/[PAMELA software]/chewbacca/YodaProfiler/inc/sgp4.h
ViewVC logotype

Contents of /chewbacca/YodaProfiler/inc/sgp4.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.1.1.1 - (show annotations) (download) (vendor branch)
Tue Sep 23 07:20:32 2008 UTC (16 years, 2 months ago) by mocchiut
Branch: v0r00, MAIN
CVS Tags: v1r02, v1r00, v1r01, start, v10RED, v9r00, v9r01, HEAD
Changes since 1.1: +0 -0 lines
File MIME type: text/plain
Error occurred while calculating annotation data.
Imported sources, 23/09/2008

1 //
2 // stdafx.h
3 //
4 #ifndef sgp4_h
5 #define sgp4_h
6
7 #if !defined(__CINT__) || defined(__MAKECINT__)
8
9 //#define WIN32_LEAN_AND_MEAN // Exclude rarely-used stuff from Windows headers
10 #include <stdio.h>
11 //#include <tchar.h>
12 #include <ctype.h>
13 #include <string>
14 #include <map>
15 #include <vector>
16 #include <algorithm>
17 #include <assert.h>
18 #include <time.h>
19 #include <math.h>
20
21 using namespace std;
22 //
23 // globals.h
24 //
25
26 const double PI = 3.141592653589793;
27 const double TWOPI = 2.0 * PI;
28 const double RADS_PER_DEG = PI / 180.0;
29
30 const double GM = 398601.2; // Earth gravitational constant, km^3/sec^2
31 const double GEOSYNC_ALT = 42241.892; // km
32 const double EARTH_DIA = 12800.0; // km
33 const double DAY_SIDERAL = (23 * 3600) + (56 * 60) + 4.09; // sec
34 const double DAY_24HR = (24 * 3600); // sec
35
36 const double AE = 1.0;
37 const double AU = 149597870.0; // Astronomical unit (km) (IAU 76)
38 const double SR = 696000.0; // Solar radius (km) (IAU 76)
39 const double TWOTHRD = 2.0 / 3.0;
40 const double XKMPER_WGS72 = 6378.135; // Earth equatorial radius - km (WGS '72)
41 const double F = 1.0 / 298.26; // Earth flattening (WGS '72)
42 const double GE = 398600.8; // Earth gravitational constant (WGS '72)
43 const double J2 = 1.0826158E-3; // J2 harmonic (WGS '72)
44 const double J3 = -2.53881E-6; // J3 harmonic (WGS '72)
45 const double J4 = -1.65597E-6; // J4 harmonic (WGS '72)
46 const double CK2 = J2 / 2.0;
47 const double CK4 = -3.0 * J4 / 8.0;
48 const double XJ3 = J3;
49 const double E6A = 1.0e-06;
50 const double QO = AE + 120.0 / XKMPER_WGS72;
51 const double S = AE + 78.0 / XKMPER_WGS72;
52 const double HR_PER_DAY = 24.0; // Hours per day (solar)
53 const double MIN_PER_DAY = 1440.0; // Minutes per day (solar)
54 const double SEC_PER_DAY = 86400.0; // Seconds per day (solar)
55 const double OMEGA_E = 1.00273790934; // earth rotation per sideral day
56 const double XKE = sqrt(3600.0 * GE / //sqrt(ge) ER^3/min^2
57 (XKMPER_WGS72 * XKMPER_WGS72 * XKMPER_WGS72));
58 const double QOMS2T = pow((QO - S), 4); //(QO - S)^4 ER^4
59
60 // Utility functions
61 double sqr (const double x);
62 double Fmod2p(const double arg);
63 double AcTan (const double sinx, double cosx);
64
65 double rad2deg(const double);
66 double deg2rad(const double);
67 //
68 // coord.h
69 //
70 // Copyright 2002-2003 Michael F. Henry
71 //
72 //////////////////////////////////////////////////////////////////////
73 // Geocentric coordinates.
74 class cCoordGeo
75 {
76 public:
77 cCoordGeo();
78 cCoordGeo(double lat, double lon, double alt) :
79 m_Lat(lat), m_Lon(lon), m_Alt(alt) {}
80 virtual ~cCoordGeo() {};
81
82 double m_Lat; // Latitude, radians (negative south)
83 double m_Lon; // Longitude, radians (negative west)
84 double m_Alt; // Altitude, km (above mean sea level)
85 };
86
87 //////////////////////////////////////////////////////////////////////
88 // Topocentric-Horizon coordinates.
