quadrant of the angle. |
28 |
double AcTan(const double sinx, const double cosx) |
29 |
{ |
30 |
double ret; |
31 |
|
32 |
if (cosx == 0.0) |
33 |
{ |
34 |
if (sinx > 0.0) |
35 |
ret = PI / 2.0; |
36 |
else |
37 |
ret = 3.0 * PI / 2.0; |
38 |
} |
39 |
else |
40 |
{ |
41 |
if (cosx > 0.0) |
42 |
ret = atan(sinx / cosx); |
43 |
else |
44 |
ret = PI + atan(sinx / cosx); |
45 |
} |
46 |
|
47 |
return ret; |
48 |
} |
49 |
|
50 |
////////////////////////////////////////////////////////////////////////////// |
51 |
double rad2deg(const double r) |
52 |
{ |
53 |
const double DEG_PER_RAD = 180.0 / PI; |
54 |
return r * DEG_PER_RAD; |
55 |
} |
56 |
|
57 |
////////////////////////////////////////////////////////////////////////////// |
58 |
double deg2rad(const double d) |
59 |
{ |
60 |
const double RAD_PER_DEG = PI / 180.0; |
61 |
return d * RAD_PER_DEG; |
62 |
} |
63 |
|
64 |
// |
65 |
// coord.cpp |
66 |
// |
67 |
// Copyright (c) 2003 Michael F. Henry |
68 |
// |
69 |
|
70 |
////////////////////////////////////////////////////////////////////// |
71 |
// cCoordGeo Class |
72 |
////////////////////////////////////////////////////////////////////// |
73 |
|
74 |
cCoordGeo::cCoordGeo() |
75 |
{ |
76 |
m_Lat = 0.0; |
77 |
m_Lon = 0.0; |
78 |
m_Alt = 0.0; |
79 |
} |
80 |
|
81 |
////////////////////////////////////////////////////////////////////// |
82 |
// cCoordTopo Class |
83 |
////////////////////////////////////////////////////////////////////// |
84 |
|
85 |
cCoordTopo::cCoordTopo() |
86 |
{ |
87 |
m_Az = 0.0; |
88 |
m_El = 0.0; |
89 |
m_Range = 0.0; |
90 |
m_RangeRate = 0.0; |
91 |
|
92 |
} |
93 |
|
94 |
|
95 |
|
96 |
// |
97 |
// cVector.cpp |
98 |
// |
99 |
// Copyright (c) 2001-2003 Michael F. Henry |
100 |
// |
101 |
//***************************************************************************** |
102 |
// Multiply each component in the vector by 'factor'. |
103 |
//***************************************************************************** |
104 |
void cVector::Mul(double factor) |
105 |
{ |
106 |
m_x *= factor; |
107 |
m_y *= factor; |
108 |
m_z *= factor; |
109 |
m_w *= fabs(factor); |
110 |
} |
111 |
|
112 |
//***************************************************************************** |
113 |
// Subtract a vector from this one. |
114 |
//***************************************************************************** |
115 |
void cVector::Sub(const cVector& vec) |
116 |
{ |
117 |
m_x -= vec.m_x; |
118 |
m_y -= vec.m_y; |
119 |
m_z -= vec.m_z; |
120 |
m_w -= vec.m_w; |
121 |
} |
122 |
|
123 |
//***************************************************************************** |
124 |
// Calculate the angle between this vector and another |
125 |
//***************************************************************************** |
126 |
double cVector::Angle(const cVector& vec) const |
127 |
{ |
128 |
return acos(Dot(vec) / (Magnitude() * vec.Magnitude())); |
129 |
} |
130 |
|
131 |
//***************************************************************************** |
132 |
// |
133 |
//***************************************************************************** |
134 |
double cVector::Magnitude() const |
135 |
{ |
136 |
return sqrt((m_x * m_x) + |
137 |
(m_y * m_y) + |
138 |
(m_z * m_z)); |
139 |
} |
140 |
|
141 |
//***************************************************************************** |
142 |
// Return the dot product |
143 |
//***************************************************************************** |
144 |
double cVector::Dot(const cVector& vec) const |
145 |
{ |
146 |
return (m_x * vec.m_x) + |
147 |
(m_y * vec.m_y) + |
148 |
(m_z * vec.m_z); |
149 |
} |
150 |
// |
151 |
// cJulian.cpp |
152 |
// |
153 |
// This class encapsulates Julian dates with the epoch of 12:00 noon (12:00 UT) |
154 |
// on January 1, 4713 B.C. Some epoch dates: |
155 |
// 01/01/1990 00:00 UTC - 2447892.5 |
156 |
// 01/01/1990 12:00 UTC - 2447893.0 |
157 |
// 01/01/2000 00:00 UTC - 2451544.5 |
158 |
// 01/01/2001 00:00 UTC - 2451910.5 |
159 |
// |
160 |
// Note the Julian day begins at noon, which allows astronomers to have all |
161 |
// the dates in a single observing session the same. |
162 |
// |
163 |
// References: |
164 |
// "Astronomical Formulae for Calculators", Jean Meeus |
165 |
// "Satellite Communications", Dennis Roddy, 2nd Edition, 1995. |
166 |
// |
167 |
// Copyright (c) 2003 Michael F. Henry |
168 |
// |
169 |
// mfh 12/24/2003 |
170 |
// |
171 |
|
172 |
////////////////////////////////////////////////////////////////////////////// |
173 |
// Create a Julian date object from a time_t object. time_t objects store the |
174 |
// number of seconds since midnight UTC January 1, 1970. |
175 |
cJulian::cJulian(time_t time) |
176 |
{ |
177 |
struct tm *ptm = gmtime(&time); |
178 |
assert(ptm); |
179 |
|
180 |
int year = ptm->tm_year + 1900; |
181 |
double day = ptm->tm_yday + 1 + |
182 |
(ptm->tm_hour + |
183 |
((ptm->tm_min + |
184 |
(ptm->tm_sec / 60.0)) / 60.0)) / 24.0; |
185 |
|
186 |
Initialize(year, day); |
187 |
} |
188 |
|
189 |
////////////////////////////////////////////////////////////////////////////// |
190 |
// Create a Julian date object from a year and day of year. |
191 |
// Example parameters: year = 2001, day = 1.5 (Jan 1 12h) |
192 |
cJulian::cJulian(int year, double day) |
193 |
{ |
194 |
Initialize(year, day); |
195 |
} |
196 |
|
197 |
////////////////////////////////////////////////////////////////////////////// |
198 |
// Create a Julian date object. |
199 |
cJulian::cJulian(int year, // i.e., 2004 |
200 |
int mon, // 1..12 |
201 |
int day, // 1..31 |
202 |
int hour, // 0..23 |
203 |
int min, // 0..59 |
204 |
double sec /* = 0.0 */) // 0..(59.999999...) |
205 |
|
206 |
{ |
207 |
// Calculate N, the day of the year (1..366) |
208 |
int N; |
209 |
int F1 = (int)((275.0 * mon) / 9.0); |
210 |
int F2 = (int)((mon + 9.0) / 12.0); |
211 |
|
212 |
if (IsLeapYear(year)) |
213 |
{ |
214 |
// Leap year |
215 |
N = F1 - F2 + day - 30; |
216 |
} |
217 |
else |
218 |
{ |
219 |
// Common year |
220 |
N = F1 - (2 * F2) + day - 30; |
221 |
} |
222 |
|
223 |
double dblDay = N + (hour + (min + (sec / 60.0)) / 60.0) / 24.0; |
224 |
|
225 |
Initialize(year, dblDay); |
226 |
} |
227 |
|
228 |
////////////////////////////////////////////////////////////////////////////// |
229 |
void cJulian::Initialize(int year, double day) |
230 |
{ |
231 |
// 1582 A.D.: 10 days removed from calendar |
232 |
// 3000 A.D.: Arbitrary error checking limit |
233 |
assert((year > 1582) && (year < 3000)); |
234 |
assert((day >= 0.0) && (day <= 366.90)); // 366.5 // 366.7 // 366.81 |
235 |
|
236 |
// Now calculate Julian date |
237 |
|
238 |
year--; |
239 |
|
240 |
// Centuries are not leap years unless they divide by 400 |
241 |
int A = (year / 100); |
242 |
int B = 2 - A + (A / 4); |
243 |
|
244 |
double NewYears = (int)(365.25 * year) + |
245 |
(int)(30.6001 * 14) + |
246 |
1720994.5 + B; // 1720994.5 = Oct 30, year -1 |
247 |
|
248 |
m_Date = NewYears + day; |
249 |
} |
250 |
|
251 |
////////////////////////////////////////////////////////////////////////////// |
252 |
// getComponent() |
253 |
// Return requested components of date. |
254 |
// Year : Includes the century. |
255 |
// Month: 1..12 |
256 |
// Day : 1..31 including fractional part |
257 |
void cJulian::getComponent(int *pYear, |
258 |
int *pMon /* = NULL */, |
259 |
double *pDOM /* = NULL */) const |
260 |
{ |
261 |
assert(pYear != NULL); |
262 |
|
263 |
double jdAdj = getDate() + 0.5; |
264 |
int Z = (int)jdAdj; // integer part |
265 |
double F = jdAdj - Z; // fractional part |
266 |
double alpha = (int)((Z - 1867216.25) / 36524.25); |
267 |
double A = Z + 1 + alpha - (int)(alpha / 4.0); |
268 |
double B = A + 1524.0; |
269 |
int C = (int)((B - 122.1) / 365.25); |
270 |
int D = (int)(C * 365.25); |
271 |
int E = (int)((B - D) / 30.6001); |
272 |
|
273 |
double DOM = B - D - (int)(E * 30.6001) + F; |
274 |
int month = (E < 13.5) ? (E - 1) : (E - 13); |
275 |
int year = (month > 2.5) ? (C - 4716) : (C - 4715); |
276 |
|
277 |
*pYear = year; |
278 |
|
279 |
if (pMon != NULL) |
280 |
*pMon = month; |
281 |
|
282 |
if (pDOM != NULL) |
283 |
*pDOM = DOM; |
284 |
} |
285 |
|
286 |
////////////////////////////////////////////////////////////////////////////// |
287 |
// toGMST() |
288 |
// Calculate Greenwich Mean Sidereal Time for the Julian date. The return value |
289 |
// is the angle, in radians, measuring eastward from the Vernal Equinox to the |
290 |
// prime meridian. This angle is also referred to as "ThetaG" (Theta GMST). |
291 |
// |
292 |
// References: |
293 |
// The 1992 Astronomical Almanac, page B6. |
294 |
// Explanatory Supplement to the Astronomical Almanac, page 50. |
295 |
// Orbital Coordinate Systems, Part III, Dr. T.S. Kelso, Satellite Times, |
296 |
// Nov/Dec 1995 |
297 |
double cJulian::toGMST() const |
298 |
{ |
299 |
const double UT = fmod(m_Date + 0.5, 1.0); |
300 |
const double TU = (FromJan1_12h_2000() - UT) / 36525.0; |
301 |
|
302 |
double GMST = 24110.54841 + TU * |
303 |
(8640184.812866 + TU * (0.093104 - TU * 6.2e-06)); |
304 |
|
305 |
GMST = fmod(GMST + SEC_PER_DAY * OMEGA_E * UT, SEC_PER_DAY); |
306 |
|
307 |
if (GMST < 0.0) |
308 |
GMST += SEC_PER_DAY; // "wrap" negative modulo value |
309 |
|
310 |
return (TWOPI * (GMST / SEC_PER_DAY)); |
311 |
} |
312 |
|
313 |
