/[PAMELA software]/chewbacca/YodaProfiler/src/sgp4.cpp
ViewVC logotype

Contents of /chewbacca/YodaProfiler/src/sgp4.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.2 - (show annotations) (download)
Mon Jan 12 20:50:43 2009 UTC (16 years ago) by mocchiut
Branch: MAIN
CVS Tags: v1r02, v1r01
Changes since 1.1: +1 -1 lines
sgp4 bug fixed, new tle

1 //
2 // globals.cpp
3 //
4 #include <sgp4.h>
5
6 //////////////////////////////////////////////////////////////////////////////
7 double sqr(const double x)
8 {
9 return (x * x);
10 }
11
12 //////////////////////////////////////////////////////////////////////////////
13 double Fmod2p(const double arg)
14 {
15 double modu = fmod(arg, TWOPI);
16
17 if (modu < 0.0)
18 modu += TWOPI;
19
20 return modu;
21 }
22
23 //////////////////////////////////////////////////////////////////////////////
24 // AcTan()
25 // ArcTangent of sin(x) / cos(x). The advantage of this function over arctan()
26 // is that it returns the correct quadrant of the angle.
27 double AcTan(const double sinx, const double cosx)
28 {
29 double ret;
30
31 if (cosx == 0.0)
32 {
33 if (sinx > 0.0)
34 ret = PI / 2.0;
35 else
36 ret = 3.0 * PI / 2.0;
37 }
38 else
39 {
40 if (cosx > 0.0)
41 ret = atan(sinx / cosx);
42 else
43 ret = PI + atan(sinx / cosx);
44 }
45
46 return ret;
47 }
48
49 //////////////////////////////////////////////////////////////////////////////
50 double rad2deg(const double r)
51 {
52 const double DEG_PER_RAD = 180.0 / PI;
53 return r * DEG_PER_RAD;
54 }
55
56 //////////////////////////////////////////////////////////////////////////////
57 double deg2rad(const double d)
58 {
59 const double RAD_PER_DEG = PI / 180.0;
60 return d * RAD_PER_DEG;
61 }
62
63 //
64 // coord.cpp
65 //
66 // Copyright (c) 2003 Michael F. Henry
67 //
68
69 //////////////////////////////////////////////////////////////////////
70 // cCoordGeo Class
71 //////////////////////////////////////////////////////////////////////
72
73 cCoordGeo::cCoordGeo()
74 {
75 m_Lat = 0.0;
76 m_Lon = 0.0;
77 m_Alt = 0.0;
78 }
79
80 //////////////////////////////////////////////////////////////////////
81 // cCoordTopo Class
82 //////////////////////////////////////////////////////////////////////
83
84 cCoordTopo::cCoordTopo()
85 {
86 m_Az = 0.0;
87 m_El = 0.0;
88 m_Range = 0.0;
89 m_RangeRate = 0.0;
90
91 }
92
93
94
95 //
96 // cVector.cpp
97 //
98 // Copyright (c) 2001-2003 Michael F. Henry
99 //
100 //*****************************************************************************
101 // Multiply each component in the vector by 'factor'.
102 //*****************************************************************************
103 void cVector::Mul(double factor)
104 {
105 m_x *= factor;
106 m_y *= factor;
107 m_z *= factor;
108 m_w *= fabs(factor);
109 }
110
111 //*****************************************************************************
112 // Subtract a vector from this one.
113 //*****************************************************************************
114 void cVector::Sub(const cVector& vec)
115 {
116 m_x -= vec.m_x;
117 m_y -= vec.m_y;
118 m_z -= vec.m_z;
119 m_w -= vec.m_w;
120 }
121
122 //*****************************************************************************
123 // Calculate the angle between this vector and another
124 //*****************************************************************************
125 double cVector::Angle(const cVector& vec) const
126 {
127 return acos(Dot(vec) / (Magnitude() * vec.Magnitude()));
128 }
129
130 //*****************************************************************************
131 //
132 //*****************************************************************************
133 double cVector::Magnitude() const
134 {
135 return sqrt((m_x * m_x) +
136 (m_y * m_y) +
137 (m_z * m_z));
138 }
139
140 //*****************************************************************************
141 // Return the dot product
142 //*****************************************************************************
143 double cVector::Dot(const cVector& vec) const
144 {
145 return (m_x * vec.m_x) +
146 (m_y * vec.m_y) +
147 (m_z * vec.m_z);
148 }
149 //
150 // cJulian.cpp
151 //
152 // This class encapsulates Julian dates with the epoch of 12:00 noon (12:00 UT)
153 // on January 1, 4713 B.C. Some epoch dates:
154 // 01/01/1990 00:00 UTC - 2447892.5
155 // 01/01/1990 12:00 UTC - 2447893.0
156 // 01/01/2000 00:00 UTC - 2451544.5
157 // 01/01/2001 00:00 UTC - 2451910.5
158 //
159 // Note the Julian day begins at noon, which allows astronomers to have all
160 // the dates in a single observing session the same.
161 //
162 // References:
163 // "Astronomical Formulae for Calculators", Jean Meeus
164 // "Satellite Communications", Dennis Roddy, 2nd Edition, 1995.
165 //
166 // Copyright (c) 2003 Michael F. Henry
167 //
168 // mfh 12/24/2003
169 //
170
171 //////////////////////////////////////////////////////////////////////////////
172 // Create a Julian date object from a time_t object. time_t objects store the
173 // number of seconds since midnight UTC January 1, 1970.
174 cJulian::cJulian(time_t time)
175 {
176 struct tm *ptm = gmtime(&time);
177 assert(ptm);
178
179 int year = ptm->tm_year + 1900;
180 double day = ptm->tm_yday + 1 +
181 (ptm->tm_hour +
182 ((ptm->tm_min +
183 (ptm->tm_sec / 60.0)) / 60.0)) / 24.0;
184
185 Initialize(year, day);
186 }
187
188 //////////////////////////////////////////////////////////////////////////////
189 // Create a Julian date object from a year and day of year.
190 // Example parameters: year = 2001, day = 1.5 (Jan 1 12h)
191 cJulian::cJulian(int year, double day)
192 {
193 Initialize(year, day);
194 }
195
196 //////////////////////////////////////////////////////////////////////////////
197 // Create a Julian date object.
198 cJulian::cJulian(int year, // i.e., 2004
199 int mon, // 1..12
200 int day, // 1..31
201 int hour, // 0..23
202 int min, // 0..59
203 double sec /* = 0.0 */) // 0..(59.999999...)
204
205 {
206 // Calculate N, the day of the year (1..366)
207 int N;
208 int F1 = (int)((275.0 * mon) / 9.0);
209 int F2 = (int)((mon + 9.0) / 12.0);
210
211 if (IsLeapYear(year))
212 {
213 // Leap year
214 N = F1 - F2 + day - 30;
215 }
216 else
217 {
218 // Common year
219 N = F1 - (2 * F2) + day - 30;
220 }
221
222 double dblDay = N + (hour + (min + (sec / 60.0)) / 60.0) / 24.0;
223
224 Initialize(year, dblDay);
225 }
226
227 //////////////////////////////////////////////////////////////////////////////
228 void cJulian::Initialize(int year, double day)
229 {
230 // 1582 A.D.: 10 days removed from calendar
231 // 3000 A.D.: Arbitrary error checking limit
232 assert((year > 1582) && (year < 3000));
233 assert((day >= 0.0) && (day <= 366.7)); // 366.5
234
235 // Now calculate Julian date
236
237 year--;
238
239 // Centuries are not leap years unless they divide by 400
240 int A = (year / 100);
241 int B = 2 - A + (A / 4);
242
243 double NewYears = (int)(365.25 * year) +
244 (int)(30.6001 * 14) +
245 1720994.5 + B; // 1720994.5 = Oct 30, year -1
246
247 m_Date = NewYears + day;
248 }
249
250 //////////////////////////////////////////////////////////////////////////////
251 // getComponent()
252 // Return requested components of date.
253 // Year : Includes the century.
254 // Month: 1..12
255 // Day : 1..31 including fractional part
256 void cJulian::getComponent(int *pYear,
257 int *pMon /* = NULL */,
258 double *pDOM /* = NULL */) const
259 {
260 assert(pYear != NULL);
261
262 double jdAdj = getDate() + 0.5;
263 int Z = (int)jdAdj; // integer part
264 double F = jdAdj - Z; // fractional part
265 double alpha = (int)((Z - 1867216.25) / 36524.25);
266 double A = Z + 1 + alpha - (int)(alpha / 4.0);
267 double B = A + 1524.0;
268 int C = (int)((B - 122.1) / 365.25);
269 int D = (int)(C * 365.25);
270 int E = (int)((B - D) / 30.6001);
271
272 double DOM = B - D - (int)(E * 30.6001) + F;
273 int month = (E < 13.5) ? (E - 1) : (E - 13);
274 int year = (month > 2.5) ? (C - 4716) : (C - 4715);
275
276 *pYear = year;
277
278 if (pMon != NULL)
279 *pMon = month;
280
281 if (pDOM != NULL)
282 *pDOM = DOM;
283 }
284
285 //////////////////////////////////////////////////////////////////////////////
286 // toGMST()
287 // Calculate Greenwich Mean Sidereal Time for the Julian date. The return value
288 // is the angle, in radians, measuring eastward from the Vernal Equinox to the
289 // prime meridian. This angle is also referred to as "ThetaG" (Theta GMST).
290 //
291 // References:
292 // The 1992 Astronomical Almanac, page B6.
293 // Explanatory Supplement to the Astronomical Almanac, page 50.
294 // Orbital Coordinate Systems, Part III, Dr. T.S. Kelso, Satellite Times,
295 // Nov/Dec 1995
296 double cJulian::toGMST() const
297 {
298 const double UT = fmod(m_Date + 0.5, 1.0);
299 const double TU = (FromJan1_12h_2000() - UT) / 36525.0;
300
301 double GMST = 24110.54841 + TU *
302 (8640184.812866 + TU * (0.093104 - TU * 6.2e-06));
303
304 GMST = fmod(GMST + SEC_PER_DAY * OMEGA_E * UT, SEC_PER_DAY);
305
306 if (GMST < 0.0)
307 GMST += SEC_PER_DAY; // "wrap" negative modulo value
308
309 return (TWOPI * (GMST / SEC_PER_DAY));
310 }
311
312 //////////////////////////////////////////////////////////////////////////////
313 // toLMST()
314 // Calculate Local Mean Sidereal Time for given longitude (for this date).
315 // The longitude is assumed to be in radians measured west from Greenwich.
316 // The return value is the angle, in radians, measuring eastward from the
317 // Vernal Equinox to the given longitude.
318 double cJulian::toLMST(double lon) const
319 {
320 return fmod(toGMST() + lon, TWOPI);
321 }
322
323 //////////////////////////////////////////////////////////////////////////////
324 // toTime()
325 // Convert to type time_t
326 // Avoid using this function as it discards the fractional seconds of the
327 // time component.
328 time_t cJulian::toTime() const
329 {
330 int nYear;
331 int nMonth;
332 double dblDay;
333
334 getComponent(&nYear, &nMonth, &dblDay);
335
336 // dblDay is the fractional Julian Day (i.e., 29.5577).
337 // Save the whole number day in nDOM and convert dblDay to
338 // the fractional portion of day.