89 class cCoordTopo
90 {
91 public:
92 cCoordTopo();
93 cCoordTopo(double az, double el, double rng, double rate) :
94 m_Az(az), m_El(el), m_Range(rng), m_RangeRate(rate) {}
95 virtual ~cCoordTopo() {};
96
97 double m_Az; // Azimuth, radians
98 double m_El; // Elevation, radians
99 double m_Range; // Range, kilometers
100 double m_RangeRate; // Range rate of change, km/sec
101 // Negative value means "towards observer"
102 };
103
104 // cVector.h: interface for the cVector class.
105 //
106 // Copyright 2003 (c) Michael F. Henry
107 //
108 //////////////////////////////////////////////////////////////////////
109
110 class cVector
111 {
112 public:
113 cVector(double x = 0.0, double y = 0.0, double z = 0.0, double w = 0.0) :
114 m_x(x), m_y(y), m_z(z), m_w(w) {}
115 virtual ~cVector() {};
116
117 void Sub(const cVector&); // subtraction
118 void Mul(double factor); // multiply each component by 'factor'
119
120 double Angle(const cVector&) const; // angle between two vectors
121 double Magnitude() const; // vector magnitude
122 double Dot(const cVector& vec) const; // dot product
123
124 // protected:
125 double m_x;
126 double m_y;
127 double m_z;
128 double m_w;
129 };
130 //
131 // cTle.h
132 //
133 // This class will accept a single set of two-line elements and then allow
134 // a client to request specific fields, such as epoch, mean motion,
135 // etc., from the set.
136 //
137 // Copyright 1996-2003 Michael F. Henry
138 //
139 /////////////////////////////////////////////////////////////////////////////
140 class cTle
141 {
142 public:
143 cTle(string&, string&, string&);
144 cTle(const cTle &tle);
145 ~cTle();
146
147 enum eTleLine
148 {
149 LINE_ZERO,
150 LINE_ONE,
151 LINE_TWO
152 };
153
154 enum eField
155 {
156 FLD_FIRST,
157 FLD_NORADNUM = FLD_FIRST,
158 FLD_INTLDESC,
159 FLD_SET, // TLE set number
160 FLD_EPOCHYEAR, // Epoch: Last two digits of year
161 FLD_EPOCHDAY, // Epoch: Fractional Julian Day of year
162 FLD_ORBITNUM, // Orbit at epoch
163 FLD_I, // Inclination
164 FLD_RAAN, // R.A. ascending node
165 FLD_E, // Eccentricity
166 FLD_ARGPER, // Argument of perigee
167 FLD_M, // Mean anomaly
168 FLD_MMOTION, // Mean motion
169 FLD_MMOTIONDT, // First time derivative of mean motion
170 FLD_MMOTIONDT2,// Second time derivative of mean motion
171 FLD_BSTAR, // BSTAR Drag
172 FLD_LAST // MUST be last
173 };
174
175 enum eUnits
176 {
177 U_FIRST,
178 U_RAD = U_FIRST, // radians
179 U_DEG, // degrees
180 U_NATIVE, // TLE format native units (no conversion)
181 U_LAST // MUST be last
182 };
183
184 void Initialize();
185
186 static int CheckSum(const string&);
187 static bool IsValidLine(string&, eTleLine);
188 static string ExpToDecimal(const string&);
189
190 static void TrimLeft(string&);
191 static void TrimRight(string&);
192
193 double getField(eField fld, // which field to retrieve
194 eUnits unit = U_NATIVE, // return units in rad, deg etc.
195 string *pstr = NULL, // return ptr for str value
196 bool bStrUnits = false) // 'true': append units to str val
197 const;
198 string getName() const { return m_strName; }
199 string getLine1() const { return m_strLine1;}
200 string getLine2() const { return m_strLine2;}
201
202 protected:
203 static double ConvertUnits(double val, eField fld, eUnits units);
204
205 private:
206 string getUnits(eField) const;
207 double getFieldNumeric(eField) const;
208
209 // Satellite name and two data lines
210 string m_strName;
211 string m_strLine1;
212 string m_strLine2;
213
214 // Converted fields, in atof()-readable form
215 string m_Field[FLD_LAST];
216
217 // Cache of field values in "double" format
218 typedef int FldKey;
219 FldKey Key(eUnits u, eField f) const { return (u * 100) + f; }
220 mutable map<FldKey, double> m_mapCache;
221 };
222
223 ///////////////////////////////////////////////////////////////////////////
224 //
225 // TLE data format
226 //
227 // [Reference: T.S. Kelso]
228 //
229 // Two line element data consists of three lines in the following format:
230 //
231 // AAAAAAAAAAAAAAAAAAAAAA
232 // 1 NNNNNU NNNNNAAA NNNNN.NNNNNNNN +.NNNNNNNN +NNNNN-N +NNNNN-N N NNNNN
233 // 2 NNNNN NNN.NNNN NNN.NNNN NNNNNNN NNN.NNNN NNN.NNNN NN.NNNNNNNNNNNNNN
234 //
235 // Line 0 is a twenty-two-character name.