////////////////////////////////////////////////////////////////////////////// |
314 |
// toLMST() |
315 |
// Calculate Local Mean Sidereal Time for given longitude (for this date). |
316 |
// The longitude is assumed to be in radians measured west from Greenwich. |
317 |
// The return value is the angle, in radians, measuring eastward from the |
318 |
// Vernal Equinox to the given longitude. |
319 |
double cJulian::toLMST(double lon) const |
320 |
{ |
321 |
return fmod(toGMST() + lon, TWOPI); |
322 |
} |
323 |
|
324 |
////////////////////////////////////////////////////////////////////////////// |
325 |
// toTime() |
326 |
// Convert to type time_t |
327 |
// Avoid using this function as it discards the fractional seconds of the |
328 |
// time component. |
329 |
time_t cJulian::toTime() const |
330 |
{ |
331 |
int nYear; |
332 |
int nMonth; |
333 |
double dblDay; |
334 |
|
335 |
getComponent(&nYear, &nMonth, &dblDay); |
336 |
|
337 |
// dblDay is the fractional Julian Day (i.e., 29.5577). |
338 |
// Save the whole number day in nDOM and convert dblDay to |
339 |
// the fractional portion of day. |
340 |
int nDOM = (int)dblDay; |
341 |
|
342 |
dblDay -= nDOM; |
343 |
|
344 |
const int SEC_PER_MIN = 60; |
345 |
const int SEC_PER_HR = 60 * SEC_PER_MIN; |
346 |
const int SEC_PER_DAY = 24 * SEC_PER_HR; |
347 |
|
348 |
int secs = (int)((dblDay * SEC_PER_DAY) + 0.5); |
349 |
|
350 |
// Create a "struct tm" type. |
351 |
// NOTE: |
352 |
// The "struct tm" type has a 1-second resolution. Any fractional |
353 |
// component of the "seconds" time value is discarded. |
354 |
struct tm tGMT; |
355 |
memset(&tGMT, 0, sizeof(tGMT)); |
356 |
|
357 |
tGMT.tm_year = nYear - 1900; // 2001 is 101 |
358 |
tGMT.tm_mon = nMonth - 1; // January is 0 |
359 |
tGMT.tm_mday = nDOM; // First day is 1 |
360 |
tGMT.tm_hour = secs / SEC_PER_HR; |
361 |
tGMT.tm_min = (secs % SEC_PER_HR) / SEC_PER_MIN; |
362 |
tGMT.tm_sec = (secs % SEC_PER_HR) % SEC_PER_MIN; |
363 |
tGMT.tm_isdst = 0; // No conversion desired |
364 |
|
365 |
time_t tEpoch = mktime(&tGMT); |
366 |
|
367 |
if (tEpoch != -1) |
368 |
{ |
369 |
// Valid time_t value returned from mktime(). |
370 |
// mktime() expects a local time which means that tEpoch now needs |
371 |
// to be adjusted by the difference between this time zone and GMT. |
372 |
tEpoch -= timezone; |
373 |
} |
374 |
|
375 |
return tEpoch; |
376 |
} |
377 |
// |
378 |
// cTle.cpp |
379 |
// This class encapsulates a single set of standard NORAD two line elements. |
380 |
// |
381 |
// Copyright 1996-2005 Michael F. Henry |
382 |
// |
383 |
// Note: The column offsets are ZERO based. |
384 |
|
385 |
// Name |
386 |
const int TLE_LEN_LINE_DATA = 69; const int TLE_LEN_LINE_NAME = 22; |
387 |
|
388 |
// Line 1 |
389 |
const int TLE1_COL_SATNUM = 2; const int TLE1_LEN_SATNUM = 5; |
390 |
const int TLE1_COL_INTLDESC_A = 9; const int TLE1_LEN_INTLDESC_A = 2; |
391 |
const int TLE1_COL_INTLDESC_B = 11; const int TLE1_LEN_INTLDESC_B = 3; |
392 |
const int TLE1_COL_INTLDESC_C = 14; const int TLE1_LEN_INTLDESC_C = 3; |
393 |
const int TLE1_COL_EPOCH_A = 18; const int TLE1_LEN_EPOCH_A = 2; |
394 |
const int TLE1_COL_EPOCH_B = 20; const int TLE1_LEN_EPOCH_B = 12; |
395 |
const int TLE1_COL_MEANMOTIONDT = 33; const int TLE1_LEN_MEANMOTIONDT = 10; |
396 |
const int TLE1_COL_MEANMOTIONDT2 = 44; const int TLE1_LEN_MEANMOTIONDT2 = 8; |
397 |
const int TLE1_COL_BSTAR = 53; const int TLE1_LEN_BSTAR = 8; |
398 |
const int TLE1_COL_EPHEMTYPE = 62; const int TLE1_LEN_EPHEMTYPE = 1; |
399 |
const int TLE1_COL_ELNUM = 64; const int TLE1_LEN_ELNUM = 4; |
400 |
|
401 |
// Line 2 |
402 |
const int TLE2_COL_SATNUM = 2; const int TLE2_LEN_SATNUM = 5; |
403 |
const int TLE2_COL_INCLINATION = 8; const int TLE2_LEN_INCLINATION = 8; |
404 |
const int TLE2_COL_RAASCENDNODE = 17; const int TLE2_LEN_RAASCENDNODE = 8; |
405 |
const int TLE2_COL_ECCENTRICITY = 26; const int TLE2_LEN_ECCENTRICITY = 7; |
406 |
const int TLE2_COL_ARGPERIGEE = 34; const int TLE2_LEN_ARGPERIGEE = 8; |
407 |
const int TLE2_COL_MEANANOMALY = 43; const int TLE2_LEN_MEANANOMALY = 8; |
408 |
const int TLE2_COL_MEANMOTION = 52; const int TLE2_LEN_MEANMOTION = 11; |
409 |
const int TLE2_COL_REVATEPOCH = 63; const int TLE2_LEN_REVATEPOCH = 5; |
410 |
|
411 |
///////////////////////////////////////////////////////////////////////////// |
412 |
cTle::cTle(string& strName, string& strLine1, string& strLine2) |
413 |
{ |
414 |
m_strName = strName; |
415 |
m_strLine1 = strLine1; |
416 |
m_strLine2 = strLine2; |
417 |
|
418 |
Initialize(); |
419 |
} |
420 |
|
421 |
///////////////////////////////////////////////////////////////////////////// |
422 |
cTle::cTle(const cTle &tle) |
423 |
{ |
424 |
m_strName = tle.m_strName; |
425 |
m_strLine1 = tle.m_strLine1; |
426 |
m_strLine2 = tle.m_strLine2; |
427 |
|
428 |
for (int fld = FLD_FIRST; fld < FLD_LAST; fld++) |
429 |
{ |
430 |
m_Field[fld] = tle.m_Field[fld]; |
431 |
} |
432 |
|
433 |
m_mapCache = tle.m_mapCache; |
434 |
} |
435 |
|
436 |
///////////////////////////////////////////////////////////////////////////// |
437 |
cTle::~cTle() |
438 |
{ |
439 |
} |
440 |
|
441 |
///////////////////////////////////////////////////////////////////////////// |
442 |
// getField() |
443 |
// Return requested field as a double (function return value) or as a text |
444 |
// string (*pstr) in the units requested (eUnit). Set 'bStrUnits' to true |
445 |
// to have units appended to text string. |
446 |
// |
447 |
// Note: numeric return values are cached; asking for the same field more |
448 |
// than once incurs minimal overhead. |
449 |
double cTle::getField(eField fld, |
450 |
eUnits units, /* = U_NATIVE */ |
451 |
string *pstr /* = NULL */, |
452 |
bool bStrUnits /* = false */) const |
453 |
{ |
454 |
assert((FLD_FIRST <= fld) && (fld < FLD_LAST)); |
455 |
assert((U_FIRST <= units) && (units < U_LAST)); |
456 |
|
457 |
if (pstr) |
458 |
{ |
459 |
// Return requested field in string form. |
460 |
*pstr = m_Field[fld]; |
461 |
|
462 |
if (bStrUnits) |
463 |
*pstr += getUnits(fld); |
464 |
|
465 |
return 0.0; |
466 |
} |
467 |
else |
468 |
{ |
469 |
// Return requested field in floating-point form. |
470 |
// Return cache contents if it exists, else populate cache |
471 |
FldKey key = Key(units, fld); |
472 |
|
473 |
if (m_mapCache.find(key) == m_mapCache.end()) |
474 |
{ |
475 |
// Value not in cache; add it |
476 |
double valNative = atof(m_Field[fld].c_str()); |
477 |
double valConv = ConvertUnits(valNative, fld, units); |
478 |
m_mapCache[key] = valConv; |
479 |
|
480 |
return valConv; |
481 |
} |
482 |
else |
483 |
{ |
484 |
// return cached value |
485 |
return m_mapCache[key]; |
486 |
} |
487 |
} |
488 |
} |
489 |
|
490 |
////////////////////////////////////////////////////////////////////////////// |
491 |
// Convert the given field into the requested units. It is assumed that |
492 |
// the value being converted is in the TLE format's "native" form. |
493 |
double cTle::ConvertUnits(double valNative, // value to convert |
494 |
eField fld, // what field the value is |
495 |
eUnits units) // what units to convert to |
496 |
{ |
497 |
switch (fld) |
498 |
{ |
499 |
case FLD_I: |
500 |
case FLD_RAAN: |
501 |
case FLD_ARGPER: |
502 |
case FLD_M: |
503 |
{ |
504 |
// The native TLE format is DEGREES |
505 |
if (units == U_RAD) |
506 |
return valNative * RADS_PER_DEG; |
507 |
} |
508 |
|
509 |
case FLD_NORADNUM: |
510 |
case FLD_INTLDESC: |
511 |
case FLD_SET: |
512 |
case FLD_EPOCHYEAR: |
513 |
case FLD_EPOCHDAY: |
514 |
case FLD_ORBITNUM: |
515 |
case FLD_E: |
516 |
case FLD_MMOTION: |
517 |
case FLD_MMOTIONDT: |
518 |
case FLD_MMOTIONDT2: |
519 |
case FLD_BSTAR: |
520 |
case FLD_LAST: |
521 |
{ // do nothing |
522 |
|
523 |
} |
524 |
|
525 |
} |
526 |
|
527 |
return valNative; // return value in unconverted native format |
528 |
} |
529 |
|
530 |
////////////////////////////////////////////////////////////////////////////// |
531 |
string cTle::getUnits(eField fld) const |
532 |
{ |
533 |
static const string strDegrees = " degrees"; |
534 |
static const string strRevsPerDay = " revs / day"; |
535 |
static const string strNull; |
536 |
|
537 |
switch (fld) |
538 |
{ |
539 |
case FLD_I: |
540 |
case FLD_RAAN: |
541 |
case FLD_ARGPER: |
542 |
case FLD_M: |
543 |
return strDegrees; |
544 |
|
545 |
case FLD_MMOTION: |
546 |
return strRevsPerDay; |
547 |
|
548 |
default: |
549 |
return strNull; |
550 |
} |
551 |
} |
552 |
|
553 |
///////////////////////////////////////////////////////////////////////////// |
554 |
// ExpToDecimal() |
555 |
// Converts TLE-style exponential notation of the form [ |-]00000[+|-]0 to |
556 |
// decimal notation. Assumes implied decimal point to the left of the first |
557 |
// number in the string, i.e., |
558 |
// " 12345-3" = 0.00012345 |
559 |
// "-23429-5" = -0.0000023429 |
560 |
// " 40436+1" = 4.0436 |
561 |
string cTle::ExpToDecimal(const string &str) |
562 |
{ |
563 |
const int COL_EXP_SIGN = 6; |
564 |
const int LEN_EXP = 2; |
565 |
|
566 |
const int LEN_BUFREAL = 32; // max length of buffer to hold floating point |
567 |
// representation of input string. |
568 |
int nMan; |
569 |
int nExp; |
570 |
|
571 |
// sscanf(%d) will read up to the exponent sign |
572 |
sscanf(str.c_str(), "%d", &nMan); |
573 |
|
574 |
double dblMan = nMan; |
575 |