339 int nDOM = (int)dblDay;
340
341 dblDay -= nDOM;
342
343 const int SEC_PER_MIN = 60;
344 const int SEC_PER_HR = 60 * SEC_PER_MIN;
345 const int SEC_PER_DAY = 24 * SEC_PER_HR;
346
347 int secs = (int)((dblDay * SEC_PER_DAY) + 0.5);
348
349 // Create a "struct tm" type.
350 // NOTE:
351 // The "struct tm" type has a 1-second resolution. Any fractional
352 // component of the "seconds" time value is discarded.
353 struct tm tGMT;
354 memset(&tGMT, 0, sizeof(tGMT));
355
356 tGMT.tm_year = nYear - 1900; // 2001 is 101
357 tGMT.tm_mon = nMonth - 1; // January is 0
358 tGMT.tm_mday = nDOM; // First day is 1
359 tGMT.tm_hour = secs / SEC_PER_HR;
360 tGMT.tm_min = (secs % SEC_PER_HR) / SEC_PER_MIN;
361 tGMT.tm_sec = (secs % SEC_PER_HR) % SEC_PER_MIN;
362 tGMT.tm_isdst = 0; // No conversion desired
363
364 time_t tEpoch = mktime(&tGMT);
365
366 if (tEpoch != -1)
367 {
368 // Valid time_t value returned from mktime().
369 // mktime() expects a local time which means that tEpoch now needs
370 // to be adjusted by the difference between this time zone and GMT.
371 tEpoch -= timezone;
372 }
373
374 return tEpoch;
375 }
376 //
377 // cTle.cpp
378 // This class encapsulates a single set of standard NORAD two line elements.
379 //
380 // Copyright 1996-2005 Michael F. Henry
381 //
382 // Note: The column offsets are ZERO based.
383
384 // Name
385 const int TLE_LEN_LINE_DATA = 69; const int TLE_LEN_LINE_NAME = 22;
386
387 // Line 1
388 const int TLE1_COL_SATNUM = 2; const int TLE1_LEN_SATNUM = 5;
389 const int TLE1_COL_INTLDESC_A = 9; const int TLE1_LEN_INTLDESC_A = 2;
390 const int TLE1_COL_INTLDESC_B = 11; const int TLE1_LEN_INTLDESC_B = 3;
391 const int TLE1_COL_INTLDESC_C = 14; const int TLE1_LEN_INTLDESC_C = 3;
392 const int TLE1_COL_EPOCH_A = 18; const int TLE1_LEN_EPOCH_A = 2;
393 const int TLE1_COL_EPOCH_B = 20; const int TLE1_LEN_EPOCH_B = 12;
394 const int TLE1_COL_MEANMOTIONDT = 33; const int TLE1_LEN_MEANMOTIONDT = 10;
395 const int TLE1_COL_MEANMOTIONDT2 = 44; const int TLE1_LEN_MEANMOTIONDT2 = 8;
396 const int TLE1_COL_BSTAR = 53; const int TLE1_LEN_BSTAR = 8;
397 const int TLE1_COL_EPHEMTYPE = 62; const int TLE1_LEN_EPHEMTYPE = 1;
398 const int TLE1_COL_ELNUM = 64; const int TLE1_LEN_ELNUM = 4;
399
400 // Line 2
401 const int TLE2_COL_SATNUM = 2; const int TLE2_LEN_SATNUM = 5;
402 const int TLE2_COL_INCLINATION = 8; const int TLE2_LEN_INCLINATION = 8;
403 const int TLE2_COL_RAASCENDNODE = 17; const int TLE2_LEN_RAASCENDNODE = 8;
404 const int TLE2_COL_ECCENTRICITY = 26; const int TLE2_LEN_ECCENTRICITY = 7;
405 const int TLE2_COL_ARGPERIGEE = 34; const int TLE2_LEN_ARGPERIGEE = 8;
406 const int TLE2_COL_MEANANOMALY = 43; const int TLE2_LEN_MEANANOMALY = 8;
407 const int TLE2_COL_MEANMOTION = 52; const int TLE2_LEN_MEANMOTION = 11;
408 const int TLE2_COL_REVATEPOCH = 63; const int TLE2_LEN_REVATEPOCH = 5;
409
410 /////////////////////////////////////////////////////////////////////////////
411 cTle::cTle(string& strName, string& strLine1, string& strLine2)
412 {
413 m_strName = strName;
414 m_strLine1 = strLine1;
415 m_strLine2 = strLine2;
416
417 Initialize();
418 }
419
420 /////////////////////////////////////////////////////////////////////////////
421 cTle::cTle(const cTle &tle)
422 {
423 m_strName = tle.m_strName;
424 m_strLine1 = tle.m_strLine1;
425 m_strLine2 = tle.m_strLine2;
426
427 for (int fld = FLD_FIRST; fld < FLD_LAST; fld++)
428 {
429 m_Field[fld] = tle.m_Field[fld];
430 }
431
432 m_mapCache = tle.m_mapCache;
433 }
434
435 /////////////////////////////////////////////////////////////////////////////
436 cTle::~cTle()
437 {
438 }
439
440 /////////////////////////////////////////////////////////////////////////////
441 // getField()
442 // Return requested field as a double (function return value) or as a text
443 // string (*pstr) in the units requested (eUnit). Set 'bStrUnits' to true
444 // to have units appended to text string.
445 //
446 // Note: numeric return values are cached; asking for the same field more
447 // than once incurs minimal overhead.
448 double cTle::getField(eField fld,
449 eUnits units, /* = U_NATIVE */
450 string *pstr /* = NULL */,
451 bool bStrUnits /* = false */) const
452 {
453 assert((FLD_FIRST <= fld) && (fld < FLD_LAST));
454 assert((U_FIRST <= units) && (units < U_LAST));
455
456 if (pstr)
457 {
458 // Return requested field in string form.
459 *pstr = m_Field[fld];
460
461 if (bStrUnits)
462 *pstr += getUnits(fld);
463
464 return 0.0;
465 }
466 else
467 {
468 // Return requested field in floating-point form.
469 // Return cache contents if it exists, else populate cache
470 FldKey key = Key(units, fld);
471
472 if (m_mapCache.find(key) == m_mapCache.end())
473 {
474 // Value not in cache; add it
475 double valNative = atof(m_Field[fld].c_str());
476 double valConv = ConvertUnits(valNative, fld, units);
477 m_mapCache[key] = valConv;
478
479 return valConv;
480 }
481 else
482 {
483 // return cached value
484 return m_mapCache[key];
485 }
486 }
487 }
488
489 //////////////////////////////////////////////////////////////////////////////
490 // Convert the given field into the requested units. It is assumed that
491 // the value being converted is in the TLE format's "native" form.
492 double cTle::ConvertUnits(double valNative, // value to convert
493 eField fld, // what field the value is
494 eUnits units) // what units to convert to
495 {
496 switch (fld)
497 {
498 case FLD_I:
499 case FLD_RAAN:
500 case FLD_ARGPER:
501 case FLD_M:
502 {
503 // The native TLE format is DEGREES
504 if (units == U_RAD)
505 return valNative * RADS_PER_DEG;
506 }
507
508 case FLD_NORADNUM:
509 case FLD_INTLDESC:
510 case FLD_SET:
511 case FLD_EPOCHYEAR:
512 case FLD_EPOCHDAY:
513 case FLD_ORBITNUM:
514 case FLD_E:
515 case FLD_MMOTION:
516 case FLD_MMOTIONDT:
517 case FLD_MMOTIONDT2:
518 case FLD_BSTAR:
519 case FLD_LAST:
520 { // do nothing
521
522 }
523
524 }
525
526 return valNative; // return value in unconverted native format
527 }
528
529 //////////////////////////////////////////////////////////////////////////////
530 string cTle::getUnits(eField fld) const
531 {
532 static const string strDegrees = " degrees";
533 static const string strRevsPerDay = " revs / day";
534 static const string strNull;
535
536 switch (fld)
537 {
538 case FLD_I:
539 case FLD_RAAN:
540 case FLD_ARGPER:
541 case FLD_M:
542 return strDegrees;
543
544 case FLD_MMOTION:
545 return strRevsPerDay;
546
547 default:
548 return strNull;
549 }
550 }
551
552 /////////////////////////////////////////////////////////////////////////////
553 // ExpToDecimal()
554 // Converts TLE-style exponential notation of the form [ |-]00000[+|-]0 to
555 // decimal notation. Assumes implied decimal point to the left of the first
556 // number in the string, i.e.,
557 // " 12345-3" = 0.00012345
558 // "-23429-5" = -0.0000023429
559 // " 40436+1" = 4.0436
560 string cTle::ExpToDecimal(const string &str)
561 {
562 const int COL_EXP_SIGN = 6;
563 const int LEN_EXP = 2;
564
565 const int LEN_BUFREAL = 32; // max length of buffer to hold floating point
566 // representation of input string.
567 int nMan;
568 int nExp;
569
570 // sscanf(%d) will read up to the exponent sign
571 sscanf(str.c_str(), "%d", &nMan);
572
573 double dblMan = nMan;
574 bool bNeg = (nMan < 0);
575
576 if (bNeg)
577 dblMan *= -1;
578
579 // Move decimal place to left of first digit
580 while (dblMan >= 1.0)
581 dblMan /= 10.0;
582
583 if (bNeg)
584 dblMan *= -1;
585
586 // now read exponent
587 sscanf(str.substr(COL_EXP_SIGN, LEN_EXP).c_str(), "%d", &nExp);
588
589 double dblVal = dblMan * pow(10.0, nExp);
590 char szVal[LEN_BUFREAL];
591
592 snprintf(szVal, sizeof(szVal), "%.9f", dblVal);
593
594 string strVal = szVal;
595
596 return strVal;
597
598 } // ExpToDecimal()
599
600 /////////////////////////////////////////////////////////////////////////////
601 // Initialize()
602 // Initialize the string array.
603 void cTle::Initialize()
604 {
605 // Have we already been initialized?