236 //
237 // Lines 1 and 2 are the standard Two-Line Orbital Element Set Format identical
238 // to that used by NORAD and NASA. The format description is:
239 //
240 // Line 1
241 // Column Description
242 // 01-01 Line Number of Element Data
243 // 03-07 Satellite Number
244 // 10-11 International Designator (Last two digits of launch year)
245 // 12-14 International Designator (Launch number of the year)
246 // 15-17 International Designator (Piece of launch)
247 // 19-20 Epoch Year (Last two digits of year)
248 // 21-32 Epoch (Julian Day and fractional portion of the day)
249 // 34-43 First Time Derivative of the Mean Motion
250 // or Ballistic Coefficient (Depending on ephemeris type)
251 // 45-52 Second Time Derivative of Mean Motion (decimal point assumed;
252 // blank if N/A)
253 // 54-61 BSTAR drag term if GP4 general perturbation theory was used.
254 // Otherwise, radiation pressure coefficient. (Decimal point assumed)
255 // 63-63 Ephemeris type
256 // 65-68 Element number
257 // 69-69 Check Sum (Modulo 10)
258 // (Letters, blanks, periods, plus signs = 0; minus signs = 1)
259 //
260 // Line 2
261 // Column Description
262 // 01-01 Line Number of Element Data
263 // 03-07 Satellite Number
264 // 09-16 Inclination [Degrees]
265 // 18-25 Right Ascension of the Ascending Node [Degrees]
266 // 27-33 Eccentricity (decimal point assumed)
267 // 35-42 Argument of Perigee [Degrees]
268 // 44-51 Mean Anomaly [Degrees]
269 // 53-63 Mean Motion [Revs per day]
270 // 64-68 Revolution number at epoch [Revs]
271 // 69-69 Check Sum (Modulo 10)
272 //
273 // All other columns are blank or fixed.
274 //
275 // Example:
276 //
277 // NOAA 6
278 // 1 11416U 86 50.28438588 0.00000140 67960-4 0 5293
279 // 2 11416 98.5105 69.3305 0012788 63.2828 296.9658 14.24899292346978
280
281 //
282 // cJulian.h
283 //
284 // Copyright (c) 2003 Michael F. Henry
285 //
286 //
287 // See note in cJulian.cpp for information on this class and the epoch dates
288 //
289 const double EPOCH_JAN1_00H_1900 = 2415019.5; // Jan 1.0 1900 = Jan 1 1900 00h UTC
290 const double EPOCH_JAN1_12H_1900 = 2415020.0; // Jan 1.5 1900 = Jan 1 1900 12h UTC
291 const double EPOCH_JAN1_12H_2000 = 2451545.0; // Jan 1.5 2000 = Jan 1 2000 12h UTC
292
293 //////////////////////////////////////////////////////////////////////////////
294 class cJulian
295 {
296 public:
297 cJulian() { Initialize(2000, 1); }
298 explicit cJulian(time_t t); // Create from time_t
299 explicit cJulian(int year, double day); // Create from year, day of year
300 explicit cJulian(int year, // i.e., 2004
301 int mon, // 1..12
302 int day, // 1..31
303 int hour, // 0..23
304 int min, // 0..59
305 double sec = 0.0); // 0..(59.999999...)