bool bNeg = (nMan < 0); |
576 |
|
577 |
if (bNeg) |
578 |
dblMan *= -1; |
579 |
|
580 |
// Move decimal place to left of first digit |
581 |
while (dblMan >= 1.0) |
582 |
dblMan /= 10.0; |
583 |
|
584 |
if (bNeg) |
585 |
dblMan *= -1; |
586 |
|
587 |
// now read exponent |
588 |
sscanf(str.substr(COL_EXP_SIGN, LEN_EXP).c_str(), "%d", &nExp); |
589 |
|
590 |
double dblVal = dblMan * pow(10.0, nExp); |
591 |
char szVal[LEN_BUFREAL]; |
592 |
|
593 |
snprintf(szVal, sizeof(szVal), "%.9f", dblVal); |
594 |
|
595 |
string strVal = szVal; |
596 |
|
597 |
return strVal; |
598 |
|
599 |
} // ExpToDecimal() |
600 |
|
601 |
///////////////////////////////////////////////////////////////////////////// |
602 |
// Initialize() |
603 |
// Initialize the string array. |
604 |
void cTle::Initialize() |
605 |
{ |
606 |
// Have we already been initialized? |
607 |
if (m_Field[FLD_NORADNUM].size()) |
608 |
return; |
609 |
|
610 |
assert(!m_strName.empty()); |
611 |
assert(!m_strLine1.empty()); |
612 |
assert(!m_strLine2.empty()); |
613 |
|
614 |
m_Field[FLD_NORADNUM] = m_strLine1.substr(TLE1_COL_SATNUM, TLE1_LEN_SATNUM); |
615 |
m_Field[FLD_INTLDESC] = m_strLine1.substr(TLE1_COL_INTLDESC_A, |
616 |
TLE1_LEN_INTLDESC_A + |
617 |
TLE1_LEN_INTLDESC_B + |
618 |
TLE1_LEN_INTLDESC_C); |
619 |
m_Field[FLD_EPOCHYEAR] = |
620 |
m_strLine1.substr(TLE1_COL_EPOCH_A, TLE1_LEN_EPOCH_A); |
621 |
|
622 |
m_Field[FLD_EPOCHDAY] = |
623 |
m_strLine1.substr(TLE1_COL_EPOCH_B, TLE1_LEN_EPOCH_B); |
624 |
|
625 |
if (m_strLine1[TLE1_COL_MEANMOTIONDT] == '-') |
626 |
{ |
627 |
// value is negative |
628 |
m_Field[FLD_MMOTIONDT] = "-0"; |
629 |
} |
630 |
else |
631 |
m_Field[FLD_MMOTIONDT] = "0"; |
632 |
|
633 |
m_Field[FLD_MMOTIONDT] += m_strLine1.substr(TLE1_COL_MEANMOTIONDT + 1, |
634 |
TLE1_LEN_MEANMOTIONDT); |
635 |
|
636 |
// decimal point assumed; exponential notation |
637 |
m_Field[FLD_MMOTIONDT2] = ExpToDecimal( |
638 |
m_strLine1.substr(TLE1_COL_MEANMOTIONDT2, |
639 |
TLE1_LEN_MEANMOTIONDT2)); |
640 |
// decimal point assumed; exponential notation |
641 |
m_Field[FLD_BSTAR] = ExpToDecimal(m_strLine1.substr(TLE1_COL_BSTAR, |
642 |
TLE1_LEN_BSTAR)); |
643 |
//TLE1_COL_EPHEMTYPE |
644 |
//TLE1_LEN_EPHEMTYPE |
645 |
m_Field[FLD_SET] = m_strLine1.substr(TLE1_COL_ELNUM, TLE1_LEN_ELNUM); |
646 |
|
647 |
TrimLeft(m_Field[FLD_SET]); |
648 |
|
649 |
//TLE2_COL_SATNUM |
650 |
//TLE2_LEN_SATNUM |
651 |
|
652 |
m_Field[FLD_I] = m_strLine2.substr(TLE2_COL_INCLINATION, |
653 |
TLE2_LEN_INCLINATION); |
654 |
TrimLeft(m_Field[FLD_I]); |
655 |
|
656 |
m_Field[FLD_RAAN] = m_strLine2.substr(TLE2_COL_RAASCENDNODE, |
657 |
TLE2_LEN_RAASCENDNODE); |
658 |
TrimLeft(m_Field[FLD_RAAN]); |
659 |
|
660 |
// decimal point is assumed |
661 |
m_Field[FLD_E] = "0."; |
662 |
m_Field[FLD_E] += m_strLine2.substr(TLE2_COL_ECCENTRICITY, |
663 |
TLE2_LEN_ECCENTRICITY); |
664 |
|
665 |
m_Field[FLD_ARGPER] = m_strLine2.substr(TLE2_COL_ARGPERIGEE, |
666 |
TLE2_LEN_ARGPERIGEE); |
667 |
TrimLeft(m_Field[FLD_ARGPER]); |
668 |
|
669 |
m_Field[FLD_M] = m_strLine2.substr(TLE2_COL_MEANANOMALY, |
670 |
TLE2_LEN_MEANANOMALY); |
671 |
TrimLeft(m_Field[FLD_M]); |
672 |
|
673 |
m_Field[FLD_MMOTION] = m_strLine2.substr(TLE2_COL_MEANMOTION, |
674 |
TLE2_LEN_MEANMOTION); |
675 |
TrimLeft(m_Field[FLD_MMOTION]); |
676 |
|
677 |
m_Field[FLD_ORBITNUM] = m_strLine2.substr(TLE2_COL_REVATEPOCH, |
678 |
TLE2_LEN_REVATEPOCH); |
679 |
TrimLeft(m_Field[FLD_ORBITNUM]); |
680 |
|
681 |
} // InitStrVars() |
682 |
|
683 |
///////////////////////////////////////////////////////////////////////////// |
684 |
// IsTleFormat() |
685 |
// Returns true if "str" is a valid data line of a two-line element set, |
686 |
// else false. |
687 |
// |
688 |
// To be valid a line must: |
689 |
// Have as the first character the line number |
690 |
// Have as the second character a blank |
691 |
// Be TLE_LEN_LINE_DATA characters long |
692 |
// Have a valid checksum (note: no longer required as of 12/96) |
693 |
// |
694 |
bool cTle::IsValidLine(string& str, eTleLine line) |
695 |
{ |
696 |
TrimLeft(str); |
697 |
TrimRight(str); |
698 |
|
699 |
size_t nLen = str.size(); |
700 |
|
701 |
if (nLen != (uint)TLE_LEN_LINE_DATA) |
702 |
return false; |
703 |
|
704 |
// First char in string must be line number |
705 |
if ((str[0] - '0') != line) |
706 |
return false; |
707 |
|
708 |
// Second char in string must be blank |
709 |
if (str[1] != ' ') |
710 |
return false; |
711 |
|
712 |
/* |
713 |
NOTE: 12/96 |
714 |
The requirement that the last char in the line data must be a valid |
715 |
checksum is too restrictive. |
716 |
|
717 |
// Last char in string must be checksum |
718 |
int nSum = CheckSum(str); |
719 |
|
720 |
if (nSum != (str[TLE_LEN_LINE_DATA - 1] - '0')) |
721 |
return false; |
722 |
*/ |
723 |
|
724 |
return true; |
725 |
|
726 |
} // IsTleFormat() |
727 |
|
728 |
///////////////////////////////////////////////////////////////////////////// |
729 |
// CheckSum() |
730 |
// Calculate the check sum for a given line of TLE data, the last character |
731 |
// of which is the current checksum. (Although there is no check here, |
732 |
// the current checksum should match the one we calculate.) |
733 |
// The checksum algorithm: |
734 |
// Each number in the data line is summed, modulo 10. |
735 |
// Non-numeric characters are zero, except minus signs, which are 1. |
736 |
// |
737 |
int cTle::CheckSum(const string& str) |
738 |
{ |
739 |
// The length is "- 1" because we don't include the current (existing) |
740 |
// checksum character in the checksum calculation. |
741 |
size_t len = str.size() - 1; |
742 |
int xsum = 0; |
743 |
|
744 |
for (size_t i = 0; i < len; i++) |
745 |
{ |
746 |
char ch = str[i]; |
747 |
if (isdigit(ch)) |
748 |
xsum += (ch - '0'); |
749 |
else if (ch == '-') |
750 |
xsum++; |
751 |
} |
752 |
|
753 |
return (xsum % 10); |
754 |
|
755 |
} // CheckSum() |
756 |
|
757 |
///////////////////////////////////////////////////////////////////////////// |
758 |
void cTle::TrimLeft(string& s) |
759 |
{ |
760 |
while (s[0] == ' ') |
761 |
s.erase(0, 1); |
762 |
} |
763 |
|
764 |
///////////////////////////////////////////////////////////////////////////// |
765 |
void cTle::TrimRight(string& s) |
766 |
{ |
767 |
while (s[s.size() - 1] == ' ') |
768 |
s.erase(s.size() - 1); |
769 |
} |
770 |
|
771 |
// |
772 |
// cEci.cpp |
773 |
// |
774 |
// Copyright (c) 2002-2003 Michael F. Henry |
775 |
// |
776 |
////////////////////////////////////////////////////////////////////// |
777 |
// cEci Class |
778 |
////////////////////////////////////////////////////////////////////// |
779 |
cEci::cEci(const cVector &pos, |
780 |
const cVector &vel, |
781 |
const cJulian &date, |
782 |
bool IsAeUnits /* = true */) |
783 |
{ |
784 |
m_pos = pos; |
785 |
m_vel = vel; |
786 |
m_date = date; |
787 |
m_VecUnits = (IsAeUnits ? UNITS_AE : UNITS_NONE); |
788 |
} |
789 |
|
790 |
////////////////////////////////////////////////////////////////////// |
791 |
// cEci(cCoordGeo&, cJulian&) |
792 |
// Calculate the ECI coordinates of the location "geo" at time "date". |
793 |
// Assumes geo coordinates are km-based. |
794 |
// Assumes the earth is an oblate spheroid as defined in WGS '72. |
795 |
// Reference: The 1992 Astronomical Almanac, page K11 |
796 |
// Reference: www.celestrak.com (Dr. TS Kelso) |
797 |
cEci::cEci(const cCoordGeo &geo, const cJulian &date) |
798 |
{ |
799 |
m_VecUnits = UNITS_KM; |
800 |
|
801 |
double mfactor = TWOPI * (OMEGA_E / SEC_PER_DAY); |
802 |
double lat = geo.m_Lat; |
803 |
double lon = geo.m_Lon; |
804 |
double alt = geo.m_Alt; |
805 |
|
806 |
// Calculate Local Mean Sidereal Time (theta) |
807 |
double theta = date.toLMST(lon); |
808 |
double c = 1.0 / sqrt(1.0 + F * (F - 2.0) * sqr(sin(lat))); |
809 |
double s = sqr(1.0 - F) * c; |
810 |
double achcp = (XKMPER_WGS72 * c + alt) * cos(lat); |
811 |
|
812 |
m_date = date; |
813 |
|
814 |
m_pos.m_x = achcp * cos(theta); // km |
815 |
m_pos.m_y = achcp * sin(theta); // km |
816 |
m_pos.m_z = (XKMPER_WGS72 * s + alt) * sin(lat); // km |
817 |
m_pos.m_w = sqrt(sqr(m_pos.m_x) + |
818 |
sqr(m_pos.m_y) + |
819 |
sqr(m_pos.m_z)); // range, km |
820 |
|
821 |
m_vel.m_x = -mfactor * m_pos.m_y; // km / sec |
822 |
m_vel.m_y = mfactor * m_pos.m_x; |
823 |
m_vel.m_z = 0.0; |
824 |
m_vel.m_w = sqrt(sqr(m_vel.m_x) + // range rate km/sec^2 |
825 |
sqr(m_vel.m_y)); |
826 |
} |
827 |
|
828 |
////////////////////////////////////////////////////////////////////////////// |
829 |
// toGeo() |
830 |
// Return the corresponding geodetic position (based on the current ECI |
831 |
// coordinates/Julian date). |
832 |
// Assumes the earth is an oblate spheroid as defined in WGS '72. |
833 |
// Side effects: Converts the position and velocity vectors to km-based units. |
834 |
// Reference: The 1992 Astronomical Almanac, page K12. |
835 |
// Reference: www.celestrak.com (Dr. TS Kelso) |
836 |
cCoordGeo cEci::toGeo() |
837 |
{ |
838 |
ae2km(); // Vectors must be in kilometer-based units |
839 |
|
840 |
double theta = AcTan(m_pos.m_y, m_pos.m_x); |
841 |
double lon = fmod(theta - m_date.toGMST(), TWOPI); |
842 |
|
843 |
if (lon < 0.0) |
844 |
lon += TWOPI; // "wrap" negative modulo |
845 |
|
846 |
double r = sqrt(sqr(m_pos.m_x) + sqr(m_pos.m_y)); |
847 |
double e2 = F * (2.0 - F); |
848 |
double lat = AcTan(m_pos.m_z, r); |