606 if (m_Field[FLD_NORADNUM].size())
607 return;
608
609 assert(!m_strName.empty());
610 assert(!m_strLine1.empty());
611 assert(!m_strLine2.empty());
612
613 m_Field[FLD_NORADNUM] = m_strLine1.substr(TLE1_COL_SATNUM, TLE1_LEN_SATNUM);
614 m_Field[FLD_INTLDESC] = m_strLine1.substr(TLE1_COL_INTLDESC_A,
615 TLE1_LEN_INTLDESC_A +
616 TLE1_LEN_INTLDESC_B +
617 TLE1_LEN_INTLDESC_C);
618 m_Field[FLD_EPOCHYEAR] =
619 m_strLine1.substr(TLE1_COL_EPOCH_A, TLE1_LEN_EPOCH_A);
620
621 m_Field[FLD_EPOCHDAY] =
622 m_strLine1.substr(TLE1_COL_EPOCH_B, TLE1_LEN_EPOCH_B);
623
624 if (m_strLine1[TLE1_COL_MEANMOTIONDT] == '-')
625 {
626 // value is negative
627 m_Field[FLD_MMOTIONDT] = "-0";
628 }
629 else
630 m_Field[FLD_MMOTIONDT] = "0";
631
632 m_Field[FLD_MMOTIONDT] += m_strLine1.substr(TLE1_COL_MEANMOTIONDT + 1,
633 TLE1_LEN_MEANMOTIONDT);
634
635 // decimal point assumed; exponential notation
636 m_Field[FLD_MMOTIONDT2] = ExpToDecimal(
637 m_strLine1.substr(TLE1_COL_MEANMOTIONDT2,
638 TLE1_LEN_MEANMOTIONDT2));
639 // decimal point assumed; exponential notation
640 m_Field[FLD_BSTAR] = ExpToDecimal(m_strLine1.substr(TLE1_COL_BSTAR,
641 TLE1_LEN_BSTAR));
642 //TLE1_COL_EPHEMTYPE
643 //TLE1_LEN_EPHEMTYPE
644 m_Field[FLD_SET] = m_strLine1.substr(TLE1_COL_ELNUM, TLE1_LEN_ELNUM);
645
646 TrimLeft(m_Field[FLD_SET]);
647
648 //TLE2_COL_SATNUM
649 //TLE2_LEN_SATNUM
650
651 m_Field[FLD_I] = m_strLine2.substr(TLE2_COL_INCLINATION,
652 TLE2_LEN_INCLINATION);
653 TrimLeft(m_Field[FLD_I]);
654
655 m_Field[FLD_RAAN] = m_strLine2.substr(TLE2_COL_RAASCENDNODE,
656 TLE2_LEN_RAASCENDNODE);
657 TrimLeft(m_Field[FLD_RAAN]);
658
659 // decimal point is assumed
660 m_Field[FLD_E] = "0.";
661 m_Field[FLD_E] += m_strLine2.substr(TLE2_COL_ECCENTRICITY,
662 TLE2_LEN_ECCENTRICITY);
663
664 m_Field[FLD_ARGPER] = m_strLine2.substr(TLE2_COL_ARGPERIGEE,
665 TLE2_LEN_ARGPERIGEE);
666 TrimLeft(m_Field[FLD_ARGPER]);
667
668 m_Field[FLD_M] = m_strLine2.substr(TLE2_COL_MEANANOMALY,
669 TLE2_LEN_MEANANOMALY);
670 TrimLeft(m_Field[FLD_M]);
671
672 m_Field[FLD_MMOTION] = m_strLine2.substr(TLE2_COL_MEANMOTION,
673 TLE2_LEN_MEANMOTION);
674 TrimLeft(m_Field[FLD_MMOTION]);
675
676 m_Field[FLD_ORBITNUM] = m_strLine2.substr(TLE2_COL_REVATEPOCH,
677 TLE2_LEN_REVATEPOCH);
678 TrimLeft(m_Field[FLD_ORBITNUM]);
679
680 } // InitStrVars()
681
682 /////////////////////////////////////////////////////////////////////////////
683 // IsTleFormat()
684 // Returns true if "str" is a valid data line of a two-line element set,
685 // else false.
686 //
687 // To be valid a line must:
688 // Have as the first character the line number
689 // Have as the second character a blank
690 // Be TLE_LEN_LINE_DATA characters long
691 // Have a valid checksum (note: no longer required as of 12/96)
692 //
693 bool cTle::IsValidLine(string& str, eTleLine line)
694 {
695 TrimLeft(str);
696 TrimRight(str);
697
698 size_t nLen = str.size();
699
700 if (nLen != (uint)TLE_LEN_LINE_DATA)
701 return false;
702
703 // First char in string must be line number
704 if ((str[0] - '0') != line)
705 return false;
706
707 // Second char in string must be blank
708 if (str[1] != ' ')
709 return false;
710
711 /*
712 NOTE: 12/96
713 The requirement that the last char in the line data must be a valid
714 checksum is too restrictive.
715
716 // Last char in string must be checksum
717 int nSum = CheckSum(str);
718
719 if (nSum != (str[TLE_LEN_LINE_DATA - 1] - '0'))
720 return false;
721 */
722
723 return true;
724
725 } // IsTleFormat()
726
727 /////////////////////////////////////////////////////////////////////////////
728 // CheckSum()
729 // Calculate the check sum for a given line of TLE data, the last character
730 // of which is the current checksum. (Although there is no check here,
731 // the current checksum should match the one we calculate.)
732 // The checksum algorithm:
733 // Each number in the data line is summed, modulo 10.
734 // Non-numeric characters are zero, except minus signs, which are 1.
735 //
736 int cTle::CheckSum(const string& str)
737 {
738 // The length is "- 1" because we don't include the current (existing)
739 // checksum character in the checksum calculation.
740 size_t len = str.size() - 1;
741 int xsum = 0;
742
743 for (size_t i = 0; i < len; i++)
744 {
745 char ch = str[i];
746 if (isdigit(ch))
747 xsum += (ch - '0');
748 else if (ch == '-')
749 xsum++;
750 }
751
752 return (xsum % 10);
753
754 } // CheckSum()
755
756 /////////////////////////////////////////////////////////////////////////////
757 void cTle::TrimLeft(string& s)
758 {
759 while (s[0] == ' ')
760 s.erase(0, 1);
761 }
762
763 /////////////////////////////////////////////////////////////////////////////
764 void cTle::TrimRight(string& s)
765 {
766 while (s[s.size() - 1] == ' ')
767 s.erase(s.size() - 1);
768 }
769
770 //
771 // cEci.cpp
772 //
773 // Copyright (c) 2002-2003 Michael F. Henry
774 //
775 //////////////////////////////////////////////////////////////////////
776 // cEci Class
777 //////////////////////////////////////////////////////////////////////
778 cEci::cEci(const cVector &pos,
779 const cVector &vel,
780 const cJulian &date,
781 bool IsAeUnits /* = true */)
782 {
783 m_pos = pos;
784 m_vel = vel;
785 m_date = date;
786 m_VecUnits = (IsAeUnits ? UNITS_AE : UNITS_NONE);
787 }
788
789 //////////////////////////////////////////////////////////////////////
790 // cEci(cCoordGeo&, cJulian&)
791 // Calculate the ECI coordinates of the location "geo" at time "date".
792 // Assumes geo coordinates are km-based.
793 // Assumes the earth is an oblate spheroid as defined in WGS '72.
794 // Reference: The 1992 Astronomical Almanac, page K11
795 // Reference: www.celestrak.com (Dr. TS Kelso)
796 cEci::cEci(const cCoordGeo &geo, const cJulian &date)
797 {
798 m_VecUnits = UNITS_KM;
799
800 double mfactor = TWOPI * (OMEGA_E / SEC_PER_DAY);
801 double lat = geo.m_Lat;
802 double lon = geo.m_Lon;
803 double alt = geo.m_Alt;
804
805 // Calculate Local Mean Sidereal Time (theta)
806 double theta = date.toLMST(lon);
807 double c = 1.0 / sqrt(1.0 + F * (F - 2.0) * sqr(sin(lat)));
808 double s = sqr(1.0 - F) * c;
809 double achcp = (XKMPER_WGS72 * c + alt) * cos(lat);
810
811 m_date = date;
812
813 m_pos.m_x = achcp * cos(theta); // km
814 m_pos.m_y = achcp * sin(theta); // km
815 m_pos.m_z = (XKMPER_WGS72 * s + alt) * sin(lat); // km
816 m_pos.m_w = sqrt(sqr(m_pos.m_x) +
817 sqr(m_pos.m_y) +
818 sqr(m_pos.m_z)); // range, km
819
820 m_vel.m_x = -mfactor * m_pos.m_y; // km / sec
821 m_vel.m_y = mfactor * m_pos.m_x;
822 m_vel.m_z = 0.0;
823 m_vel.m_w = sqrt(sqr(m_vel.m_x) + // range rate km/sec^2
824 sqr(m_vel.m_y));
825 }
826
827 //////////////////////////////////////////////////////////////////////////////
828 // toGeo()
829 // Return the corresponding geodetic position (based on the current ECI
830 // coordinates/Julian date).
831 // Assumes the earth is an oblate spheroid as defined in WGS '72.
832 // Side effects: Converts the position and velocity vectors to km-based units.
833 // Reference: The 1992 Astronomical Almanac, page K12.
834 // Reference: www.celestrak.com (Dr. TS Kelso)
835 cCoordGeo cEci::toGeo()
836 {
837 ae2km(); // Vectors must be in kilometer-based units
838
839 double theta = AcTan(m_pos.m_y, m_pos.m_x);
840 double lon = fmod(theta - m_date.toGMST(), TWOPI);
841
842 if (lon < 0.0)
843 lon += TWOPI; // "wrap" negative modulo
844
845 double r = sqrt(sqr(m_pos.m_x) + sqr(m_pos.m_y));
846 double e2 = F * (2.0 - F);
847 double lat = AcTan(m_pos.m_z, r);
848
849 const double delta = 1.0e-07;
850 double phi;
851 double c;
852
853 do
854 {
855 phi = lat;
856 c = 1.0 / sqrt(1.0 - e2 * sqr(sin(phi)));
857 lat = AcTan(m_pos.m_z + XKMPER_WGS72 * c * e2 * sin(phi), r);
858 }
859 while (fabs(lat - phi) > delta);
860
861 double alt = r / cos(lat) - XKMPER_WGS72 * c;
862
863 return cCoordGeo(lat, lon, alt); // radians, radians, kilometers
864 }
865
866 //////////////////////////////////////////////////////////////////////////////
867 // ae2km()
868 // Convert the position and velocity vector units from AE-based units
869 // to kilometer based units.
870 void cEci::ae2km()
871 {
872 if (UnitsAreAe())
873 {
874 MulPos(XKMPER_WGS72 / AE); // km
875 MulVel((XKMPER_WGS72 / AE) * (MIN_PER_DAY / 86400)); // km/sec
876 m_VecUnits = UNITS_KM;
877 }
878 }
879 //
880 // cNoradBase.cpp
881 //
882 // Historical Note:
883 // The equations used here (and in derived classes) to determine satellite
884 // ECI coordinates/velocity come from the December, 1980 NORAD document
885 // "Space Track Report No. 3". The report details 6 orbital models and
886 // provides FORTRAN IV implementations of each. The classes here
887 // implement only two of the orbital models: SGP4 and SDP4. These two models,
888 // one for "near-earth" objects and one for "deep space" objects, are widely
889 // used in satellite tracking software and can produce very accurate results
890 // when used with current NORAD two-line element datum.
891 //
892 // The NORAD FORTRAN IV SGP4/SDP4 implementations were converted to Pascal by
893 // Dr. TS Kelso in 1995. In 1996 these routines were ported in a straight-
894 // forward manner to C++ by Varol Okan. The SGP4/SDP4 classes here were
895 // written by Michael F. Henry in 2002-03 and are a modern C++ re-write of
896 // the work done by Okan. In addition to introducing an object-oriented
897 // architecture, the last residues of the original FORTRAN code (such as
898 // labels and gotos) were eradicated.
899 //
900 // For excellent information on the underlying physics of orbits, visible
901 // satellite observations, current NORAD TLE data, and other related material,
902 // see http://www.celestrak.com which is maintained by Dr. TS Kelso.
903 //
904 // Copyright (c) 2003 Michael F. Henry
905 //
906 // mfh 12/07/2003
907 //
908 //////////////////////////////////////////////////////////////////////////////
909 cNoradBase::cNoradBase(const cOrbit &orbit) :
910 m_Orbit(orbit)
911 {
912 Initialize();
913 }
914
915 cNoradBase& cNoradBase::operator=(const cNoradBase &b)
916 {
917 // m_Orbit is a "const" member var, so cast away its
918 // "const-ness" in order to complete the assigment.
919 *(const_cast<cOrbit*>(&m_Orbit)) = b.m_Orbit;
920
921 return *this;
922 }
923
924 //////////////////////////////////////////////////////////////////////////////
925 // Initialize()
926 // Perform the initialization of member variables, specifically the variables
927 // used by derived-class objects to calculate ECI coordinates.