306 ~cJulian() {};
307
308 double toGMST() const; // Greenwich Mean Sidereal Time
309 double toLMST(double lon) const; // Local Mean Sideral Time
310 time_t toTime() const; // To time_t type - avoid using
311
312 double FromJan1_00h_1900() const { return m_Date - EPOCH_JAN1_00H_1900; }
313 double FromJan1_12h_1900() const { return m_Date - EPOCH_JAN1_12H_1900; }
314 double FromJan1_12h_2000() const { return m_Date - EPOCH_JAN1_12H_2000; }
315
316 void getComponent(int *pYear, int *pMon = NULL, double *pDOM = NULL) const;
317 double getDate() const { return m_Date; }
318
319 void addDay (double day) { m_Date += day; }
320 void addHour(double hr ) { m_Date += (hr / HR_PER_DAY ); }
321 void addMin (double min) { m_Date += (min / MIN_PER_DAY); }
322 void addSec (double sec) { m_Date += (sec / SEC_PER_DAY); }
323
324 double spanDay (const cJulian& b) const { return m_Date - b.m_Date; }
325 double spanHour(const cJulian& b) const { return spanDay(b) * HR_PER_DAY; }
326 double spanMin (const cJulian& b) const { return spanDay(b) * MIN_PER_DAY; }
327 double spanSec (const cJulian& b) const { return spanDay(b) * SEC_PER_DAY; }
328
329 static bool IsLeapYear(int y)
330 { return (y % 4 == 0 && y % 100 != 0) || (y % 400 == 0); }
331
332 protected:
333 void Initialize(int year, double day);
334
335 double m_Date; // Julian date
336 };
337 //
338 // cEci.h
339 //
340 // Copyright (c) 2003 Michael F. Henry
341 //
342 //////////////////////////////////////////////////////////////////////
343 // class cEci
344 // Encapsulates an Earth-Centered Inertial position, velocity, and time.
345 class cEci
346 {
347 public:
348 cEci() { m_VecUnits = UNITS_NONE; }
349 cEci(const cCoordGeo &geo, const cJulian &cJulian);
350 cEci(const cVector &pos, const cVector &vel,
351 const cJulian &date, bool IsAeUnits = true);
352 virtual ~cEci() {};
353
354 cCoordGeo toGeo();
355
356 cVector getPos() const { return m_pos; }
357 cVector getVel() const { return m_vel; }
358 cJulian getDate() const { return m_date; }
359
360 void setUnitsAe() { m_VecUnits = UNITS_AE; }
361 void setUnitsKm() { m_VecUnits = UNITS_KM; }
362 bool UnitsAreAe() const { return m_VecUnits == UNITS_AE; }
363 bool UnitsAreKm() const { return m_VecUnits == UNITS_KM; }
364 void ae2km(); // Convert position, velocity vector units from AE to km
365
366 protected:
367 void MulPos(double factor) { m_pos.Mul(factor); }
368 void MulVel(double factor) { m_vel.Mul(factor); }
369
370 enum VecUnits
371 {
372 UNITS_NONE, // not initialized
373 UNITS_AE,
374 UNITS_KM
375 };
376
377 cVector m_pos;
378 cVector m_vel;
379 cJulian m_date;
380 VecUnits m_VecUnits;
381 };
382 //
383 // cNoradBase.h
384 //
385 // This class provides a base class for the NORAD SGP4/SDP4
386 // orbit models.
387 //
388 // Copyright (c) 2003 Michael F. Henry
389 //
390 #pragma once
391
392 //////////////////////////////////////////////////////////////////////////////
393
394 class cEci;
395 class cOrbit;
396
397 //////////////////////////////////////////////////////////////////////////////
398
399 class cNoradBase
400 {
401 public:
402 cNoradBase(const cOrbit&);
403 virtual ~cNoradBase() {};
404
405 virtual bool getPosition(double tsince, cEci &eci) = 0;
406
407 protected:
408 cNoradBase& operator=(const cNoradBase&);
409
410 void Initialize();
411 bool FinalPosition(double incl, double omega, double e,
412 double a, double xl, double xnode,
413 double xn, double tsince, cEci &eci);
414
415 const cOrbit &m_Orbit;
416
417 // Orbital parameter variables which need only be calculated one
418 // time for a given orbit (ECI position time-independent).
419 double m_satInc; // inclination
420 double m_satEcc; // eccentricity
421
422 double m_cosio; double m_theta2; double m_x3thm1; double m_eosq;
423 double m_betao2; double m_betao; double m_aodp; double m_xnodp;
424 double m_s4; double m_qoms24; double m_perigee; double m_tsi;
425 double m_eta; double m_etasq; double m_eeta; double m_coef;
426 double m_coef1; double m_c1; double m_c2; double m_c3;
427 double m_c4; double m_sinio; double m_a3ovk2; double m_x1mth2;
428 double m_xmdot; double m_omgdot; double m_xhdot1; double m_xnodot;
429 double m_xnodcf; double m_t2cof; double m_xlcof; double m_aycof;
430 double m_x7thm1;
431 };
432 //
433 // cOrbit.h
434 //
435 // This is the header file for the class cOrbit. This class accepts a
436 // single satellite's NORAD two-line element set and provides information
437 // regarding the satellite's orbit such as period, axis length,
438 // ECI coordinates/velocity, etc., using the SGP4/SDP4 orbital models.