849 |
|
850 |
const double delta = 1.0e-07; |
851 |
double phi; |
852 |
double c; |
853 |
|
854 |
do |
855 |
{ |
856 |
phi = lat; |
857 |
c = 1.0 / sqrt(1.0 - e2 * sqr(sin(phi))); |
858 |
lat = AcTan(m_pos.m_z + XKMPER_WGS72 * c * e2 * sin(phi), r); |
859 |
} |
860 |
while (fabs(lat - phi) > delta); |
861 |
|
862 |
double alt = r / cos(lat) - XKMPER_WGS72 * c; |
863 |
|
864 |
return cCoordGeo(lat, lon, alt); // radians, radians, kilometers |
865 |
} |
866 |
|
867 |
////////////////////////////////////////////////////////////////////////////// |
868 |
// ae2km() |
869 |
// Convert the position and velocity vector units from AE-based units |
870 |
// to kilometer based units. |
871 |
void cEci::ae2km() |
872 |
{ |
873 |
if (UnitsAreAe()) |
874 |
{ |
875 |
MulPos(XKMPER_WGS72 / AE); // km |
876 |
MulVel((XKMPER_WGS72 / AE) * (MIN_PER_DAY / 86400)); // km/sec |
877 |
m_VecUnits = UNITS_KM; |
878 |
} |
879 |
} |
880 |
// |
881 |
// cNoradBase.cpp |
882 |
// |
883 |
// Historical Note: |
884 |
// The equations used here (and in derived classes) to determine satellite |
885 |
// ECI coordinates/velocity come from the December, 1980 NORAD document |
886 |
// "Space Track Report No. 3". The report details 6 orbital models and |
887 |
// provides FORTRAN IV implementations of each. The classes here |
888 |
// implement only two of the orbital models: SGP4 and SDP4. These two models, |
889 |
// one for "near-earth" objects and one for "deep space" objects, are widely |
890 |
// used in satellite tracking software and can produce very accurate results |
891 |
// when used with current NORAD two-line element datum. |
892 |
// |
893 |
// The NORAD FORTRAN IV SGP4/SDP4 implementations were converted to Pascal by |
894 |
// Dr. TS Kelso in 1995. In 1996 these routines were ported in a straight- |
895 |
// forward manner to C++ by Varol Okan. The SGP4/SDP4 classes here were |
896 |
// written by Michael F. Henry in 2002-03 and are a modern C++ re-write of |
897 |
// the work done by Okan. In addition to introducing an object-oriented |
898 |
// architecture, the last residues of the original FORTRAN code (such as |
899 |
// labels and gotos) were eradicated. |
900 |
// |
901 |
// For excellent information on the underlying physics of orbits, visible |
902 |
// satellite observations, current NORAD TLE data, and other related material, |
903 |
// see http://www.celestrak.com which is maintained by Dr. TS Kelso. |
904 |
// |
905 |
// Copyright (c) 2003 Michael F. Henry |
906 |
// |
907 |
// mfh 12/07/2003 |
908 |
// |
909 |
////////////////////////////////////////////////////////////////////////////// |
910 |
cNoradBase::cNoradBase(const cOrbit &orbit) : |
911 |
m_Orbit(orbit) |
912 |
{ |
913 |
Initialize(); |
914 |
} |
915 |
|
916 |
cNoradBase& cNoradBase::operator=(const cNoradBase &b) |
917 |
{ |
918 |
// m_Orbit is a "const" member var, so cast away its |
919 |
// "const-ness" in order to complete the assigment. |
920 |
*(const_cast<cOrbit*>(&m_Orbit)) = b.m_Orbit; |
921 |
|
922 |
return *this; |
923 |
} |
924 |
|
925 |
////////////////////////////////////////////////////////////////////////////// |
926 |
// Initialize() |
927 |
// Perform the initialization of member variables, specifically the variables |
928 |
// used by derived-class objects to calculate ECI coordinates. |
929 |
void cNoradBase::Initialize() |
930 |
{ |
931 |
// Initialize any variables which are time-independent when |
932 |
// calculating the ECI coordinates of the satellite. |
933 |
m_satInc = m_Orbit.Inclination(); |
934 |
m_satEcc = m_Orbit.Eccentricity(); |
935 |
|
936 |
m_cosio = cos(m_satInc); |
937 |
m_theta2 = m_cosio * m_cosio; |
938 |
m_x3thm1 = 3.0 * m_theta2 - 1.0; |
939 |
m_eosq = m_satEcc * m_satEcc; |
940 |
m_betao2 = 1.0 - m_eosq; |
941 |
m_betao = sqrt(m_betao2); |
942 |
|
943 |
// The "recovered" semi-minor axis and mean motion. |
944 |
m_aodp = m_Orbit.SemiMinor(); |
945 |
m_xnodp = m_Orbit.mnMotionRec(); |
946 |
|
947 |
// For perigee below 156 km, the values of S and QOMS2T are altered. |
948 |
m_perigee = XKMPER_WGS72 * (m_aodp * (1.0 - m_satEcc) - AE); |
949 |
|
950 |
m_s4 = S; |
951 |
m_qoms24 = QOMS2T; |
952 |
|
953 |
if (m_perigee < 156.0) |
954 |
{ |
955 |
m_s4 = m_perigee - 78.0; |
956 |
|
957 |
if (m_perigee <= 98.0) |
958 |
{ |
959 |
m_s4 = 20.0; |
960 |
} |
961 |
|
962 |
m_qoms24 = pow((120.0 - m_s4) * AE / XKMPER_WGS72, 4.0); |
963 |
m_s4 = m_s4 / XKMPER_WGS72 + AE; |
964 |
} |
965 |
|
966 |
const double pinvsq = 1.0 / (m_aodp * m_aodp * m_betao2 * m_betao2); |
967 |
|
968 |
m_tsi = 1.0 / (m_aodp - m_s4); |
969 |
m_eta = m_aodp * m_satEcc * m_tsi; |
970 |
m_etasq = m_eta * m_eta; |
971 |
m_eeta = m_satEcc * m_eta; |
972 |
|
973 |
const double psisq = fabs(1.0 - m_etasq); |
974 |
|
975 |
m_coef = m_qoms24 * pow(m_tsi,4.0); |
976 |
m_coef1 = m_coef / pow(psisq,3.5); |
977 |
|
978 |
const double c2 = m_coef1 * m_xnodp * |
979 |
(m_aodp * (1.0 + 1.5 * m_etasq + m_eeta * (4.0 + m_etasq)) + |
980 |
0.75 * CK2 * m_tsi / psisq * m_x3thm1 * |
981 |
(8.0 + 3.0 * m_etasq * (8.0 + m_etasq))); |
982 |
|
983 |
m_c1 = m_Orbit.BStar() * c2; |
984 |
m_sinio = sin(m_satInc); |
985 |
|
986 |
const double a3ovk2 = -XJ3 / CK2 * pow(AE,3.0); |
987 |
|
988 |
m_c3 = m_coef * m_tsi * a3ovk2 * m_xnodp * AE * m_sinio / m_satEcc; |
989 |
m_x1mth2 = 1.0 - m_theta2; |
990 |
m_c4 = 2.0 * m_xnodp * m_coef1 * m_aodp * m_betao2 * |
991 |
(m_eta * (2.0 + 0.5 * m_etasq) + |
992 |
m_satEcc * (0.5 + 2.0 * m_etasq) - |
993 |
2.0 * CK2 * m_tsi / (m_aodp * psisq) * |
994 |
(-3.0 * m_x3thm1 * (1.0 - 2.0 * m_eeta + m_etasq * (1.5 - 0.5 * m_eeta)) + |
995 |
0.75 * m_x1mth2 * |
996 |
(2.0 * m_etasq - m_eeta * (1.0 + m_etasq)) * |
997 |
cos(2.0 * m_Orbit.ArgPerigee()))); |
998 |
|
999 |
const double theta4 = m_theta2 * m_theta2; |
1000 |
const double temp1 = 3.0 * CK2 * pinvsq * m_xnodp; |
1001 |
const double temp2 = temp1 * CK2 * pinvsq; |
1002 |
const double temp3 = 1.25 * CK4 * pinvsq * pinvsq * m_xnodp; |
1003 |
|
1004 |
m_xmdot = m_xnodp + 0.5 * temp1 * m_betao * m_x3thm1 + |
1005 |
0.0625 * temp2 * m_betao * |
1006 |
(13.0 - 78.0 * m_theta2 + 137.0 * theta4); |
1007 |
|
1008 |
const double x1m5th = 1.0 - 5.0 * m_theta2; |
1009 |
|
1010 |
m_omgdot = -0.5 * temp1 * x1m5th + 0.0625 * temp2 * |
1011 |
(7.0 - 114.0 * m_theta2 + 395.0 * theta4) + |
1012 |
temp3 * (3.0 - 36.0 * m_theta2 + 49.0 * theta4); |
1013 |
|
1014 |
const double xhdot1 = -temp1 * m_cosio; |
1015 |
|
1016 |
m_xnodot = xhdot1 + (0.5 * temp2 * (4.0 - 19.0 * m_theta2) + |
1017 |
2.0 * temp3 * (3.0 - 7.0 * m_theta2)) * m_cosio; |
1018 |
m_xnodcf = 3.5 * m_betao2 * xhdot1 * m_c1; |
1019 |
m_t2cof = 1.5 * m_c1; |
1020 |
m_xlcof = 0.125 * a3ovk2 * m_sinio * |
1021 |
(3.0 + 5.0 * m_cosio) / (1.0 + m_cosio); |
1022 |
m_aycof = 0.25 * a3ovk2 * m_sinio; |
1023 |
m_x7thm1 = 7.0 * m_theta2 - 1.0; |
1024 |
} |
1025 |
|
1026 |
////////////////////////////////////////////////////////////////////////////// |
1027 |
bool cNoradBase::FinalPosition(double incl, double omega, |
1028 |
double e, double a, |
1029 |
double xl, double xnode, |
1030 |
double xn, double tsince, |
1031 |
cEci &eci) |
1032 |
{ |
1033 |
if ((e * e) > 1.0) |
1034 |
{ |
1035 |
// error in satellite data |
1036 |
return false; |
1037 |
} |
1038 |
|
1039 |
double beta = sqrt(1.0 - e * e); |
1040 |
|
1041 |
// Long period periodics |
1042 |
double axn = e * cos(omega); |
1043 |
double temp = 1.0 / (a * beta * beta); |
1044 |
double xll = temp * m_xlcof * axn; |
1045 |
double aynl = temp * m_aycof; |
1046 |
double xlt = xl + xll; |
1047 |
double ayn = e * sin(omega) + aynl; |
1048 |
|
1049 |
// Solve Kepler's Equation |
1050 |
|
1051 |
double capu = Fmod2p(xlt - xnode); |
1052 |
double temp2 = capu; |
1053 |
double temp3 = 0.0; |
1054 |
double temp4 = 0.0; |
1055 |
double temp5 = 0.0; |
1056 |
double temp6 = 0.0; |
1057 |
double sinepw = 0.0; |
1058 |
double cosepw = 0.0; |
1059 |
bool fDone = false; |
1060 |
|
1061 |
for (int i = 1; (i <= 10) && !fDone; i++) |
1062 |
{ |
1063 |
sinepw = sin(temp2); |
1064 |
cosepw = cos(temp2); |
1065 |
temp3 = axn * sinepw; |
1066 |
temp4 = ayn * cosepw; |
1067 |
temp5 = axn * cosepw; |
1068 |
temp6 = ayn * sinepw; |
1069 |
|
1070 |
double epw = (capu - temp4 + temp3 - temp2) / |
1071 |
(1.0 - temp5 - temp6) + temp2; |
1072 |
|
1073 |
if (fabs(epw - temp2) <= E6A) |
1074 |
fDone = true; |
1075 |
else |
1076 |
temp2 = epw; |
1077 |
} |
1078 |
|
1079 |
// Short period preliminary quantities |
1080 |
double ecose = temp5 + temp6; |
1081 |
double esine = temp3 - temp4; |
1082 |
double elsq = axn * axn + ayn * ayn; |
1083 |
temp = 1.0 - elsq; |
1084 |
double pl = a * temp; |
1085 |
double r = a * (1.0 - ecose); |
1086 |
double temp1 = 1.0 / r; |
1087 |
double rdot = XKE * sqrt(a) * esine * temp1; |
1088 |
double rfdot = XKE * sqrt(pl) * temp1; |
1089 |
temp2 = a * temp1; |
1090 |
double betal = sqrt(temp); |
1091 |
temp3 = 1.0 / (1.0 + betal); |
1092 |
double cosu = temp2 * (cosepw - axn + ayn * esine * temp3); |
1093 |
double sinu = temp2 * (sinepw - ayn - axn * esine * temp3); |
1094 |
double u = AcTan(sinu, cosu); |
1095 |
double sin2u = 2.0 * sinu * cosu; |
1096 |
double cos2u = 2.0 * cosu * cosu - 1.0; |
1097 |
|
1098 |
temp = 1.0 / pl; |
1099 |
temp1 = CK2 * temp; |
1100 |
temp2 = temp1 * temp; |
1101 |
|
1102 |
// Update for short periodics |