928 void cNoradBase::Initialize()
929 {
930 // Initialize any variables which are time-independent when
931 // calculating the ECI coordinates of the satellite.
932 m_satInc = m_Orbit.Inclination();
933 m_satEcc = m_Orbit.Eccentricity();
934
935 m_cosio = cos(m_satInc);
936 m_theta2 = m_cosio * m_cosio;
937 m_x3thm1 = 3.0 * m_theta2 - 1.0;
938 m_eosq = m_satEcc * m_satEcc;
939 m_betao2 = 1.0 - m_eosq;
940 m_betao = sqrt(m_betao2);
941
942 // The "recovered" semi-minor axis and mean motion.
943 m_aodp = m_Orbit.SemiMinor();
944 m_xnodp = m_Orbit.mnMotionRec();
945
946 // For perigee below 156 km, the values of S and QOMS2T are altered.
947 m_perigee = XKMPER_WGS72 * (m_aodp * (1.0 - m_satEcc) - AE);
948
949 m_s4 = S;
950 m_qoms24 = QOMS2T;
951
952 if (m_perigee < 156.0)
953 {
954 m_s4 = m_perigee - 78.0;
955
956 if (m_perigee <= 98.0)
957 {
958 m_s4 = 20.0;
959 }
960
961 m_qoms24 = pow((120.0 - m_s4) * AE / XKMPER_WGS72, 4.0);
962 m_s4 = m_s4 / XKMPER_WGS72 + AE;
963 }
964
965 const double pinvsq = 1.0 / (m_aodp * m_aodp * m_betao2 * m_betao2);
966
967 m_tsi = 1.0 / (m_aodp - m_s4);
968 m_eta = m_aodp * m_satEcc * m_tsi;
969 m_etasq = m_eta * m_eta;
970 m_eeta = m_satEcc * m_eta;
971
972 const double psisq = fabs(1.0 - m_etasq);
973
974 m_coef = m_qoms24 * pow(m_tsi,4.0);
975 m_coef1 = m_coef / pow(psisq,3.5);
976
977 const double c2 = m_coef1 * m_xnodp *
978 (m_aodp * (1.0 + 1.5 * m_etasq + m_eeta * (4.0 + m_etasq)) +
979 0.75 * CK2 * m_tsi / psisq * m_x3thm1 *
980 (8.0 + 3.0 * m_etasq * (8.0 + m_etasq)));
981
982 m_c1 = m_Orbit.BStar() * c2;
983 m_sinio = sin(m_satInc);
984
985 const double a3ovk2 = -XJ3 / CK2 * pow(AE,3.0);
986
987 m_c3 = m_coef * m_tsi * a3ovk2 * m_xnodp * AE * m_sinio / m_satEcc;
988 m_x1mth2 = 1.0 - m_theta2;
989 m_c4 = 2.0 * m_xnodp * m_coef1 * m_aodp * m_betao2 *
990 (m_eta * (2.0 + 0.5 * m_etasq) +
991 m_satEcc * (0.5 + 2.0 * m_etasq) -
992 2.0 * CK2 * m_tsi / (m_aodp * psisq) *
993 (-3.0 * m_x3thm1 * (1.0 - 2.0 * m_eeta + m_etasq * (1.5 - 0.5 * m_eeta)) +
994 0.75 * m_x1mth2 *
995 (2.0 * m_etasq - m_eeta * (1.0 + m_etasq)) *
996 cos(2.0 * m_Orbit.ArgPerigee())));
997
998 const double theta4 = m_theta2 * m_theta2;
999 const double temp1 = 3.0 * CK2 * pinvsq * m_xnodp;
1000 const double temp2 = temp1 * CK2 * pinvsq;
1001 const double temp3 = 1.25 * CK4 * pinvsq * pinvsq * m_xnodp;
1002
1003 m_xmdot = m_xnodp + 0.5 * temp1 * m_betao * m_x3thm1 +
1004 0.0625 * temp2 * m_betao *
1005 (13.0 - 78.0 * m_theta2 + 137.0 * theta4);
1006
1007 const double x1m5th = 1.0 - 5.0 * m_theta2;
1008
1009 m_omgdot = -0.5 * temp1 * x1m5th + 0.0625 * temp2 *
1010 (7.0 - 114.0 * m_theta2 + 395.0 * theta4) +
1011 temp3 * (3.0 - 36.0 * m_theta2 + 49.0 * theta4);
1012
1013 const double xhdot1 = -temp1 * m_cosio;
1014
1015 m_xnodot = xhdot1 + (0.5 * temp2 * (4.0 - 19.0 * m_theta2) +
1016 2.0 * temp3 * (3.0 - 7.0 * m_theta2)) * m_cosio;
1017 m_xnodcf = 3.5 * m_betao2 * xhdot1 * m_c1;
1018 m_t2cof = 1.5 * m_c1;
1019 m_xlcof = 0.125 * a3ovk2 * m_sinio *
1020 (3.0 + 5.0 * m_cosio) / (1.0 + m_cosio);
1021 m_aycof = 0.25 * a3ovk2 * m_sinio;
1022 m_x7thm1 = 7.0 * m_theta2 - 1.0;
1023 }
1024
1025 //////////////////////////////////////////////////////////////////////////////
1026 bool cNoradBase::FinalPosition(double incl, double omega,
1027 double e, double a,
1028 double xl, double xnode,
1029 double xn, double tsince,
1030 cEci &eci)
1031 {
1032 if ((e * e) > 1.0)
1033 {
1034 // error in satellite data
1035 return false;
1036 }
1037
1038 double beta = sqrt(1.0 - e * e);
1039
1040 // Long period periodics
1041 double axn = e * cos(omega);
1042 double temp = 1.0 / (a * beta * beta);
1043 double xll = temp * m_xlcof * axn;
1044 double aynl = temp * m_aycof;
1045 double xlt = xl + xll;
1046 double ayn = e * sin(omega) + aynl;
1047
1048 // Solve Kepler's Equation
1049
1050 double capu = Fmod2p(xlt - xnode);
1051 double temp2 = capu;
1052 double temp3 = 0.0;
1053 double temp4 = 0.0;
1054 double temp5 = 0.0;
1055 double temp6 = 0.0;
1056 double sinepw = 0.0;
1057 double cosepw = 0.0;
1058 bool fDone = false;
1059
1060 for (int i = 1; (i <= 10) && !fDone; i++)
1061 {
1062 sinepw = sin(temp2);
1063 cosepw = cos(temp2);
1064 temp3 = axn * sinepw;
1065 temp4 = ayn * cosepw;
1066 temp5 = axn * cosepw;
1067 temp6 = ayn * sinepw;
1068
1069 double epw = (capu - temp4 + temp3 - temp2) /
1070 (1.0 - temp5 - temp6) + temp2;
1071
1072 if (fabs(epw - temp2) <= E6A)
1073 fDone = true;
1074 else
1075 temp2 = epw;
1076 }
1077
1078 // Short period preliminary quantities
1079 double ecose = temp5 + temp6;
1080 double esine = temp3 - temp4;
1081 double elsq = axn * axn + ayn * ayn;
1082 temp = 1.0 - elsq;
1083 double pl = a * temp;
1084 double r = a * (1.0 - ecose);
1085 double temp1 = 1.0 / r;
1086 double rdot = XKE * sqrt(a) * esine * temp1;
1087 double rfdot = XKE * sqrt(pl) * temp1;
1088 temp2 = a * temp1;
1089 double betal = sqrt(temp);
1090 temp3 = 1.0 / (1.0 + betal);
1091 double cosu = temp2 * (cosepw - axn + ayn * esine * temp3);
1092 double sinu = temp2 * (sinepw - ayn - axn * esine * temp3);
1093 double u = AcTan(sinu, cosu);
1094 double sin2u = 2.0 * sinu * cosu;
1095 double cos2u = 2.0 * cosu * cosu - 1.0;
1096
1097 temp = 1.0 / pl;
1098 temp1 = CK2 * temp;
1099 temp2 = temp1 * temp;
1100
1101 // Update for short periodics
1102 double rk = r * (1.0 - 1.5 * temp2 * betal * m_x3thm1) +
1103 0.5 * temp1 * m_x1mth2 * cos2u;
1104 double uk = u - 0.25 * temp2 * m_x7thm1 * sin2u;
1105 double xnodek = xnode + 1.5 * temp2 * m_cosio * sin2u;
1106 double xinck = incl + 1.5 * temp2 * m_cosio * m_sinio * cos2u;
1107 double rdotk = rdot - xn * temp1 * m_x1mth2 * sin2u;
1108 double rfdotk = rfdot + xn * temp1 * (m_x1mth2 * cos2u + 1.5 * m_x3thm1);
1109
1110 // Orientation vectors
1111 double sinuk = sin(uk);
1112 double cosuk = cos(uk);
1113 double sinik = sin(xinck);
1114 double cosik = cos(xinck);
1115 double sinnok = sin(xnodek);
1116 double cosnok = cos(xnodek);
1117 double xmx = -sinnok * cosik;
1118 double xmy = cosnok * cosik;
1119 double ux = xmx * sinuk + cosnok * cosuk;
1120 double uy = xmy * sinuk + sinnok * cosuk;
1121 double uz = sinik * sinuk;
1122 double vx = xmx * cosuk - cosnok * sinuk;
1123 double vy = xmy * cosuk - sinnok * sinuk;
1124 double vz = sinik * cosuk;
1125
1126 // Position
1127 double x = rk * ux;
1128 double y = rk * uy;
1129 double z = rk * uz;
1130
1131 cVector vecPos(x, y, z);
1132
1133 // Validate on altitude
1134 double altKm = (vecPos.Magnitude() * (XKMPER_WGS72 / AE));
1135
1136 if ((altKm < XKMPER_WGS72) || (altKm > (2 * GEOSYNC_ALT)))
1137 return false;
1138
1139 // Velocity
1140 double xdot = rdotk * ux + rfdotk * vx;
1141 double ydot = rdotk * uy + rfdotk * vy;
1142 double zdot = rdotk * uz + rfdotk * vz;
1143
1144 cVector vecVel(xdot, ydot, zdot);
1145
1146 cJulian gmt = m_Orbit.Epoch();
1147 gmt.addMin(tsince);
1148
1149 eci = cEci(vecPos, vecVel, gmt);
1150
1151 return true;
1152 }
1153
1154 //
1155 // cNoradSGP4.cpp
1156 //
1157 // NORAD SGP4 implementation. See historical note in cNoradBase.cpp
1158 // Copyright (c) 2003 Michael F. Henry
1159 //
1160 // mfh 12/07/2003
1161 //
1162 //////////////////////////////////////////////////////////////////////////////
1163 cNoradSGP4::cNoradSGP4(const cOrbit &orbit) :
1164 cNoradBase(orbit)
1165 {
1166 m_c5 = 2.0 * m_coef1 * m_aodp * m_betao2 *
1167 (1.0 + 2.75 * (m_etasq + m_eeta) + m_eeta * m_etasq);
1168 m_omgcof = m_Orbit.BStar() * m_c3 * cos(m_Orbit.ArgPerigee());
1169 m_xmcof = -TWOTHRD * m_coef * m_Orbit.BStar() * AE / m_eeta;
1170 m_delmo = pow(1.0 + m_eta * cos(m_Orbit.mnAnomaly()), 3.0);
1171 m_sinmo = sin(m_Orbit.mnAnomaly());
1172 }
1173
1174
1175 //////////////////////////////////////////////////////////////////////////////
1176 // getPosition()
1177 // This procedure returns the ECI position and velocity for the satellite
1178 // in the orbit at the given number of minutes since the TLE epoch time
1179 // using the NORAD Simplified General Perturbation 4, near earth orbit
1180 // model.
1181 //
1182 // tsince - Time in minutes since the TLE epoch (GMT).
1183 // eci - ECI object to hold position information.
1184 // To convert the returned ECI position vector to km,
1185 // multiply each component by:
1186 // (XKMPER_WGS72 / AE).
1187 // To convert the returned ECI velocity vector to km/sec,
1188 // multiply each component by:
1189 // (XKMPER_WGS72 / AE) * (MIN_PER_DAY / 86400).
1190
1191 bool cNoradSGP4::getPosition(double tsince, cEci &eci)
1192 {
1193 // For m_perigee less than 220 kilometers, the isimp flag is set and
1194 // the equations are truncated to linear variation in sqrt a and
1195 // quadratic variation in mean anomaly. Also, the m_c3 term, the
1196 // delta omega term, and the delta m term are dropped.
1197 bool isimp = false;
1198 if ((m_aodp * (1.0 - m_satEcc) / AE) < (220.0 / XKMPER_WGS72 + AE))
1199 {
1200 isimp = true;
1201 }
1202
1203 double d2 = 0.0;
1204 double d3 = 0.0;
1205 double d4 = 0.0;
1206
1207 double t3cof = 0.0;
1208 double t4cof = 0.0;
1209 double t5cof = 0.0;
1210
1211 if (!isimp)
1212 {
1213 double c1sq = m_c1 * m_c1;
1214
1215 d2 = 4.0 * m_aodp * m_tsi * c1sq;
1216
1217 double temp = d2 * m_tsi * m_c1 / 3.0;
1218
1219 d3 = (17.0 * m_aodp + m_s4) * temp;
1220 d4 = 0.5 * temp * m_aodp * m_tsi *
1221 (221.0 * m_aodp + 31.0 * m_s4) * m_c1;
1222 t3cof = d2 + 2.0 * c1sq;
1223 t4cof = 0.25 * (3.0 * d3 + m_c1 * (12.0 * d2 + 10.0 * c1sq));
1224 t5cof = 0.2 * (3.0 * d4 + 12.0 * m_c1 * d3 + 6.0 *
1225 d2 * d2 + 15.0 * c1sq * (2.0 * d2 + c1sq));
1226 }
1227
1228 // Update for secular gravity and atmospheric drag.
1229 double xmdf = m_Orbit.mnAnomaly() + m_xmdot * tsince;
1230 double omgadf = m_Orbit.ArgPerigee() + m_omgdot * tsince;
1231 double xnoddf = m_Orbit.RAAN() + m_xnodot * tsince;
1232 double omega = omgadf;
1233 double xmp = xmdf;
1234 double tsq = tsince * tsince;
1235 double xnode = xnoddf + m_xnodcf * tsq;
1236 double tempa = 1.0 - m_c1 * tsince;
1237 double tempe = m_Orbit.BStar() * m_c4 * tsince;
1238 double templ = m_t2cof * tsq;
1239
1240 if (!isimp)
1241 {
1242 double delomg = m_omgcof * tsince;
1243 double delm = m_xmcof * (pow(1.0 + m_eta * cos(xmdf), 3.0) - m_delmo);
1244 double temp = delomg + delm;
1245
1246 xmp = xmdf + temp;
1247 omega = omgadf - temp;
1248
1249 double tcube = tsq * tsince;
1250 double tfour = tsince * tcube;
1251
1252 tempa = tempa - d2 * tsq - d3 * tcube - d4 * tfour;
1253 tempe = tempe + m_Orbit.BStar() * m_c5 * (sin(xmp) - m_sinmo);
1254 templ = templ + t3cof * tcube + tfour * (t4cof + tsince * t5cof);
1255 }
1256
1257 double a = m_aodp * sqr(tempa);
1258 double e = m_satEcc - tempe;
1259
1260
1261 double xl = xmp + omega + xnode + m_xnodp * templ;
1262 double xn = XKE / pow(a, 1.5);
1263
1264 return FinalPosition(m_satInc, omgadf, e, a, xl, xnode, xn, tsince, eci);
1265 }
1266
1267 //
1268 // cNoradSDP4.cpp
1269 //
1270 // NORAD SDP4 implementation. See historical note in cNoradBase.cpp
1271 // Copyright (c) 2003 Michael F. Henry
1272 //
1273 // mfh 12/07/2003
1274 //
1275
1276 const double zns = 1.19459E-5; const double c1ss = 2.9864797E-6;
1277 const double zes = 0.01675; const double znl = 1.5835218E-4;
1278 const double c1l = 4.7968065E-7; const double zel = 0.05490;
1279 const double zcosis = 0.91744867; const double zsinis = 0.39785416;
1280 const double zsings = -0.98088458; const double zcosgs = 0.1945905;
1281 const double q22 = 1.7891679E-6; const double q31 = 2.1460748E-6;
1282 const double q33 = 2.2123015E-7; const double g22 = 5.7686396;
1283 const double g32 = 0.95240898; const double g44 = 1.8014998;
1284 const double g52 = 1.0508330; const double g54 = 4.4108898;
1285 const double root22 = 1.7891679E-6; const double root32 = 3.7393792E-7;
1286 const double root44 = 7.3636953E-9; const double root52 = 1.1428639E-7;
1287 const double root54 = 2.1765803E-9; const double thdt = 4.3752691E-3;
1288
1289 //////////////////////////////////////////////////////////////////////////////
1290 cNoradSDP4::cNoradSDP4(const cOrbit &orbit) :
1291 cNoradBase(orbit)
1292 {
1293 m_sing = sin(m_Orbit.ArgPerigee());
1294 m_cosg = cos(m_Orbit.ArgPerigee());
1295
1296 dp_savtsn = 0.0;
1297 dp_zmos = 0.0;
1298 dp_se2 = 0.0;
1299 dp_se3 = 0.0;
1300 dp_si2 = 0.0;
1301 dp_si3 = 0.0;
1302 dp_sl2 = 0.0;
1303 dp_sl3 = 0.0;
1304 dp_sl4 = 0.0;
1305 dp_sghs = 0.0;
1306 dp_sgh2 = 0.0;
1307 dp_sgh3 = 0.0;
1308 dp_sgh4 = 0.0;
1309 dp_sh2 = 0.0;
1310 dp_sh3 = 0.0;
1311 dp_zmol = 0.0;
1312 dp_ee2 = 0.0;
1313 dp_e3 = 0.0;
1314 dp_xi2 = 0.0;
1315 dp_xi3 = 0.0;
1316 dp_xl2 = 0.0;
1317 dp_xl3 = 0.0;
1318 dp_xl4 = 0.0;
1319 dp_xgh2 = 0.0;
1320 dp_xgh3 = 0.0;
1321 dp_xgh4 = 0.0;
1322 dp_xh2 = 0.0;
1323 dp_xh3 = 0.0;
1324 dp_xqncl = 0.0;
1325 dp_thgr = 0.0;
1326 dp_omegaq = 0.0;
1327 dp_sse = 0.0;
1328 dp_ssi = 0.0;
1329 dp_ssl = 0.0;
1330 dp_ssh = 0.0;
1331 dp_ssg = 0.0;
1332 dp_d2201 = 0.0;
1333 dp_d2211 = 0.0;
1334 dp_d3210 = 0.0;
1335 dp_d3222 = 0.0;
1336 dp_d4410 = 0.0;
1337 dp_d4422 = 0.0;
1338 dp_d5220 = 0.0;
1339 dp_d5232 = 0.0;
1340 dp_d5421 = 0.0;
1341 dp_d5433 = 0.0;
1342 dp_xlamo = 0.0;
1343 dp_del1 = 0.0;
1344 dp_del2 = 0.0;
1345 dp_del3 = 0.0;
1346 dp_fasx2 = 0.0;
1347 dp_fasx4 = 0.0;
1348 dp_fasx6 = 0.0;
1349 dp_xfact = 0.0;
1350 dp_xli = 0.0;
1351 dp_xni = 0.0;
1352 dp_atime = 0.0;
1353 dp_stepp = 0.0;
1354 dp_stepn = 0.0;
1355 dp_step2 = 0.0;
1356
1357 dp_iresfl = false;
1358 dp_isynfl = false;
1359
1360 }
1361
1362
1363 /////////////////////////////////////////////////////////////////////////////
1364 bool cNoradSDP4::DeepInit(double *eosq, double *sinio, double *cosio,
1365 double *betao, double *aodp, double *theta2,
1366 double *sing, double *cosg, double *betao2,
1367 double *xmdot, double *omgdot, double *xnodott)
1368 {
1369 eqsq = *eosq;
1370 siniq = *sinio;
1371 cosiq = *cosio;
1372 rteqsq = *betao;
1373 ao = *aodp;
1374 cosq2 = *theta2;
1375 sinomo = *sing;
1376 cosomo = *cosg;
1377 bsq = *betao2;
1378 xlldot = *xmdot;
1379 omgdt = *omgdot;
1380 xnodot = *xnodott;
1381
1382 // Deep space initialization
1383 cJulian jd = m_Orbit.Epoch();
1384
1385 dp_thgr = jd.toGMST();
1386
1387 double eq = m_Orbit.Eccentricity();
1388 double aqnv = 1.0 / ao;
1389
1390 dp_xqncl = m_Orbit.Inclination();
1391
1392 double xmao = m_Orbit.mnAnomaly();
1393 double xpidot = omgdt + xnodot;
1394 double sinq = sin(m_Orbit.RAAN());
1395 double cosq = cos(m_Orbit.RAAN());
1396
1397 dp_omegaq = m_Orbit.ArgPerigee();
1398
1399 // Initialize lunar solar terms
1400 double day = jd.FromJan1_12h_1900();
1401
1402 if (day != dpi_day)
1403 {
1404 dpi_day = day;
1405 dpi_xnodce = 4.5236020 - 9.2422029E-4 * day;
1406 dpi_stem = sin(dpi_xnodce);
1407 dpi_ctem = cos(dpi_xnodce);
1408 dpi_zcosil = 0.91375164 - 0.03568096 * dpi_ctem;
1409 dpi_zsinil = sqrt(1.0 - dpi_zcosil * dpi_zcosil);
1410 dpi_zsinhl = 0.089683511 *dpi_stem / dpi_zsinil;
1411 dpi_zcoshl = sqrt(1.0 - dpi_zsinhl * dpi_zsinhl);
1412 dpi_c = 4.7199672 + 0.22997150 * day;
1413 dpi_gam = 5.8351514 + 0.0019443680 * day;
1414 dp_zmol = Fmod2p(dpi_c - dpi_gam);
1415 dpi_zx = 0.39785416 * dpi_stem / dpi_zsinil;
1416 dpi_zy = dpi_zcoshl * dpi_ctem + 0.91744867 * dpi_zsinhl * dpi_stem;
1417 dpi_zx = AcTan(dpi_zx,dpi_zy) + dpi_gam - dpi_xnodce;
1418 dpi_zcosgl = cos(dpi_zx);
1419 dpi_zsingl = sin(dpi_zx);
1420 dp_zmos = 6.2565837 + 0.017201977 * day;
1421 dp_zmos = Fmod2p(dp_zmos);
1422 }
1423
1424 dp_savtsn = 1.0e20;
1425
1426 double zcosg = zcosgs;
1427 double zsing = zsings;
1428 double zcosi = zcosis;
1429 double zsini = zsinis;
1430 double zcosh = cosq;
1431 double zsinh = sinq;
1432 double cc = c1ss;
1433 double zn = zns;
1434 double ze = zes;
1435 double zmo = dp_zmos;
1436 double xnoi = 1.0 / m_xnodp;
1437
1438 double a1; double a3; double a7; double a8; double a9; double a10;
1439 double a2; double a4; double a5; double a6; double x1; double x2;
1440 double x3; double x4; double x5; double x6; double x7; double x8;
1441 double z31; double z32; double z33; double z1; double z2; double z3;
1442 double z11; double z12; double z13; double z21; double z22; double z23;
1443 double s3; double s2; double s4; double s1; double s5; double s6;
1444 double s7;
1445 double se = 0.0; double si = 0.0; double sl = 0.0;
1446 double sgh = 0.0; double sh = 0.0;
1447
1448 // Apply the solar and lunar terms on the first pass, then re-apply the
1449 // solar terms again on the second pass.