1103 |
double rk = r * (1.0 - 1.5 * temp2 * betal * m_x3thm1) + |
1104 |
0.5 * temp1 * m_x1mth2 * cos2u; |
1105 |
double uk = u - 0.25 * temp2 * m_x7thm1 * sin2u; |
1106 |
double xnodek = xnode + 1.5 * temp2 * m_cosio * sin2u; |
1107 |
double xinck = incl + 1.5 * temp2 * m_cosio * m_sinio * cos2u; |
1108 |
double rdotk = rdot - xn * temp1 * m_x1mth2 * sin2u; |
1109 |
double rfdotk = rfdot + xn * temp1 * (m_x1mth2 * cos2u + 1.5 * m_x3thm1); |
1110 |
|
1111 |
// Orientation vectors |
1112 |
double sinuk = sin(uk); |
1113 |
double cosuk = cos(uk); |
1114 |
double sinik = sin(xinck); |
1115 |
double cosik = cos(xinck); |
1116 |
double sinnok = sin(xnodek); |
1117 |
double cosnok = cos(xnodek); |
1118 |
double xmx = -sinnok * cosik; |
1119 |
double xmy = cosnok * cosik; |
1120 |
double ux = xmx * sinuk + cosnok * cosuk; |
1121 |
double uy = xmy * sinuk + sinnok * cosuk; |
1122 |
double uz = sinik * sinuk; |
1123 |
double vx = xmx * cosuk - cosnok * sinuk; |
1124 |
double vy = xmy * cosuk - sinnok * sinuk; |
1125 |
double vz = sinik * cosuk; |
1126 |
|
1127 |
// Position |
1128 |
double x = rk * ux; |
1129 |
double y = rk * uy; |
1130 |
double z = rk * uz; |
1131 |
|
1132 |
cVector vecPos(x, y, z); |
1133 |
|
1134 |
// Validate on altitude |
1135 |
double altKm = (vecPos.Magnitude() * (XKMPER_WGS72 / AE)); |
1136 |
|
1137 |
if ((altKm < XKMPER_WGS72) || (altKm > (2 * GEOSYNC_ALT))) |
1138 |
return false; |
1139 |
|
1140 |
// Velocity |
1141 |
double xdot = rdotk * ux + rfdotk * vx; |
1142 |
double ydot = rdotk * uy + rfdotk * vy; |
1143 |
double zdot = rdotk * uz + rfdotk * vz; |
1144 |
|
1145 |
cVector vecVel(xdot, ydot, zdot); |
1146 |
|
1147 |
cJulian gmt = m_Orbit.Epoch(); |
1148 |
gmt.addMin(tsince); |
1149 |
|
1150 |
eci = cEci(vecPos, vecVel, gmt); |
1151 |
|
1152 |
return true; |
1153 |
} |
1154 |
|
1155 |
// |
1156 |
// cNoradSGP4.cpp |
1157 |
// |
1158 |
// NORAD SGP4 implementation. See historical note in cNoradBase.cpp |
1159 |
// Copyright (c) 2003 Michael F. Henry |
1160 |
// |
1161 |
// mfh 12/07/2003 |
1162 |
// |
1163 |
////////////////////////////////////////////////////////////////////////////// |
1164 |
cNoradSGP4::cNoradSGP4(const cOrbit &orbit) : |
1165 |
cNoradBase(orbit) |
1166 |
{ |
1167 |
m_c5 = 2.0 * m_coef1 * m_aodp * m_betao2 * |
1168 |
(1.0 + 2.75 * (m_etasq + m_eeta) + m_eeta * m_etasq); |
1169 |
m_omgcof = m_Orbit.BStar() * m_c3 * cos(m_Orbit.ArgPerigee()); |
1170 |
m_xmcof = -TWOTHRD * m_coef * m_Orbit.BStar() * AE / m_eeta; |
1171 |
m_delmo = pow(1.0 + m_eta * cos(m_Orbit.mnAnomaly()), 3.0); |
1172 |
m_sinmo = sin(m_Orbit.mnAnomaly()); |
1173 |
} |
1174 |
|
1175 |
|
1176 |
////////////////////////////////////////////////////////////////////////////// |
1177 |
// getPosition() |
1178 |
// This procedure returns the ECI position and velocity for the satellite |
1179 |
// in the orbit at the given number of minutes since the TLE epoch time |
1180 |
// using the NORAD Simplified General Perturbation 4, near earth orbit |
1181 |
// model. |
1182 |
// |
1183 |
// tsince - Time in minutes since the TLE epoch (GMT). |
1184 |
// eci - ECI object to hold position information. |
1185 |
// To convert the returned ECI position vector to km, |
1186 |
// multiply each component by: |
1187 |
// (XKMPER_WGS72 / AE). |
1188 |
// To convert the returned ECI velocity vector to km/sec, |
1189 |
// multiply each component by: |
1190 |
// (XKMPER_WGS72 / AE) * (MIN_PER_DAY / 86400). |
1191 |
|
1192 |
bool cNoradSGP4::getPosition(double tsince, cEci &eci) |
1193 |
{ |
1194 |
// For m_perigee less than 220 kilometers, the isimp flag is set and |
1195 |
// the equations are truncated to linear variation in sqrt a and |
1196 |
// quadratic variation in mean anomaly. Also, the m_c3 term, the |
1197 |
// delta omega term, and the delta m term are dropped. |
1198 |
bool isimp = false; |
1199 |
if ((m_aodp * (1.0 - m_satEcc) / AE) < (220.0 / XKMPER_WGS72 + AE)) |
1200 |
{ |
1201 |
isimp = true; |
1202 |
} |
1203 |
|
1204 |
double d2 = 0.0; |
1205 |
double d3 = 0.0; |
1206 |
double d4 = 0.0; |
1207 |
|
1208 |
double t3cof = 0.0; |
1209 |
double t4cof = 0.0; |
1210 |
double t5cof = 0.0; |
1211 |
|
1212 |
if (!isimp) |
1213 |
{ |
1214 |
double c1sq = m_c1 * m_c1; |
1215 |
|
1216 |
d2 = 4.0 * m_aodp * m_tsi * c1sq; |
1217 |
|
1218 |
double temp = d2 * m_tsi * m_c1 / 3.0; |
1219 |
|
1220 |
d3 = (17.0 * m_aodp + m_s4) * temp; |
1221 |
d4 = 0.5 * temp * m_aodp * m_tsi * |
1222 |
(221.0 * m_aodp + 31.0 * m_s4) * m_c1; |
1223 |
t3cof = d2 + 2.0 * c1sq; |
1224 |
t4cof = 0.25 * (3.0 * d3 + m_c1 * (12.0 * d2 + 10.0 * c1sq)); |
1225 |
t5cof = 0.2 * (3.0 * d4 + 12.0 * m_c1 * d3 + 6.0 * |
1226 |
d2 * d2 + 15.0 * c1sq * (2.0 * d2 + c1sq)); |
1227 |
} |
1228 |
|
1229 |
// Update for secular gravity and atmospheric drag. |
1230 |
double xmdf = m_Orbit.mnAnomaly() + m_xmdot * tsince; |
1231 |
double omgadf = m_Orbit.ArgPerigee() + m_omgdot * tsince; |
1232 |
double xnoddf = m_Orbit.RAAN() + m_xnodot * tsince; |
1233 |
double omega = omgadf; |
1234 |
double xmp = xmdf; |
1235 |
double tsq = tsince * tsince; |
1236 |
double xnode = xnoddf + m_xnodcf * tsq; |
1237 |
double tempa = 1.0 - m_c1 * tsince; |
1238 |
double tempe = m_Orbit.BStar() * m_c4 * tsince; |
1239 |
double templ = m_t2cof * tsq; |
1240 |
|
1241 |
if (!isimp) |
1242 |
{ |
1243 |
double delomg = m_omgcof * tsince; |
1244 |
double delm = m_xmcof * (pow(1.0 + m_eta * cos(xmdf), 3.0) - m_delmo); |
1245 |
double temp = delomg + delm; |
1246 |
|
1247 |
xmp = xmdf + temp; |
1248 |
omega = omgadf - temp; |
1249 |
|
1250 |
double tcube = tsq * tsince; |
1251 |
double tfour = tsince * tcube; |
1252 |
|
1253 |
tempa = tempa - d2 * tsq - d3 * tcube - d4 * tfour; |
1254 |
tempe = tempe + m_Orbit.BStar() * m_c5 * (sin(xmp) - m_sinmo); |
1255 |
templ = templ + t3cof * tcube + tfour * (t4cof + tsince * t5cof); |
1256 |
} |
1257 |
|
1258 |
double a = m_aodp * sqr(tempa); |
1259 |
double e = m_satEcc - tempe; |
1260 |
|
1261 |
|
1262 |
double xl = xmp + omega + xnode + m_xnodp * templ; |
1263 |
double xn = XKE / pow(a, 1.5); |
1264 |
|
1265 |
return FinalPosition(m_satInc, omgadf, e, a, xl, xnode, xn, tsince, eci); |
1266 |
} |
1267 |
|
1268 |
// |
1269 |
// cNoradSDP4.cpp |
1270 |
// |
1271 |
// NORAD SDP4 implementation. See historical note in cNoradBase.cpp |
1272 |
// Copyright (c) 2003 Michael F. Henry |
1273 |
// |
1274 |
// mfh 12/07/2003 |
1275 |
// |
1276 |
|
1277 |
const double zns = 1.19459E-5; const double c1ss = 2.9864797E-6; |
1278 |
const double zes = 0.01675; const double znl = 1.5835218E-4; |
1279 |
const double c1l = 4.7968065E-7; const double zel = 0.05490; |
1280 |
const double zcosis = 0.91744867; const double zsinis = 0.39785416; |
1281 |
const double zsings = -0.98088458; const double zcosgs = 0.1945905; |
1282 |
const double q22 = 1.7891679E-6; const double q31 = 2.1460748E-6; |
1283 |
const double q33 = 2.2123015E-7; const double g22 = 5.7686396; |
1284 |
const double g32 = 0.95240898; const double g44 = 1.8014998; |
1285 |
const double g52 = 1.0508330; const double g54 = 4.4108898; |
1286 |
const double root22 = 1.7891679E-6; const double root32 = 3.7393792E-7; |
1287 |
const double root44 = 7.3636953E-9; const double root52 = 1.1428639E-7; |
1288 |
const double root54 = 2.1765803E-9; const double thdt = 4.3752691E-3; |
1289 |
|
1290 |
////////////////////////////////////////////////////////////////////////////// |
1291 |
cNoradSDP4::cNoradSDP4(const cOrbit &orbit) : |
1292 |
cNoradBase(orbit) |
1293 |
{ |
1294 |
m_sing = sin(m_Orbit.ArgPerigee()); |
1295 |
m_cosg = cos(m_Orbit.ArgPerigee()); |
1296 |
|
1297 |
dp_savtsn = 0.0; |
1298 |
dp_zmos = 0.0; |
1299 |
dp_se2 = 0.0; |
1300 |
dp_se3 = 0.0; |
1301 |
dp_si2 = 0.0; |
1302 |
dp_si3 = 0.0; |
1303 |
dp_sl2 = 0.0; |
1304 |
dp_sl3 = 0.0; |
1305 |
dp_sl4 = 0.0; |
1306 |
dp_sghs = 0.0; |
1307 |
dp_sgh2 = 0.0; |
1308 |
dp_sgh3 = 0.0; |
1309 |
dp_sgh4 = 0.0; |
1310 |
dp_sh2 = 0.0; |
1311 |
dp_sh3 = 0.0; |
1312 |
dp_zmol = 0.0; |
1313 |
dp_ee2 = 0.0; |
1314 |
dp_e3 = 0.0; |
1315 |
dp_xi2 = 0.0; |
1316 |
dp_xi3 = 0.0; |
1317 |
dp_xl2 = 0.0; |
1318 |
dp_xl3 = 0.0; |
1319 |
dp_xl4 = 0.0; |
1320 |
dp_xgh2 = 0.0; |
1321 |
dp_xgh3 = 0.0; |
1322 |
dp_xgh4 = 0.0; |
1323 |
dp_xh2 = 0.0; |
1324 |
dp_xh3 = 0.0; |
1325 |
dp_xqncl = 0.0; |
1326 |
dp_thgr = 0.0; |
1327 |
dp_omegaq = 0.0; |
1328 |
dp_sse = 0.0; |
1329 |
dp_ssi = 0.0; |
1330 |
dp_ssl = 0.0; |
1331 |
dp_ssh = 0.0; |
1332 |
dp_ssg = 0.0; |
1333 |
dp_d2201 = 0.0; |
1334 |
dp_d2211 = 0.0; |
1335 |
dp_d3210 = 0.0; |
1336 |
dp_d3222 = 0.0; |
1337 |
dp_d4410 = 0.0; |
1338 |
dp_d4422 = 0.0; |
1339 |
dp_d5220 = 0.0; |
1340 |
dp_d5232 = 0.0; |
1341 |
dp_d5421 = 0.0; |
1342 |
dp_d5433 = 0.0; |
1343 |
dp_xlamo = 0.0; |
1344 |
dp_del1 = 0.0; |
1345 |
dp_del2 = 0.0; |
1346 |
dp_del3 = 0.0; |
1347 |
dp_fasx2 = 0.0; |
1348 |
dp_fasx4 = 0.0; |
1349 |
dp_fasx6 = 0.0; |
1350 |
dp_xfact = 0.0; |
1351 |
dp_xli = 0.0; |
1352 |
dp_xni = 0.0; |
1353 |
dp_atime = 0.0; |
1354 |
dp_stepp = 0.0; |
1355 |
dp_stepn = 0.0; |
1356 |
dp_step2 = 0.0; |
1357 |
|
1358 |
dp_iresfl = false; |
1359 |
dp_isynfl = false; |
1360 |
|
1361 |
} |
1362 |
|
1363 |
|
1364 |
///////////////////////////////////////////////////////////////////////////// |
1365 |
bool cNoradSDP4::DeepInit(double *eosq, double *sinio, double *cosio, |
1366 |