1450
1451 for (int pass = 1; pass <= 2; pass++)
1452 {
1453 // Do solar terms
1454 a1 = zcosg * zcosh + zsing * zcosi * zsinh;
1455 a3 = -zsing * zcosh + zcosg * zcosi * zsinh;
1456 a7 = -zcosg * zsinh + zsing * zcosi * zcosh;
1457 a8 = zsing * zsini;
1458 a9 = zsing * zsinh + zcosg * zcosi * zcosh;
1459 a10 = zcosg * zsini;
1460 a2 = cosiq * a7 + siniq * a8;
1461 a4 = cosiq * a9 + siniq * a10;
1462 a5 = -siniq * a7 + cosiq * a8;
1463 a6 = -siniq * a9 + cosiq * a10;
1464 x1 = a1 * cosomo + a2 * sinomo;
1465 x2 = a3 * cosomo + a4 * sinomo;
1466 x3 = -a1 * sinomo + a2 * cosomo;
1467 x4 = -a3 * sinomo + a4 * cosomo;
1468 x5 = a5 * sinomo;
1469 x6 = a6 * sinomo;
1470 x7 = a5 * cosomo;
1471 x8 = a6 * cosomo;
1472 z31 = 12.0 * x1 * x1 - 3.0 * x3 * x3;
1473 z32 = 24.0 * x1 * x2 - 6.0 * x3 * x4;
1474 z33 = 12.0 * x2 * x2 - 3.0 * x4 * x4;
1475 z1 = 3.0 * (a1 * a1 + a2 * a2) + z31 * eqsq;
1476 z2 = 6.0 * (a1 * a3 + a2 * a4) + z32 * eqsq;
1477 z3 = 3.0 * (a3 * a3 + a4 * a4) + z33 * eqsq;
1478 z11 = -6.0 * a1 * a5 + eqsq*(-24.0 * x1 * x7 - 6.0 * x3 * x5);
1479 z12 = -6.0 * (a1 * a6 + a3 * a5) +
1480 eqsq * (-24.0 * (x2 * x7 + x1 * x8) - 6.0 * (x3 * x6 + x4 * x5));
1481 z13 = -6.0 * a3 * a6 + eqsq * (-24.0 * x2 * x8 - 6.0 * x4 * x6);
1482 z21 = 6.0 * a2 * a5 + eqsq * (24.0 * x1 * x5 - 6.0 * x3 * x7);
1483 z22 = 6.0*(a4 * a5 + a2 * a6) +
1484 eqsq * (24.0 * (x2 * x5 + x1 * x6) - 6.0 * (x4 * x7 + x3 * x8));
1485 z23 = 6.0 * a4 * a6 + eqsq*(24.0 * x2 * x6 - 6.0 * x4 * x8);
1486 z1 = z1 + z1 + bsq * z31;
1487 z2 = z2 + z2 + bsq * z32;
1488 z3 = z3 + z3 + bsq * z33;
1489 s3 = cc * xnoi;
1490 s2 = -0.5 * s3/rteqsq;
1491 s4 = s3 * rteqsq;
1492 s1 = -15.0 * eq * s4;
1493 s5 = x1 * x3 + x2 * x4;
1494 s6 = x2 * x3 + x1 * x4;
1495 s7 = x2 * x4 - x1 * x3;
1496 se = s1 * zn * s5;
1497 si = s2 * zn * (z11 + z13);
1498 sl = -zn * s3 * (z1 + z3 - 14.0 - 6.0 * eqsq);
1499 sgh = s4 * zn * (z31 + z33 - 6.0);
1500 sh = -zn * s2 * (z21 + z23);
1501
1502 if (dp_xqncl < 5.2359877E-2)
1503 sh = 0.0;
1504
1505 dp_ee2 = 2.0 * s1 * s6;
1506 dp_e3 = 2.0 * s1 * s7;
1507 dp_xi2 = 2.0 * s2 * z12;
1508 dp_xi3 = 2.0 * s2 * (z13 - z11);
1509 dp_xl2 = -2.0 * s3 * z2;
1510 dp_xl3 = -2.0 * s3 * (z3 - z1);
1511 dp_xl4 = -2.0 * s3 * (-21.0 - 9.0 * eqsq) * ze;
1512 dp_xgh2 = 2.0 * s4 * z32;
1513 dp_xgh3 = 2.0 * s4 * (z33 - z31);
1514 dp_xgh4 = -18.0 * s4 * ze;
1515 dp_xh2 = -2.0 * s2 * z22;
1516 dp_xh3 = -2.0 * s2 * (z23 - z21);
1517
1518 if (pass == 1)
1519 {
1520 // Do lunar terms
1521 dp_sse = se;
1522 dp_ssi = si;
1523 dp_ssl = sl;
1524 dp_ssh = sh / siniq;
1525 dp_ssg = sgh - cosiq * dp_ssh;
1526 dp_se2 = dp_ee2;
1527 dp_si2 = dp_xi2;
1528 dp_sl2 = dp_xl2;
1529 dp_sgh2 = dp_xgh2;
1530 dp_sh2 = dp_xh2;
1531 dp_se3 = dp_e3;
1532 dp_si3 = dp_xi3;
1533 dp_sl3 = dp_xl3;
1534 dp_sgh3 = dp_xgh3;
1535 dp_sh3 = dp_xh3;
1536 dp_sl4 = dp_xl4;
1537 dp_sgh4 = dp_xgh4;
1538 zcosg = dpi_zcosgl;
1539 zsing = dpi_zsingl;
1540 zcosi = dpi_zcosil;
1541 zsini = dpi_zsinil;
1542 zcosh = dpi_zcoshl * cosq + dpi_zsinhl * sinq;
1543 zsinh = sinq * dpi_zcoshl - cosq * dpi_zsinhl;
1544 zn = znl;
1545 cc = c1l;
1546 ze = zel;
1547 zmo = dp_zmol;
1548 }
1549 }
1550
1551 dp_sse = dp_sse + se;
1552 dp_ssi = dp_ssi + si;
1553 dp_ssl = dp_ssl + sl;
1554 dp_ssg = dp_ssg + sgh - cosiq / siniq * sh;
1555 dp_ssh = dp_ssh + sh / siniq;
1556
1557 // Geopotential resonance initialization for 12 hour orbits
1558 dp_iresfl = false;
1559 dp_isynfl = false;
1560
1561 bool bInitOnExit = true;
1562 double g310;
1563 double f220;
1564 double bfact = 0.0;
1565
1566 if ((m_xnodp >= 0.0052359877) || (m_xnodp <= 0.0034906585))
1567 {
1568 if ((m_xnodp < 8.26E-3) || (m_xnodp > 9.24E-3) || (eq < 0.5))
1569 {
1570 bInitOnExit = false;
1571 }
1572 else
1573 {
1574 dp_iresfl = true;
1575
1576 double eoc = eq * eqsq;
1577 double g201 = -0.306 - (eq - 0.64) * 0.440;
1578
1579 double g211; double g322;
1580
1581 double g410; double g422;
1582 double g520;
1583
1584 if (eq <= 0.65)
1585 {
1586 g211 = 3.616 - 13.247 * eq + 16.290 * eqsq;
1587 g310 = -19.302 + 117.390 * eq - 228.419 * eqsq + 156.591 * eoc;
1588 g322 = -18.9068 + 109.7927 * eq - 214.6334 * eqsq + 146.5816 * eoc;
1589 g410 = -41.122 + 242.694 * eq - 471.094 * eqsq + 313.953 * eoc;
1590 g422 = -146.407 + 841.880 * eq - 1629.014 * eqsq + 1083.435 * eoc;
1591 g520 = -532.114 + 3017.977 * eq - 5740.0 * eqsq + 3708.276 * eoc;
1592 }
1593 else
1594 {
1595 g211 = -72.099 + 331.819 * eq - 508.738 * eqsq + 266.724 * eoc;
1596 g310 = -346.844 + 1582.851 * eq - 2415.925 * eqsq + 1246.113 * eoc;
1597 g322 = -342.585 + 1554.908 * eq - 2366.899 * eqsq + 1215.972 * eoc;
1598 g410 = -1052.797 + 4758.686 * eq - 7193.992 * eqsq + 3651.957 * eoc;
1599 g422 = -3581.69 + 16178.11 * eq - 24462.77 * eqsq + 12422.52 * eoc;
1600
1601 if (eq <= 0.715)
1602 g520 = 1464.74 - 4664.75 * eq + 3763.64 * eqsq;
1603 else
1604 g520 = -5149.66 + 29936.92 * eq - 54087.36 * eqsq + 31324.56 * eoc;
1605 }
1606
1607 double g533;
1608 double g521;
1609 double g532;
1610
1611 if (eq < 0.7)
1612 {
1613 g533 = -919.2277 + 4988.61 * eq - 9064.77 * eqsq + 5542.21 * eoc;
1614 g521 = -822.71072 + 4568.6173 * eq - 8491.4146 * eqsq + 5337.524 * eoc;
1615 g532 = -853.666 + 4690.25 * eq - 8624.77 * eqsq + 5341.4 * eoc;
1616 }
1617 else
1618 {
1619 g533 = -37995.78 + 161616.52 * eq - 229838.2 * eqsq + 109377.94 * eoc;
1620 g521 = -51752.104 + 218913.95 * eq - 309468.16 * eqsq + 146349.42 * eoc;
1621 g532 = -40023.88 + 170470.89 * eq - 242699.48 * eqsq + 115605.82 * eoc;
1622 }
1623
1624 double sini2 = siniq * siniq;
1625 f220 = 0.75*(1.0 + 2.0 * cosiq + cosq2);
1626 double f221 = 1.5 * sini2;
1627 double f321 = 1.875 * siniq*(1.0 - 2.0 * cosiq - 3.0 * cosq2);
1628 double f322 = -1.875 * siniq*(1.0 + 2.0 * cosiq - 3.0 * cosq2);
1629 double f441 = 35.0 * sini2 * f220;
1630 double f442 = 39.3750 * sini2 * sini2;
1631 double f522 = 9.84375 * siniq*(sini2*(1.0 - 2.0 * cosiq - 5.0 * cosq2) +
1632 0.33333333*(-2.0 + 4.0 * cosiq + 6.0 * cosq2));
1633 double f523 = siniq*(4.92187512 * sini2*(-2.0 - 4.0 * cosiq + 10.0 * cosq2) +
1634 6.56250012 * (1.0 + 2.0 * cosiq - 3.0 * cosq2));
1635 double f542 = 29.53125 * siniq*(2.0 - 8.0 * cosiq + cosq2 * (-12.0 + 8.0 * cosiq + 10.0 * cosq2));
1636 double f543 = 29.53125 * siniq*(-2.0 - 8.0 * cosiq + cosq2 * (12.0 + 8.0 * cosiq - 10.0 * cosq2));
1637 double xno2 = m_xnodp * m_xnodp;
1638 double ainv2 = aqnv * aqnv;
1639 double temp1 = 3.0 * xno2 * ainv2;
1640 double temp = temp1 * root22;
1641
1642 dp_d2201 = temp * f220 * g201;
1643 dp_d2211 = temp * f221 * g211;
1644 temp1 = temp1 * aqnv;
1645 temp = temp1 * root32;
1646 dp_d3210 = temp * f321 * g310;
1647 dp_d3222 = temp * f322 * g322;
1648 temp1 = temp1 * aqnv;
1649 temp = 2.0 * temp1 * root44;
1650 dp_d4410 = temp * f441 * g410;
1651 dp_d4422 = temp * f442 * g422;
1652 temp1 = temp1 * aqnv;
1653 temp = temp1 * root52;
1654 dp_d5220 = temp * f522 * g520;
1655 dp_d5232 = temp * f523 * g532;
1656 temp = 2.0 * temp1 * root54;
1657 dp_d5421 = temp * f542 * g521;
1658 dp_d5433 = temp * f543 * g533;
1659 dp_xlamo = xmao + m_Orbit.RAAN() + m_Orbit.RAAN() - dp_thgr - dp_thgr;
1660 bfact = xlldot + xnodot + xnodot - thdt - thdt;
1661 bfact = bfact + dp_ssl + dp_ssh + dp_ssh;
1662 }
1663 }
1664 else
1665 {
1666 // Synchronous resonance terms initialization
1667 dp_iresfl = true;
1668 dp_isynfl = true;
1669 double g200 = 1.0 + eqsq * (-2.5 + 0.8125 * eqsq);
1670 g310 = 1.0 + 2.0 * eqsq;
1671 double g300 = 1.0 + eqsq * (-6.0 + 6.60937 * eqsq);
1672 f220 = 0.75 * (1.0 + cosiq) * (1.0 + cosiq);
1673 double f311 = 0.9375 * siniq * siniq * (1.0 + 3 * cosiq) - 0.75 * (1.0 + cosiq);
1674 double f330 = 1.0 + cosiq;
1675 f330 = 1.875 * f330 * f330 * f330;
1676 dp_del1 = 3.0 * m_xnodp * m_xnodp * aqnv * aqnv;
1677 dp_del2 = 2.0 * dp_del1 * f220 * g200 * q22;
1678 dp_del3 = 3.0 * dp_del1 * f330 * g300 * q33 * aqnv;
1679 dp_del1 = dp_del1 * f311 * g310 * q31 * aqnv;
1680 dp_fasx2 = 0.13130908;
1681 dp_fasx4 = 2.8843198;
1682 dp_fasx6 = 0.37448087;
1683 dp_xlamo = xmao + m_Orbit.RAAN() + m_Orbit.ArgPerigee() - dp_thgr;
1684 bfact = xlldot + xpidot - thdt;
1685 bfact = bfact + dp_ssl + dp_ssg + dp_ssh;
1686 }
1687
1688 if (bInitOnExit)
1689 {
1690 dp_xfact = bfact - m_xnodp;
1691
1692 // Initialize integrator
1693 dp_xli = dp_xlamo;
1694 dp_xni = m_xnodp;
1695 dp_atime = 0.0;
1696 dp_stepp = 720.0;
1697 dp_stepn = -720.0;
1698 dp_step2 = 259200.0;
1699 }
1700
1701 *eosq = eqsq;
1702 *sinio = siniq;
1703 *cosio = cosiq;
1704 *betao = rteqsq;
1705 *aodp = ao;
1706 *theta2 = cosq2;
1707 *sing = sinomo;
1708 *cosg = cosomo;
1709 *betao2 = bsq;
1710 *xmdot = xlldot;
1711 *omgdot = omgdt;
1712 *xnodott = xnodot;
1713
1714 return true;
1715 }
1716
1717 //////////////////////////////////////////////////////////////////////////////
1718 bool cNoradSDP4::DeepCalcDotTerms(double *pxndot, double *pxnddt, double *pxldot)
1719 {
1720 // Dot terms calculated
1721 if (dp_isynfl)
1722 {
1723 *pxndot = dp_del1 * sin(dp_xli - dp_fasx2) +
1724 dp_del2 * sin(2.0 * (dp_xli - dp_fasx4)) +
1725 dp_del3 * sin(3.0 * (dp_xli - dp_fasx6));
1726 *pxnddt = dp_del1 * cos(dp_xli - dp_fasx2) +
1727 2.0 * dp_del2 * cos(2.0 * (dp_xli - dp_fasx4)) +
1728 3.0 * dp_del3 * cos(3.0 * (dp_xli - dp_fasx6));
1729 }
1730 else
1731 {
1732 double xomi = dp_omegaq + omgdt * dp_atime;
1733 double x2omi = xomi + xomi;
1734 double x2li = dp_xli + dp_xli;
1735
1736 *pxndot = dp_d2201 * sin(x2omi + dp_xli - g22) +
1737 dp_d2211 * sin(dp_xli - g22) +
1738 dp_d3210 * sin(xomi + dp_xli - g32) +
1739 dp_d3222 * sin(-xomi + dp_xli - g32) +
1740 dp_d4410 * sin(x2omi + x2li - g44) +
1741 dp_d4422 * sin(x2li - g44) +
1742 dp_d5220 * sin(xomi + dp_xli - g52) +
1743 dp_d5232 * sin(-xomi + dp_xli - g52) +
1744 dp_d5421 * sin(xomi + x2li - g54) +
1745 dp_d5433 * sin(-xomi + x2li - g54);
1746
1747 *pxnddt = dp_d2201 * cos(x2omi + dp_xli - g22) +
1748 dp_d2211 * cos(dp_xli - g22) +
1749 dp_d3210 * cos(xomi + dp_xli - g32) +
1750 dp_d3222 * cos(-xomi + dp_xli - g32) +
1751 dp_d5220 * cos(xomi + dp_xli - g52) +
1752 dp_d5232 * cos(-xomi + dp_xli - g52) +
1753 2.0 * (dp_d4410 * cos(x2omi + x2li - g44) +
1754 dp_d4422 * cos(x2li - g44) +
1755 dp_d5421 * cos(xomi + x2li - g54) +
1756 dp_d5433 * cos(-xomi + x2li - g54));
1757 }
1758
1759 *pxldot = dp_xni + dp_xfact;
1760 *pxnddt = (*pxnddt) * (*pxldot);
1761
1762 return true;
1763 }
1764
1765 //////////////////////////////////////////////////////////////////////////////
1766 void cNoradSDP4::DeepCalcIntegrator(double *pxndot, double *pxnddt,
1767 double *pxldot, const double &delt)
1768 {
1769 DeepCalcDotTerms(pxndot, pxnddt, pxldot);
1770
1771 dp_xli = dp_xli + (*pxldot) * delt + (*pxndot) * dp_step2;
1772 dp_xni = dp_xni + (*pxndot) * delt + (*pxnddt) * dp_step2;
1773 dp_atime = dp_atime + delt;
1774 }
1775
1776 //////////////////////////////////////////////////////////////////////////////
1777 bool cNoradSDP4::DeepSecular(double *xmdf, double *omgadf, double *xnode,
1778 double *emm, double *xincc, double *xnn,
1779 double *tsince)
1780 {
1781 xll = *xmdf;
1782 omgasm = *omgadf;
1783 xnodes = *xnode;
1784 xn = *xnn;
1785 t = *tsince;
1786
1787 // Deep space secular effects
1788 xll = xll + dp_ssl * t;
1789 omgasm = omgasm + dp_ssg * t;
1790 xnodes = xnodes + dp_ssh * t;
1791 _em = m_Orbit.Eccentricity() + dp_sse * t;
1792 xinc = m_Orbit.Inclination() + dp_ssi * t;
1793
1794 if (xinc < 0.0)
1795 {
1796 xinc = -xinc;
1797 xnodes = xnodes + PI;
1798 omgasm = omgasm - PI;
1799 }
1800
1801 double xnddt = 0.0;
1802 double xndot = 0.0;
1803 double xldot = 0.0;
1804 double ft = 0.0;
1805 double delt = 0.0;
1806
1807 bool fDone = false;
1808
1809 if (dp_iresfl)
1810 {
1811 while (!fDone)
1812 {
1813 if ((dp_atime == 0.0) ||
1814 ((t >= 0.0) && (dp_atime < 0.0)) ||
1815 ((t < 0.0) && (dp_atime >= 0.0)))
1816 {
1817 if (t < 0)
1818 delt = dp_stepn;
1819 else
1820 delt = dp_stepp;
1821
1822 // Epoch restart
1823 dp_atime = 0.0;
1824 dp_xni = m_xnodp;
1825 dp_xli = dp_xlamo;
1826
1827 fDone = true;
1828 }
1829 else
1830 {
1831 if (fabs(t) < fabs(dp_atime))
1832 {
1833 delt = dp_stepp;
1834
1835 if (t >= 0.0)
1836 delt = dp_stepn;
1837
1838 DeepCalcIntegrator(&xndot, &xnddt, &xldot, delt);
1839 }
1840 else
1841 {
1842 delt = dp_stepn;
1843
1844 delt = dp_stepp;
1845
1846 fDone = true;
1847 }
1848 }
1849 }
1850
1851 while (fabs(t - dp_atime) >= dp_stepp)
1852 {
1853 DeepCalcIntegrator(&xndot, &xnddt, &xldot, delt);
1854 }
1855
1856 ft = t - dp_atime;
1857
1858 DeepCalcDotTerms(&xndot, &xnddt, &xldot);
1859
1860 xn = dp_xni + xndot * ft + xnddt * ft * ft * 0.5;
1861
1862 double xl = dp_xli + xldot * ft + xndot * ft * ft * 0.5;
1863 double temp = -xnodes + dp_thgr + t * thdt;
1864
1865 xll = xl - omgasm + temp;
1866
1867 if (!dp_isynfl)
1868 xll = xl + temp + temp;
1869 }
1870
1871 *xmdf = xll;
1872 *omgadf = omgasm;
1873 *xnode = xnodes;
1874 *emm = _em;
1875 *xincc = xinc;
1876 *xnn = xn;
1877 *tsince = t;
1878
1879 return true;
1880 }
1881
1882 //////////////////////////////////////////////////////////////////////////////
1883 bool cNoradSDP4::DeepPeriodics(double *e, double *xincc,
1884 double *omgadf, double *xnode,
1885 double *xmam)
1886 {
1887 _em = *e;
1888 xinc = *xincc;
1889 omgasm = *omgadf;
1890 xnodes = *xnode;
1891 xll = *xmam;
1892
1893 // Lunar-solar periodics
1894 double sinis = sin(xinc);
1895 double cosis = cos(xinc);
1896
1897 double sghs = 0.0;
1898 double shs = 0.0;
1899 double sh1 = 0.0;
1900 double pe = 0.0;
1901 double pinc = 0.0;
1902 double pl = 0.0;
1903 double sghl = 0.0;
1904
1905 if (fabs(dp_savtsn - t) >= 30.0)
1906 {
1907 dp_savtsn = t;
1908
1909 double zm = dp_zmos + zns * t;
1910 double zf = zm + 2.0 * zes * sin(zm);
1911 double sinzf = sin(zf);
1912 double f2 = 0.5 * sinzf * sinzf - 0.25;
1913 double f3 = -0.5 * sinzf * cos(zf);
1914 double ses = dp_se2 * f2 + dp_se3 * f3;
1915 double sis = dp_si2 * f2 + dp_si3 * f3;
1916 double sls = dp_sl2 * f2 + dp_sl3 * f3 + dp_sl4 * sinzf;
1917
1918 sghs = dp_sgh2 * f2 + dp_sgh3 * f3 + dp_sgh4 * sinzf;
1919 shs = dp_sh2 * f2 + dp_sh3 * f3;
1920 zm = dp_zmol + znl * t;
1921 zf = zm + 2.0 * zel * sin(zm);
1922 sinzf = sin(zf);
1923 f2 = 0.5 * sinzf * sinzf - 0.25;
1924 f3 = -0.5 * sinzf * cos(zf);
1925
1926 double sel = dp_ee2 * f2 + dp_e3 * f3;
1927 double sil = dp_xi2 * f2 + dp_xi3 * f3;
1928 double sll = dp_xl2 * f2 + dp_xl3 * f3 + dp_xl4 * sinzf;
1929
1930 sghl = dp_xgh2 * f2 + dp_xgh3 * f3 + dp_xgh4 * sinzf;
1931 sh1 = dp_xh2 * f2 + dp_xh3 * f3;
1932 pe = ses + sel;
1933 pinc = sis + sil;
1934 pl = sls + sll;
1935 }
1936
1937 double pgh = sghs + sghl;
1938 double ph = shs + sh1;
1939 xinc = xinc + pinc;
1940 _em = _em + pe;
1941
1942 if (dp_xqncl >= 0.2)