double *betao, double *aodp, double *theta2, |
1367 |
double *sing, double *cosg, double *betao2, |
1368 |
double *xmdot, double *omgdot, double *xnodott) |
1369 |
{ |
1370 |
eqsq = *eosq; |
1371 |
siniq = *sinio; |
1372 |
cosiq = *cosio; |
1373 |
rteqsq = *betao; |
1374 |
ao = *aodp; |
1375 |
cosq2 = *theta2; |
1376 |
sinomo = *sing; |
1377 |
cosomo = *cosg; |
1378 |
bsq = *betao2; |
1379 |
xlldot = *xmdot; |
1380 |
omgdt = *omgdot; |
1381 |
xnodot = *xnodott; |
1382 |
|
1383 |
// Deep space initialization |
1384 |
cJulian jd = m_Orbit.Epoch(); |
1385 |
|
1386 |
dp_thgr = jd.toGMST(); |
1387 |
|
1388 |
double eq = m_Orbit.Eccentricity(); |
1389 |
double aqnv = 1.0 / ao; |
1390 |
|
1391 |
dp_xqncl = m_Orbit.Inclination(); |
1392 |
|
1393 |
double xmao = m_Orbit.mnAnomaly(); |
1394 |
double xpidot = omgdt + xnodot; |
1395 |
double sinq = sin(m_Orbit.RAAN()); |
1396 |
double cosq = cos(m_Orbit.RAAN()); |
1397 |
|
1398 |
dp_omegaq = m_Orbit.ArgPerigee(); |
1399 |
|
1400 |
// Initialize lunar solar terms |
1401 |
double day = jd.FromJan1_12h_1900(); |
1402 |
|
1403 |
if (day != dpi_day) |
1404 |
{ |
1405 |
dpi_day = day; |
1406 |
dpi_xnodce = 4.5236020 - 9.2422029E-4 * day; |
1407 |
dpi_stem = sin(dpi_xnodce); |
1408 |
dpi_ctem = cos(dpi_xnodce); |
1409 |
dpi_zcosil = 0.91375164 - 0.03568096 * dpi_ctem; |
1410 |
dpi_zsinil = sqrt(1.0 - dpi_zcosil * dpi_zcosil); |
1411 |
dpi_zsinhl = 0.089683511 *dpi_stem / dpi_zsinil; |
1412 |
dpi_zcoshl = sqrt(1.0 - dpi_zsinhl * dpi_zsinhl); |
1413 |
dpi_c = 4.7199672 + 0.22997150 * day; |
1414 |
dpi_gam = 5.8351514 + 0.0019443680 * day; |
1415 |
dp_zmol = Fmod2p(dpi_c - dpi_gam); |
1416 |
dpi_zx = 0.39785416 * dpi_stem / dpi_zsinil; |
1417 |
dpi_zy = dpi_zcoshl * dpi_ctem + 0.91744867 * dpi_zsinhl * dpi_stem; |
1418 |
dpi_zx = AcTan(dpi_zx,dpi_zy) + dpi_gam - dpi_xnodce; |
1419 |
dpi_zcosgl = cos(dpi_zx); |
1420 |
dpi_zsingl = sin(dpi_zx); |
1421 |
dp_zmos = 6.2565837 + 0.017201977 * day; |
1422 |
dp_zmos = Fmod2p(dp_zmos); |
1423 |
} |
1424 |
|
1425 |
dp_savtsn = 1.0e20; |
1426 |
|
1427 |
double zcosg = zcosgs; |
1428 |
double zsing = zsings; |
1429 |
double zcosi = zcosis; |
1430 |
double zsini = zsinis; |
1431 |
double zcosh = cosq; |
1432 |
double zsinh = sinq; |
1433 |
double cc = c1ss; |
1434 |
double zn = zns; |
1435 |
double ze = zes; |
1436 |
// double zmo = dp_zmos; |
1437 |
double xnoi = 1.0 / m_xnodp; |
1438 |
|
1439 |
double a1; double a3; double a7; double a8; double a9; double a10; |
1440 |
double a2; double a4; double a5; double a6; double x1; double x2; |
1441 |
double x3; double x4; double x5; double x6; double x7; double x8; |
1442 |
double z31; double z32; double z33; double z1; double z2; double z3; |
1443 |
double z11; double z12; double z13; double z21; double z22; double z23; |
1444 |
double s3; double s2; double s4; double s1; double s5; double s6; |
1445 |
double s7; |
1446 |
double se = 0.0; double si = 0.0; double sl = 0.0; |
1447 |
double sgh = 0.0; double sh = 0.0; |
1448 |
|
1449 |
// Apply the solar and lunar terms on the first pass, then re-apply the |
1450 |
// solar terms again on the second pass. |
1451 |
|
1452 |
for (int pass = 1; pass <= 2; pass++) |
1453 |
{ |
1454 |
// Do solar terms |
1455 |
a1 = zcosg * zcosh + zsing * zcosi * zsinh; |
1456 |
a3 = -zsing * zcosh + zcosg * zcosi * zsinh; |
1457 |
a7 = -zcosg * zsinh + zsing * zcosi * zcosh; |
1458 |
a8 = zsing * zsini; |
1459 |
a9 = zsing * zsinh + zcosg * zcosi * zcosh; |
1460 |
a10 = zcosg * zsini; |
1461 |
a2 = cosiq * a7 + siniq * a8; |
1462 |
a4 = cosiq * a9 + siniq * a10; |
1463 |
a5 = -siniq * a7 + cosiq * a8; |
1464 |
a6 = -siniq * a9 + cosiq * a10; |
1465 |
x1 = a1 * cosomo + a2 * sinomo; |
1466 |
x2 = a3 * cosomo + a4 * sinomo; |
1467 |
x3 = -a1 * sinomo + a2 * cosomo; |
1468 |
x4 = -a3 * sinomo + a4 * cosomo; |
1469 |
x5 = a5 * sinomo; |
1470 |
x6 = a6 * sinomo; |
1471 |
x7 = a5 * cosomo; |
1472 |
x8 = a6 * cosomo; |
1473 |
z31 = 12.0 * x1 * x1 - 3.0 * x3 * x3; |
1474 |
z32 = 24.0 * x1 * x2 - 6.0 * x3 * x4; |
1475 |
z33 = 12.0 * x2 * x2 - 3.0 * x4 * x4; |
1476 |
z1 = 3.0 * (a1 * a1 + a2 * a2) + z31 * eqsq; |
1477 |
z2 = 6.0 * (a1 * a3 + a2 * a4) + z32 * eqsq; |
1478 |
z3 = 3.0 * (a3 * a3 + a4 * a4) + z33 * eqsq; |
1479 |
z11 = -6.0 * a1 * a5 + eqsq*(-24.0 * x1 * x7 - 6.0 * x3 * x5); |
1480 |
z12 = -6.0 * (a1 * a6 + a3 * a5) + |
1481 |
eqsq * (-24.0 * (x2 * x7 + x1 * x8) - 6.0 * (x3 * x6 + x4 * x5)); |
1482 |
z13 = -6.0 * a3 * a6 + eqsq * (-24.0 * x2 * x8 - 6.0 * x4 * x6); |
1483 |
z21 = 6.0 * a2 * a5 + eqsq * (24.0 * x1 * x5 - 6.0 * x3 * x7); |
1484 |
z22 = 6.0*(a4 * a5 + a2 * a6) + |
1485 |
eqsq * (24.0 * (x2 * x5 + x1 * x6) - 6.0 * (x4 * x7 + x3 * x8)); |
1486 |
z23 = 6.0 * a4 * a6 + eqsq*(24.0 * x2 * x6 - 6.0 * x4 * x8); |
1487 |
z1 = z1 + z1 + bsq * z31; |
1488 |
z2 = z2 + z2 + bsq * z32; |
1489 |
z3 = z3 + z3 + bsq * z33; |
1490 |
s3 = cc * xnoi; |
1491 |
s2 = -0.5 * s3/rteqsq; |
1492 |
s4 = s3 * rteqsq; |
1493 |
s1 = -15.0 * eq * s4; |
1494 |
s5 = x1 * x3 + x2 * x4; |
1495 |
s6 = x2 * x3 + x1 * x4; |
1496 |
s7 = x2 * x4 - x1 * x3; |
1497 |
se = s1 * zn * s5; |
1498 |
si = s2 * zn * (z11 + z13); |
1499 |
sl = -zn * s3 * (z1 + z3 - 14.0 - 6.0 * eqsq); |
1500 |
sgh = s4 * zn * (z31 + z33 - 6.0); |
1501 |
sh = -zn * s2 * (z21 + z23); |
1502 |
|
1503 |
if (dp_xqncl < 5.2359877E-2) |
1504 |
sh = 0.0; |
1505 |
|
1506 |
dp_ee2 = 2.0 * s1 * s6; |
1507 |
dp_e3 = 2.0 * s1 * s7; |
1508 |
dp_xi2 = 2.0 * s2 * z12; |
1509 |
dp_xi3 = 2.0 * s2 * (z13 - z11); |
1510 |
dp_xl2 = -2.0 * s3 * z2; |
1511 |
dp_xl3 = -2.0 * s3 * (z3 - z1); |
1512 |
dp_xl4 = -2.0 * s3 * (-21.0 - 9.0 * eqsq) * ze; |
1513 |
dp_xgh2 = 2.0 * s4 * z32; |
1514 |
dp_xgh3 = 2.0 * s4 * (z33 - z31); |
1515 |
dp_xgh4 = -18.0 * s4 * ze; |
1516 |
dp_xh2 = -2.0 * s2 * z22; |
1517 |
dp_xh3 = -2.0 * s2 * (z23 - z21); |
1518 |
|
1519 |
if (pass == 1) |
1520 |
{ |
1521 |
// Do lunar terms |
1522 |
dp_sse = se; |
1523 |
dp_ssi = si; |
1524 |
dp_ssl = sl; |
1525 |
dp_ssh = sh / siniq; |
1526 |
dp_ssg = sgh - cosiq * dp_ssh; |
1527 |
dp_se2 = dp_ee2; |
1528 |
dp_si2 = dp_xi2; |
1529 |
dp_sl2 = dp_xl2; |
1530 |
dp_sgh2 = dp_xgh2; |
1531 |
dp_sh2 = dp_xh2; |
1532 |
dp_se3 = dp_e3; |
1533 |
dp_si3 = dp_xi3; |
1534 |
dp_sl3 = dp_xl3; |
1535 |
dp_sgh3 = dp_xgh3; |
1536 |
dp_sh3 = dp_xh3; |
1537 |
dp_sl4 = dp_xl4; |
1538 |
dp_sgh4 = dp_xgh4; |
1539 |
zcosg = dpi_zcosgl; |
1540 |
zsing = dpi_zsingl; |
1541 |
zcosi = dpi_zcosil; |
1542 |
zsini = dpi_zsinil; |
1543 |
zcosh = dpi_zcoshl * cosq + dpi_zsinhl * sinq; |
1544 |
zsinh = sinq * dpi_zcoshl - cosq * dpi_zsinhl; |
1545 |
zn = znl; |
1546 |
cc = c1l; |
1547 |
ze = zel; |
1548 |
// zmo = dp_zmol; |
1549 |
} |
1550 |
} |
1551 |
|
1552 |
dp_sse = dp_sse + se; |
1553 |
dp_ssi = dp_ssi + si; |
1554 |
dp_ssl = dp_ssl + sl; |
1555 |
dp_ssg = dp_ssg + sgh - cosiq / siniq * sh; |
1556 |
dp_ssh = dp_ssh + sh / siniq; |
1557 |
|
1558 |
// Geopotential resonance initialization for 12 hour orbits |
1559 |
dp_iresfl = false; |
1560 |
dp_isynfl = false; |
1561 |
|
1562 |
bool bInitOnExit = true; |
1563 |
double g310; |
1564 |
double f220; |
1565 |
double bfact = 0.0; |
1566 |
|
1567 |
if ((m_xnodp >= 0.0052359877) || (m_xnodp <= 0.0034906585)) |
1568 |
{ |
1569 |
if ((m_xnodp < 8.26E-3) || (m_xnodp > 9.24E-3) || (eq < 0.5)) |
1570 |
{ |
1571 |
bInitOnExit = false; |
1572 |
} |
1573 |
else |
1574 |
{ |
1575 |
dp_iresfl = true; |
1576 |
|
1577 |
double eoc = eq * eqsq; |
1578 |
double g201 = -0.306 - (eq - 0.64) * 0.440; |
1579 |
|
1580 |
double g211; double g322; |
1581 |
|
1582 |
double g410; double g422; |
1583 |
double g520; |
1584 |
|
1585 |
if (eq <= 0.65) |
1586 |
{ |
1587 |
g211 = 3.616 - 13.247 * eq + 16.290 * eqsq; |
1588 |
g310 = -19.302 + 117.390 * eq - 228.419 * eqsq + 156.591 * eoc; |
1589 |
g322 = -18.9068 + 109.7927 * eq - 214.6334 * eqsq + 146.5816 * eoc; |
1590 |
g410 = -41.122 + 242.694 * eq - 471.094 * eqsq + 313.953 * eoc; |
1591 |
g422 = -146.407 + 841.880 * eq - 1629.014 * eqsq + 1083.435 * eoc; |
1592 |
g520 = -532.114 + 3017.977 * eq - 5740.0 * eqsq + 3708.276 * eoc; |
1593 |
} |
1594 |
else |
1595 |
{ |
1596 |
g211 = -72.099 + 331.819 * eq - 508.738 * eqsq + 266.724 * eoc; |
1597 |
g310 = -346.844 + 1582.851 * eq - 2415.925 * eqsq + 1246.113 * eoc; |
1598 |
g322 = -342.585 + 1554.908 * eq - 2366.899 * eqsq + 1215.972 * eoc; |
1599 |
g410 = -1052.797 + 4758.686 * eq - 7193.992 * eqsq + 3651.957 * eoc; |
1600 |
g422 = -3581.69 + 16178.11 * eq - 24462.77 * eqsq + 12422.52 * eoc; |
1601 |
|
1602 |
if (eq <= 0.715) |
1603 |
g520 = 1464.74 - 4664.75 * eq + 3763.64 * eqsq; |
1604 |
else |
1605 |
g520 = -5149.66 + 29936.92 * eq - 54087.36 * eqsq + 31324.56 * eoc; |
1606 |
} |
1607 |
|
1608 |
double g533; |
1609 |
double g521; |
1610 |
double g532; |
1611 |
|
1612 |
if (eq < 0.7) |
1613 |
{ |
1614 |
g533 = -919.2277 + 4988.61 * eq - 9064.77 * eqsq + 5542.21 * eoc; |
1615 |
g521 = -822.71072 + 4568.6173 * eq - 8491.4146 * eqsq + 5337.524 * eoc; |
1616 |
g532 = -853.666 + 4690.25 * eq - 8624.77 * eqsq + 5341.4 * eoc; |
1617 |
} |
1618 |
else |
1619 |
{ |
1620 |
g533 = -37995.78 + 161616.52 * eq - 229838.2 * eqsq + 109377.94 * eoc; |
1621 |
g521 = -51752.104 + 218913.95 * eq - 309468.16 * eqsq + 146349.42 * eoc; |
1622 |
g532 = -40023.88 + 170470.89 * eq - 242699.48 * eqsq + 115605.82 * eoc; |
1623 |
} |
1624 |
|
1625 |
double sini2 = siniq * siniq; |
1626 |
f220 = 0.75*(1.0 + 2.0 * cosiq + cosq2); |
1627 |
double f221 = 1.5 * sini2; |
1628 |
double f321 = 1.875 * siniq*(1.0 - 2.0 * cosiq - 3.0 * cosq2); |
1629 |
double f322 = -1.875 * siniq*(1.0 + 2.0 * cosiq - 3.0 * cosq2); |
1630 |
double f441 = 35.0 * sini2 * f220; |
1631 |
double f442 = 39.3750 * sini2 * sini2; |
1632 |
double f522 = 9.84375 * siniq*(sini2*(1.0 - 2.0 * cosiq - 5.0 * cosq2) + |
1633 |
0.33333333*(-2.0 + 4.0 * cosiq + 6.0 * cosq2)); |
1634 |
double f523 = siniq*(4.92187512 * sini2*(-2.0 - 4.0 * cosiq + 10.0 * cosq2) + |
1635 |
6.56250012 * (1.0 + 2.0 * cosiq - 3.0 * cosq2)); |
1636 |
double f542 = 29.53125 * siniq*(2.0 - 8.0 * cosiq + cosq2 * (-12.0 + 8.0 * cosiq + 10.0 * cosq2)); |
1637 |
double f543 = 29.53125 * siniq*(-2.0 - 8.0 * cosiq + cosq2 * (12.0 + 8.0 * cosiq - 10.0 * cosq2)); |
1638 |
double xno2 = m_xnodp * m_xnodp; |
1639 |
double ainv2 = aqnv * aqnv; |
1640 |
double temp1 = 3.0 * xno2 * ainv2; |
1641 |
double temp = temp1 * root22; |
1642 |
|
1643 |
dp_d2201 = temp * f220 * g201; |
1644 |
dp_d2211 = temp * f221 * g211; |
1645 |
temp1 = temp1 * aqnv; |
1646 |
temp = temp1 * root32; |
1647 |
dp_d3210 = temp * f321 * g310; |
1648 |
dp_d3222 = temp * f322 * g322; |
1649 |
temp1 = temp1 * aqnv; |
1650 |
temp = 2.0 * temp1 * root44; |
1651 |
dp_d4410 = temp * f441 * g410; |
1652 |
dp_d4422 = temp * f442 * g422; |
1653 |
temp1 = temp1 * aqnv; |
1654 |
temp = temp1 * root52; |
1655 |
dp_d5220 = temp * f522 * g520; |
1656 |
dp_d5232 = temp * f523 * g532; |
1657 |
temp = 2.0 * temp1 * root54; |
1658 |
dp_d5421 = temp * f542 * g521; |
1659 |
dp_d5433 = temp * f543 * g533; |
1660 |
dp_xlamo = xmao + m_Orbit.RAAN() + m_Orbit.RAAN() - dp_thgr - dp_thgr; |
1661 |
bfact = xlldot + xnodot + xnodot - thdt - thdt; |
1662 |
bfact = bfact + dp_ssl + dp_ssh + dp_ssh; |
1663 |
} |
1664 |
} |
1665 |
else |
1666 |
{ |
1667 |
// Synchronous resonance terms initialization |
1668 |
dp_iresfl = true; |
1669 |
dp_isynfl = true; |
1670 |
double g200 = 1.0 + eqsq * (-2.5 + 0.8125 * eqsq); |
1671 |
g310 = 1.0 + 2.0 * eqsq; |
1672 |
double g300 = 1.0 + eqsq * (-6.0 + 6.60937 * eqsq); |
1673 |
f220 = 0.75 * (1.0 + cosiq) * (1.0 + cosiq); |
1674 |
double f311 = 0.9375 * siniq * siniq * (1.0 + 3 * cosiq) - 0.75 * (1.0 + cosiq); |
1675 |
double f330 = 1.0 + cosiq; |
1676 |
f330 = 1.875 * f330 * f330 * f330; |
1677 |
dp_del1 = 3.0 * m_xnodp * m_xnodp * aqnv * aqnv; |
1678 |
dp_del2 = 2.0 * dp_del1 * f220 * g200 * q22; |
1679 |
dp_del3 = 3.0 * dp_del1 * f330 * g300 * q33 * aqnv; |
1680 |
dp_del1 = dp_del1 * f311 * g310 * q31 * aqnv; |
1681 |
dp_fasx2 = 0.13130908; |
1682 |
dp_fasx4 = 2.8843198; |
1683 |
dp_fasx6 = 0.37448087; |
1684 |
dp_xlamo = xmao + m_Orbit.RAAN() + m_Orbit.ArgPerigee() - dp_thgr; |
1685 |
bfact = xlldot + xpidot - thdt; |
1686 |
bfact = bfact + dp_ssl + dp_ssg + dp_ssh; |
1687 |
} |
1688 |
|
1689 |
if (bInitOnExit) |
1690 |
{ |
1691 |
dp_xfact = bfact - m_xnodp; |
1692 |
|
1693 |
// Initialize integrator |
1694 |
dp_xli = dp_xlamo; |
1695 |
dp_xni = m_xnodp; |
1696 |
dp_atime = 0.0; |
1697 |
dp_stepp = 720.0; |
1698 |
dp_stepn = -720.0; |
1699 |
dp_step2 = 259200.0; |
1700 |
} |
1701 |
|
1702 |
*eosq = eqsq; |
1703 |
*sinio = siniq; |
1704 |
*cosio = cosiq; |
1705 |
*betao = rteqsq; |
1706 |
*aodp = ao; |
1707 |
*theta2 = cosq2; |
1708 |
*sing = sinomo; |
1709 |
*cosg = cosomo; |
1710 |
*betao2 = bsq; |
1711 |
*xmdot = xlldot; |
1712 |
*omgdot = omgdt; |
1713 |
*xnodott = xnodot; |
1714 |
|
1715 |
return true; |
1716 |
} |
1717 |
|
1718 |
////////////////////////////////////////////////////////////////////////////// |
1719 |
bool cNoradSDP4::DeepCalcDotTerms(double *pxndot, double *pxnddt, double *pxldot) |
1720 |
{ |
1721 |
// Dot terms calculated |
1722 |
if (dp_isynfl) |
1723 |
{ |
1724 |
*pxndot = dp_del1 * sin(dp_xli - dp_fasx2) + |
1725 |
dp_del2 * sin(2.0 * (dp_xli - dp_fasx4)) + |
1726 |
dp_del3 * sin(3.0 * (dp_xli - dp_fasx6)); |
1727 |
*pxnddt = dp_del1 * cos(dp_xli - dp_fasx2) + |
1728 |
2.0 * dp_del2 * cos(2.0 * (dp_xli - dp_fasx4)) + |
1729 |
3.0 * dp_del3 * cos(3.0 * (dp_xli - dp_fasx6)); |
1730 |
} |
1731 |
else |
1732 |
{ |
1733 |
double xomi = dp_omegaq + omgdt * dp_atime; |
1734 |
double x2omi = xomi + xomi; |
1735 |
double x2li = dp_xli + dp_xli; |
1736 |
|
1737 |
*pxndot = dp_d2201 * sin(x2omi + dp_xli - g22) + |
1738 |
dp_d2211 * sin(dp_xli - g22) + |
1739 |
dp_d3210 * sin(xomi + dp_xli - g32) + |
1740 |
dp_d3222 * sin(-xomi + dp_xli - g32) + |
1741 |
dp_d4410 * sin(x2omi + x2li - g44) + |
1742 |
dp_d4422 * sin(x2li - g44) + |
1743 |
dp_d5220 * sin(xomi + dp_xli - g52) + |
1744 |
dp_d5232 * sin(-xomi + dp_xli - g52) + |
1745 |
dp_d5421 * sin(xomi + x2li - g54) + |
1746 |
dp_d5433 * sin(-xomi + x2li - g54); |
1747 |
|
1748 |
*pxnddt = dp_d2201 * cos(x2omi + dp_xli - g22) + |
1749 |
dp_d2211 * cos(dp_xli - g22) + |
1750 |
dp_d3210 * cos(xomi + dp_xli - g32) + |
1751 |
dp_d3222 * cos(-xomi + dp_xli - g32) + |
1752 |
dp_d5220 * cos(xomi + dp_xli - g52) + |
1753 |
dp_d5232 * cos(-xomi + dp_xli - g52) + |
1754 |
2.0 * (dp_d4410 * cos(x2omi + x2li - g44) + |
1755 |
dp_d4422 * cos(x2li - g44) + |
1756 |
dp_d5421 * cos(xomi + x2li - g54) + |
1757 |
dp_d5433 * cos(-xomi + x2li - g54)); |
1758 |
} |
1759 |
|
1760 |
*pxldot = dp_xni + dp_xfact; |
1761 |
*pxnddt = (*pxnddt) * (*pxldot); |
1762 |
|
1763 |
return true; |
1764 |
} |
1765 |
|
1766 |
////////////////////////////////////////////////////////////////////////////// |
1767 |
void cNoradSDP4::DeepCalcIntegrator(double *pxndot, double *pxnddt, |
1768 |
double *pxldot, const double &delt) |
1769 |
{ |
1770 |
DeepCalcDotTerms(pxndot, pxnddt, pxldot); |
1771 |
|
1772 |
dp_xli = dp_xli + (*pxldot) * delt + (*pxndot) * dp_step2; |
1773 |
dp_xni = dp_xni + (*pxndot) * delt + (*pxnddt) * dp_step2; |
1774 |
dp_atime = dp_atime + delt; |
1775 |
} |
1776 |
|
1777 |
////////////////////////////////////////////////////////////////////////////// |
1778 |
bool cNoradSDP4::DeepSecular(double *xmdf, double *omgadf, double *xnode, |
1779 |
double *emm, double *xincc, double *xnn, |
1780 |
double *tsince) |
1781 |
{ |
1782 |
xll = *xmdf; |
1783 |
omgasm = *omgadf; |
1784 |
xnodes = *xnode; |
1785 |
xn = *xnn; |
1786 |
t = *tsince; |
1787 |
|
1788 |
// Deep space secular effects |
1789 |
xll = xll + dp_ssl * t; |
1790 |
omgasm = omgasm + dp_ssg * t; |
1791 |
xnodes = xnodes + dp_ssh * t; |
1792 |
_em = m_Orbit.Eccentricity() + dp_sse * t; |
1793 |
xinc = m_Orbit.Inclination() + dp_ssi * t; |
1794 |
|
1795 |
if (xinc < 0.0) |
1796 |
{ |
1797 |
xinc = -xinc; |
1798 |
xnodes = xnodes + PI; |
1799 |
omgasm = omgasm - PI; |
1800 |
} |
1801 |
|
1802 |
double xnddt = 0.0; |
1803 |
double xndot = 0.0; |
1804 |
double xldot = 0.0; |
1805 |
double ft = 0.0; |
1806 |
double delt = 0.0; |
1807 |
|
1808 |
bool fDone = false; |
1809 |
|
1810 |
if (dp_iresfl) |
1811 |
{ |
1812 |
while (!fDone) |
1813 |
{ |
1814 |
if ((dp_atime == 0.0) || |
1815 |
((t >= 0.0) && (dp_atime < 0.0)) || |
1816 |
((t < 0.0) && (dp_atime >= 0.0))) |
1817 |
{ |
1818 |
if (t < 0) |
1819 |
delt = dp_stepn; |
1820 |
else |
1821 |
delt = dp_stepp; |
1822 |
|
1823 |
// Epoch restart |
1824 |
dp_atime = 0.0; |
1825 |
dp_xni = m_xnodp; |
1826 |
dp_xli = dp_xlamo; |
1827 |
|
1828 |
fDone = true; |
1829 |
} |
1830 |
else |
1831 |
{ |
1832 |
if (fabs(t) < fabs(dp_atime)) |
1833 |
{ |
1834 |
delt = dp_stepp; |
1835 |
|
1836 |
if (t >= 0.0) |
1837 |
delt = dp_stepn; |
1838 |
|
1839 |
DeepCalcIntegrator(&xndot, &xnddt, &xldot, delt); |
1840 |
} |
1841 |
else |
1842 |
{ |
1843 |
delt = dp_stepn; |
1844 |
|
1845 |
delt = dp_stepp; |
1846 |
|
1847 |
fDone = true; |
1848 |
} |
1849 |
} |
1850 |
} |
1851 |
|
1852 |
while (fabs(t - dp_atime) >= dp_stepp) |
1853 |
{ |
1854 |
DeepCalcIntegrator(&xndot, &xnddt, &xldot, delt); |
1855 |
} |
1856 |
|
1857 |
ft = t - dp_atime; |
1858 |
|
1859 |
DeepCalcDotTerms(&xndot, &xnddt, &xldot); |
1860 |
|
1861 |
xn = dp_xni + xndot * ft + xnddt * ft * ft * 0.5; |
1862 |
|
1863 |
double xl = dp_xli + xldot * ft + xndot * ft * ft * 0.5; |
1864 |
double temp = -xnodes + dp_thgr + t * thdt; |
1865 |
|
1866 |
xll = xl - omgasm + temp; |
1867 |
|
1868 |
if (!dp_isynfl) |
1869 |
xll = xl + temp + temp; |
1870 |
} |
1871 |
|
1872 |
*xmdf = xll; |
1873 |
*omgadf = omgasm; |
1874 |
*xnode = xnodes; |
1875 |
*emm = _em; |
1876 |
*xincc = xinc; |
1877 |
*xnn = xn; |
1878 |
*tsince = t; |
1879 |
|
1880 |
return true; |
1881 |
} |
1882 |
|
1883 |
////////////////////////////////////////////////////////////////////////////// |
1884 |
bool cNoradSDP4::DeepPeriodics(double *e, double *xincc, |
1885 |
double *omgadf, double *xnode, |
1886 |
double *xmam) |
1887 |
{ |
1888 |
_em = *e; |
1889 |
xinc = *xincc; |
1890 |
omgasm = *omgadf; |
1891 |
xnodes = *xnode; |
1892 |
xll = *xmam; |
1893 |
|
1894 |
// Lunar-solar periodics |
1895 |
double sinis = sin(xinc); |
1896 |
double cosis = cos(xinc); |
1897 |
|
1898 |
double sghs = 0.0; |
1899 |
double shs = 0.0; |
1900 |
double sh1 = 0.0; |
1901 |
double pe = 0.0; |
1902 |
double pinc = 0.0; |
1903 |
double pl = 0.0; |
1904 |
double sghl = 0.0; |
1905 |
|
1906 |
if (fabs(dp_savtsn - t) >= 30.0) |
1907 |
{ |
1908 |
dp_savtsn = t; |
1909 |
|
1910 |
double zm = dp_zmos + zns * t; |
1911 |
double zf = zm + 2.0 * zes * sin(zm); |
1912 |
double sinzf = sin(zf); |