1943 {
1944 // Apply periodics directly
1945 ph = ph / siniq;
1946 pgh = pgh - cosiq * ph;
1947 omgasm = omgasm + pgh;
1948 xnodes = xnodes + ph;
1949 xll = xll + pl;
1950 }
1951 else
1952 {
1953 // Apply periodics with Lyddane modification
1954 double sinok = sin(xnodes);
1955 double cosok = cos(xnodes);
1956 double alfdp = sinis * sinok;
1957 double betdp = sinis * cosok;
1958 double dalf = ph * cosok + pinc * cosis * sinok;
1959 double dbet = -ph * sinok + pinc * cosis * cosok;
1960
1961 alfdp = alfdp + dalf;
1962 betdp = betdp + dbet;
1963
1964 double xls = xll + omgasm + cosis * xnodes;
1965 double dls = pl + pgh - pinc * xnodes * sinis;
1966
1967 xls = xls + dls;
1968 xnodes = AcTan(alfdp, betdp);
1969 xll = xll + pl;
1970 omgasm = xls - xll - cos(xinc) * xnodes;
1971 }
1972
1973 *e = _em;
1974 *xincc = xinc;
1975 *omgadf = omgasm;
1976
1977 *xnode = xnodes;
1978 *xmam = xll;
1979
1980 return true;
1981 }
1982
1983 //////////////////////////////////////////////////////////////////////////////
1984 // getPosition()
1985 // This procedure returns the ECI position and velocity for the satellite
1986 // in the orbit at the given number of minutes since the TLE epoch time
1987 // using the NORAD Simplified General Perturbation 4, "deep space" orbit
1988 // model.
1989 //
1990 // tsince - Time in minutes since the TLE epoch (GMT).
1991 // pECI - pointer to location to store the ECI data.
1992 // To convert the returned ECI position vector to km,
1993 // multiply each component by:
1994 // (XKMPER_WGS72 / AE).
1995 // To convert the returned ECI velocity vector to km/sec,
1996 // multiply each component by:
1997 // (XKMPER_WGS72 / AE) * (MIN_PER_DAY / 86400).
1998 bool cNoradSDP4::getPosition(double tsince, cEci &eci)
1999 {
2000 DeepInit(&m_eosq, &m_sinio, &m_cosio, &m_betao, &m_aodp, &m_theta2,
2001 &m_sing, &m_cosg, &m_betao2, &m_xmdot, &m_omgdot, &m_xnodot);
2002
2003 // Update for secular gravity and atmospheric drag
2004 double xmdf = m_Orbit.mnAnomaly() + m_xmdot * tsince;
2005 double omgadf = m_Orbit.ArgPerigee() + m_omgdot * tsince;
2006 double xnoddf = m_Orbit.RAAN() + m_xnodot * tsince;
2007 double tsq = tsince * tsince;
2008 double xnode = xnoddf + m_xnodcf * tsq;
2009 double tempa = 1.0 - m_c1 * tsince;
2010 double tempe = m_Orbit.BStar() * m_c4 * tsince;
2011 double templ = m_t2cof * tsq;
2012 double xn = m_xnodp;
2013 double em;
2014 double xinc;
2015
2016 DeepSecular(&xmdf, &omgadf, &xnode, &em, &xinc, &xn, &tsince);
2017
2018 double a = pow(XKE / xn, TWOTHRD) * sqr(tempa);
2019 double e = em - tempe;
2020 double xmam = xmdf + m_xnodp * templ;
2021
2022 DeepPeriodics(&e, &xinc, &omgadf, &xnode, &xmam);
2023
2024 double xl = xmam + omgadf + xnode;
2025
2026 xn = XKE / pow(a, 1.5);
2027
2028 return FinalPosition(xinc, omgadf, e, a, xl, xnode, xn, tsince, eci);
2029 }
2030
2031
2032 // cOrbit.cpp
2033 //
2034 // Copyright (c) 2002-2003 Michael F. Henry
2035 //
2036 // mfh 11/15/2003
2037 //
2038 //////////////////////////////////////////////////////////////////////
2039 cOrbit::cOrbit(const cTle &tle) :
2040 m_tle(tle),
2041 m_pNoradModel(NULL)
2042 {
2043 m_tle.Initialize();
2044
2045 int epochYear = (int)m_tle.getField(cTle::FLD_EPOCHYEAR);
2046 double epochDay = m_tle.getField(cTle::FLD_EPOCHDAY );
2047
2048 if (epochYear < 57)
2049 epochYear += 2000;
2050 else
2051 epochYear += 1900;
2052
2053 m_jdEpoch = cJulian(epochYear, epochDay);
2054
2055 m_secPeriod = -1.0;
2056
2057 // Recover the original mean motion and semimajor axis from the
2058 // input elements.
2059 double mm = mnMotion();
2060 double rpmin = mm * 2 * PI / MIN_PER_DAY; // rads per minute
2061
2062 double a1 = pow(XKE / rpmin, TWOTHRD);
2063 double e = Eccentricity();
2064 double i = Inclination();
2065 double temp = (1.5 * CK2 * (3.0 * sqr(cos(i)) - 1.0) /
2066 pow(1.0 - e * e, 1.5));
2067 double delta1 = temp / (a1 * a1);
2068 double a0 = a1 *
2069 (1.0 - delta1 *
2070 ((1.0 / 3.0) + delta1 *
2071 (1.0 + 134.0 / 81.0 * delta1)));
2072
2073 double delta0 = temp / (a0 * a0);
2074
2075 m_mnMotionRec = rpmin / (1.0 + delta0);
2076 m_aeAxisSemiMinorRec = a0 / (1.0 - delta0);
2077 m_aeAxisSemiMajorRec = m_aeAxisSemiMinorRec / sqrt(1.0 - (e * e));
2078 m_kmPerigeeRec = XKMPER_WGS72 * (m_aeAxisSemiMajorRec * (1.0 - e) - AE);
2079 m_kmApogeeRec = XKMPER_WGS72 * (m_aeAxisSemiMajorRec * (1.0 + e) - AE);
2080
2081 if (2.0 * PI / m_mnMotionRec >= 225.0)
2082 {
2083 // SDP4 - period >= 225 minutes.
2084 m_pNoradModel = new cNoradSDP4(*this);
2085 }
2086 else
2087 {
2088 // SGP4 - period < 225 minutes
2089 m_pNoradModel = new cNoradSGP4(*this);
2090 }
2091 }
2092
2093 /////////////////////////////////////////////////////////////////////////////
2094 cOrbit::~cOrbit()
2095 {
2096 delete m_pNoradModel;
2097 }
2098
2099 //////////////////////////////////////////////////////////////////////////////
2100 // Return the period in seconds
2101 double cOrbit::Period() const
2102 {
2103 if (m_secPeriod < 0.0)
2104 {
2105 // Calculate the period using the recovered mean motion.
2106 if (m_mnMotionRec == 0)
2107 m_secPeriod = 0.0;
2108 else
2109 m_secPeriod = (2 * PI) / m_mnMotionRec * 60.0;
2110 }
2111
2112 return m_secPeriod;
2113 }
2114
2115 //////////////////////////////////////////////////////////////////////////////
2116 // Returns elapsed number of seconds from epoch to given time.
2117 // Note: "Predicted" TLEs can have epochs in the future.
2118 double cOrbit::TPlusEpoch(const cJulian &gmt) const
2119 {
2120 return gmt.spanSec(Epoch());
2121 }
2122
2123 //////////////////////////////////////////////////////////////////////////////
2124 // Returns the mean anomaly in radians at given GMT.
2125 // At epoch, the mean anomaly is given by the elements data.
2126 double cOrbit::mnAnomaly(cJulian gmt) const
2127 {
2128 double span = TPlusEpoch(gmt);
2129 double P = Period();
2130
2131 assert(P != 0.0);
2132
2133 return fmod(mnAnomaly() + (TWOPI * (span / P)), TWOPI);
2134 }
2135
2136 //////////////////////////////////////////////////////////////////////////////
2137 // getPosition()
2138 // This procedure returns the ECI position and velocity for the satellite
2139 // at "tsince" minutes from the (GMT) TLE epoch. The vectors returned in
2140 // the ECI object are kilometer-based.
2141 // tsince - Time in minutes since the TLE epoch (GMT).
2142 bool cOrbit::getPosition(double tsince, cEci *pEci) const
2143 {
2144 bool rc;
2145
2146 rc = m_pNoradModel->getPosition(tsince, *pEci);
2147
2148 pEci->ae2km();
2149
2150 return rc;
2151 }
2152
2153 //////////////////////////////////////////////////////////////////////////////
2154 // SatName()
2155 // Return the name of the satellite. If requested, the NORAD number is
2156 // appended to the end of the name, i.e., "ISS (ZARYA) #25544".
2157 // The name of the satellite with the NORAD number appended is important
2158 // because many satellites, especially debris, have the same name and
2159 // would otherwise appear to be the same satellite in ouput data.
2160 string cOrbit::SatName(bool fAppendId /* = false */) const
2161 {
2162 string str = m_tle.getName();
2163
2164 if (fAppendId)
2165 {
2166 string strId;
2167
2168 m_tle.getField(cTle::FLD_NORADNUM, cTle::U_NATIVE, &strId);
2169 str = str + " #" + strId;
2170 }
2171
2172 return str;
2173 }
2174

  ViewVC Help
Powered by ViewVC 1.1.23