1913 |
double f2 = 0.5 * sinzf * sinzf - 0.25; |
1914 |
double f3 = -0.5 * sinzf * cos(zf); |
1915 |
double ses = dp_se2 * f2 + dp_se3 * f3; |
1916 |
double sis = dp_si2 * f2 + dp_si3 * f3; |
1917 |
double sls = dp_sl2 * f2 + dp_sl3 * f3 + dp_sl4 * sinzf; |
1918 |
|
1919 |
sghs = dp_sgh2 * f2 + dp_sgh3 * f3 + dp_sgh4 * sinzf; |
1920 |
shs = dp_sh2 * f2 + dp_sh3 * f3; |
1921 |
zm = dp_zmol + znl * t; |
1922 |
zf = zm + 2.0 * zel * sin(zm); |
1923 |
sinzf = sin(zf); |
1924 |
f2 = 0.5 * sinzf * sinzf - 0.25; |
1925 |
f3 = -0.5 * sinzf * cos(zf); |
1926 |
|
1927 |
double sel = dp_ee2 * f2 + dp_e3 * f3; |
1928 |
double sil = dp_xi2 * f2 + dp_xi3 * f3; |
1929 |
double sll = dp_xl2 * f2 + dp_xl3 * f3 + dp_xl4 * sinzf; |
1930 |
|
1931 |
sghl = dp_xgh2 * f2 + dp_xgh3 * f3 + dp_xgh4 * sinzf; |
1932 |
sh1 = dp_xh2 * f2 + dp_xh3 * f3; |
1933 |
pe = ses + sel; |
1934 |
pinc = sis + sil; |
1935 |
pl = sls + sll; |
1936 |
} |
1937 |
|
1938 |
double pgh = sghs + sghl; |
1939 |
double ph = shs + sh1; |
1940 |
xinc = xinc + pinc; |
1941 |
_em = _em + pe; |
1942 |
|
1943 |
if (dp_xqncl >= 0.2) |
1944 |
{ |
1945 |
// Apply periodics directly |
1946 |
ph = ph / siniq; |
1947 |
pgh = pgh - cosiq * ph; |
1948 |
omgasm = omgasm + pgh; |
1949 |
xnodes = xnodes + ph; |
1950 |
xll = xll + pl; |
1951 |
} |
1952 |
else |
1953 |
{ |
1954 |
// Apply periodics with Lyddane modification |
1955 |
double sinok = sin(xnodes); |
1956 |
double cosok = cos(xnodes); |
1957 |
double alfdp = sinis * sinok; |
1958 |
double betdp = sinis * cosok; |
1959 |
double dalf = ph * cosok + pinc * cosis * sinok; |
1960 |
double dbet = -ph * sinok + pinc * cosis * cosok; |
1961 |
|
1962 |
alfdp = alfdp + dalf; |
1963 |
betdp = betdp + dbet; |
1964 |
|
1965 |
double xls = xll + omgasm + cosis * xnodes; |
1966 |
double dls = pl + pgh - pinc * xnodes * sinis; |
1967 |
|
1968 |
xls = xls + dls; |
1969 |
xnodes = AcTan(alfdp, betdp); |
1970 |
xll = xll + pl; |
1971 |
omgasm = xls - xll - cos(xinc) * xnodes; |
1972 |
} |
1973 |
|
1974 |
*e = _em; |
1975 |
*xincc = xinc; |
1976 |
*omgadf = omgasm; |
1977 |
|
1978 |
*xnode = xnodes; |
1979 |
*xmam = xll; |
1980 |
|
1981 |
return true; |
1982 |
} |
1983 |
|
1984 |
////////////////////////////////////////////////////////////////////////////// |
1985 |
// getPosition() |
1986 |
// This procedure returns the ECI position and velocity for the satellite |
1987 |
// in the orbit at the given number of minutes since the TLE epoch time |
1988 |
// using the NORAD Simplified General Perturbation 4, "deep space" orbit |
1989 |
// model. |
1990 |
// |
1991 |
// tsince - Time in minutes since the TLE epoch (GMT). |
1992 |
// pECI - pointer to location to store the ECI data. |
1993 |
// To convert the returned ECI position vector to km, |
1994 |
// multiply each component by: |
1995 |
// (XKMPER_WGS72 / AE). |
1996 |
// To convert the returned ECI velocity vector to km/sec, |
1997 |
// multiply each component by: |
1998 |
// (XKMPER_WGS72 / AE) * (MIN_PER_DAY / 86400). |
1999 |
bool cNoradSDP4::getPosition(double tsince, cEci &eci) |
2000 |
{ |
2001 |
DeepInit(&m_eosq, &m_sinio, &m_cosio, &m_betao, &m_aodp, &m_theta2, |
2002 |
&m_sing, &m_cosg, &m_betao2, &m_xmdot, &m_omgdot, &m_xnodot); |
2003 |
|
2004 |
// Update for secular gravity and atmospheric drag |
2005 |
double xmdf = m_Orbit.mnAnomaly() + m_xmdot * tsince; |
2006 |
double omgadf = m_Orbit.ArgPerigee() + m_omgdot * tsince; |
2007 |
double xnoddf = m_Orbit.RAAN() + m_xnodot * tsince; |
2008 |
double tsq = tsince * tsince; |
2009 |
double xnode = xnoddf + m_xnodcf * tsq; |
2010 |
double tempa = 1.0 - m_c1 * tsince; |
2011 |
double tempe = m_Orbit.BStar() * m_c4 * tsince; |
2012 |
double templ = m_t2cof * tsq; |
2013 |
double xn = m_xnodp; |
2014 |
double em; |
2015 |
double xinc; |
2016 |
|
2017 |
DeepSecular(&xmdf, &omgadf, &xnode, &em, &xinc, &xn, &tsince); |
2018 |
|
2019 |
double a = pow(XKE / xn, TWOTHRD) * sqr(tempa); |
2020 |
double e = em - tempe; |
2021 |
double xmam = xmdf + m_xnodp * templ; |
2022 |
|
2023 |
DeepPeriodics(&e, &xinc, &omgadf, &xnode, &xmam); |
2024 |
|
2025 |
double xl = xmam + omgadf + xnode; |
2026 |
|
2027 |
xn = XKE / pow(a, 1.5); |
2028 |
|
2029 |
return FinalPosition(xinc, omgadf, e, a, xl, xnode, xn, tsince, eci); |
2030 |
} |
2031 |
|
2032 |
|
2033 |
// cOrbit.cpp |
2034 |
// |
2035 |
// Copyright (c) 2002-2003 Michael F. Henry |
2036 |
// |
2037 |
// mfh 11/15/2003 |
2038 |
// |
2039 |
////////////////////////////////////////////////////////////////////// |
2040 |
cOrbit::cOrbit(const cTle &tle) : |
2041 |
m_tle(tle), |
2042 |
m_pNoradModel(NULL) |
2043 |
{ |
2044 |
m_tle.Initialize(); |
2045 |
|
2046 |
int epochYear = (int)m_tle.getField(cTle::FLD_EPOCHYEAR); |
2047 |
double epochDay = m_tle.getField(cTle::FLD_EPOCHDAY ); |
2048 |
|
2049 |
if (epochYear < 57) |
2050 |
epochYear += 2000; |
2051 |
else |
2052 |
epochYear += 1900; |
2053 |
|
2054 |
m_jdEpoch = cJulian(epochYear, epochDay); |
2055 |
|
2056 |
m_secPeriod = -1.0; |
2057 |
|
2058 |
// Recover the original mean motion and semimajor axis from the |
2059 |
// input elements. |
2060 |
double mm = mnMotion(); |
2061 |
double rpmin = mm * 2 * PI / MIN_PER_DAY; // rads per minute |
2062 |
|
2063 |
double a1 = pow(XKE / rpmin, TWOTHRD); |
2064 |
double e = Eccentricity(); |
2065 |
double i = Inclination(); |
2066 |
double temp = (1.5 * CK2 * (3.0 * sqr(cos(i)) - 1.0) / |
2067 |
pow(1.0 - e * e, 1.5)); |
2068 |
double delta1 = temp / (a1 * a1); |
2069 |
double a0 = a1 * |
2070 |
(1.0 - delta1 * |
2071 |
((1.0 / 3.0) + delta1 * |
2072 |
(1.0 + 134.0 / 81.0 * delta1))); |
2073 |
|
2074 |
double delta0 = temp / (a0 * a0); |
2075 |
|
2076 |
m_mnMotionRec = rpmin / (1.0 + delta0); |
2077 |
m_aeAxisSemiMinorRec = a0 / (1.0 - delta0); |
2078 |
m_aeAxisSemiMajorRec = m_aeAxisSemiMinorRec / sqrt(1.0 - (e * e)); |
2079 |
m_kmPerigeeRec = XKMPER_WGS72 * (m_aeAxisSemiMajorRec * (1.0 - e) - AE); |
2080 |
m_kmApogeeRec = XKMPER_WGS72 * (m_aeAxisSemiMajorRec * (1.0 + e) - AE); |
2081 |
|
2082 |
if (2.0 * PI / m_mnMotionRec >= 225.0) |
2083 |
{ |
2084 |
// SDP4 - period >= 225 minutes. |
2085 |
m_pNoradModel = new cNoradSDP4(*this); |
2086 |
} |
2087 |
else |
2088 |
{ |
2089 |
// SGP4 - period < 225 minutes |
2090 |
m_pNoradModel = new cNoradSGP4(*this); |
2091 |
} |
2092 |
} |
2093 |
|
2094 |
///////////////////////////////////////////////////////////////////////////// |
2095 |
cOrbit::~cOrbit() |
2096 |
{ |
2097 |
delete m_pNoradModel; |
2098 |
} |
2099 |
|
2100 |
////////////////////////////////////////////////////////////////////////////// |
2101 |
// Return the period in seconds |
2102 |
double cOrbit::Period() const |
2103 |
{ |
2104 |
if (m_secPeriod < 0.0) |
2105 |
{ |
2106 |
// Calculate the period using the recovered mean motion. |
2107 |
if (m_mnMotionRec == 0) |
2108 |
m_secPeriod = 0.0; |
2109 |
else |
2110 |
m_secPeriod = (2 * PI) / m_mnMotionRec * 60.0; |
2111 |
} |
2112 |
|
2113 |
return m_secPeriod; |
2114 |
} |
2115 |
|
2116 |
////////////////////////////////////////////////////////////////////////////// |
2117 |
// Returns elapsed number of seconds from epoch to given time. |
2118 |
// Note: "Predicted" TLEs can have epochs in the future. |
2119 |
double cOrbit::TPlusEpoch(const cJulian &gmt) const |
2120 |
{ |
2121 |
return gmt.spanSec(Epoch()); |
2122 |
} |
2123 |
|
2124 |
////////////////////////////////////////////////////////////////////////////// |
2125 |
// Returns the mean anomaly in radians at given GMT. |
2126 |
// At epoch, the mean anomaly is given by the elements data. |
2127 |
double cOrbit::mnAnomaly(cJulian gmt) const |
2128 |
{ |
2129 |
double span = TPlusEpoch(gmt); |
2130 |
double P = Period(); |
2131 |
|
2132 |
assert(P != 0.0); |
2133 |
|
2134 |
return fmod(mnAnomaly() + (TWOPI * (span / P)), TWOPI); |
2135 |
} |
2136 |
|
2137 |
////////////////////////////////////////////////////////////////////////////// |
2138 |
// getPosition() |
2139 |
// This procedure returns the ECI position and velocity for the satellite |
2140 |
// at "tsince" minutes from the (GMT) TLE epoch. The vectors returned in |
2141 |
// the ECI object are kilometer-based. |
2142 |
// tsince - Time in minutes since the TLE epoch (GMT). |
2143 |
bool cOrbit::getPosition(double tsince, cEci *pEci) const |
2144 |
{ |
2145 |
bool rc; |
2146 |
|
2147 |
rc = m_pNoradModel->getPosition(tsince, *pEci); |
2148 |
|
2149 |
pEci->ae2km(); |
2150 |
|
2151 |
return rc; |
2152 |
} |
2153 |
|
2154 |
////////////////////////////////////////////////////////////////////////////// |
2155 |
// SatName() |
2156 |
// Return the name of the satellite. If requested, the NORAD number is |
2157 |
// appended to the end of the name, i.e., "ISS (ZARYA) #25544". |
2158 |
// The name of the satellite with the NORAD number appended is important |
2159 |
// because many satellites, especially debris, have the same name and |
2160 |
// would otherwise appear to be the same satellite in ouput data. |
2161 |
string cOrbit::SatName(bool fAppendId /* = false */) const |
2162 |
{ |
2163 |
string str = m_tle.getName(); |
2164 |
|
2165 |
if (fAppendId) |
2166 |
{ |
2167 |
string strId; |
2168 |
|
2169 |
m_tle.getField(cTle::FLD_NORADNUM, cTle::U_NATIVE, &strId); |
2170 |
str = str + " #" + strId; |
2171 |
} |
2172 |
|
2173 |
return str; |
2174 |
} |
2175 |
|