439 //
440 // Copyright (c) 2002-2003 Michael F. Henry
441 //
442 #pragma once
443
444 #include "math.h"
445
446 using namespace std;
447 //////////////////////////////////////////////////////////////////////////////
448
449 class cVector;
450 class cGeoCoord;
451 class cEci;
452
453 //////////////////////////////////////////////////////////////////////////////
454 class cOrbit
455 {
456 public:
457 cOrbit(const cTle &tle);
458 virtual ~cOrbit();
459
460 // Return satellite ECI data at given minutes since element's epoch.
461 bool getPosition(double tsince, cEci *pEci) const;
462
463 double Inclination() const { return radGet(cTle::FLD_I); }
464 double Eccentricity() const { return m_tle.getField(cTle::FLD_E); }
465 double RAAN() const { return radGet(cTle::FLD_RAAN); }
466 double ArgPerigee() const { return radGet(cTle::FLD_ARGPER); }
467 double BStar() const { return m_tle.getField(cTle::FLD_BSTAR) / AE;}
468 double Drag() const { return m_tle.getField(cTle::FLD_MMOTIONDT); }
469 double mnMotion() const { return m_tle.getField(cTle::FLD_MMOTION); }
470 double mnAnomaly() const { return radGet(cTle::FLD_M); }
471 double mnAnomaly(cJulian t) const; // mean anomaly (in radians) at time t
472
473 cJulian Epoch() const { return m_jdEpoch; }
474
475 double TPlusEpoch(const cJulian &t) const; // time span [t - epoch] in secs
476
477 string SatName(bool fAppendId = false) const;
478
479 // "Recovered" from the input elements
480 double SemiMajor() const { return m_aeAxisSemiMajorRec; }
481 double SemiMinor() const { return m_aeAxisSemiMinorRec; }
482 double mnMotionRec() const { return m_mnMotionRec; } // mn motion, rads/min
483 double Major() const { return 2.0 * SemiMajor(); } // major axis in AE
484 double Minor() const { return 2.0 * SemiMinor(); } // minor axis in AE
485 double Perigee() const { return m_kmPerigeeRec; } // perigee in km
486 double Apogee() const { return m_kmApogeeRec; } // apogee in km
487 double Period() const; // period in seconds
488
489 protected:
490 double radGet(cTle::eField fld) const
491 { return m_tle.getField(fld, cTle::U_RAD); }
492
493 double degGet(cTle::eField fld) const
494 { return m_tle.getField(fld, cTle::U_DEG); }
495
496 private:
497 cTle m_tle;
498 cJulian m_jdEpoch;
499 cNoradBase *m_pNoradModel;
500
501 // Caching variables; note units are not necessarily the same as tle units
502 mutable double m_secPeriod;
503
504 // Caching variables recovered from the input TLE elements
505 double m_aeAxisSemiMinorRec; // semi-minor axis, in AE units
506 double m_aeAxisSemiMajorRec; // semi-major axis, in AE units
507 double m_mnMotionRec; // radians per minute
508 double m_kmPerigeeRec; // perigee, in km
509 double m_kmApogeeRec; // apogee, in km
510 };
511
512 //
513 // cNoradSGP4.h
514 //
515 // This class implements the NORAD Simple General Perturbation 4 orbit
516 // model. This model provides the ECI coordiantes/velocity of satellites
517 // with orbit periods less than 225 minutes.
518 //
519 // Copyright (c) 2003 Michael F. Henry
520 //
521 #pragma once
522
523 class cOrbit;
524
525 //////////////////////////////////////////////////////////////////////////////
526 class cNoradSGP4 : public cNoradBase
527 {
528 public:
529 cNoradSGP4(const cOrbit &orbit);
530 virtual ~cNoradSGP4() {};
531
532 virtual bool getPosition(double tsince, cEci &eci);
533
534 protected:
535 double m_c5;
536 double m_omgcof;
537 double m_xmcof;
538 double m_delmo;
539 double m_sinmo;
540 };
541
542 //
543 // cNoradSDP4.h
544 //
545 // This class implements the NORAD Simple Deep Perturbation 4 orbit
546 // model. This model provides the ECI coordinates/velocity of satellites
547 // with periods >= 225 minutes.
548 //
549 // Copyright (c) 2003 Michael F. Henry
550 //
551 #pragma once
552
553 class cOrbit;
554
555 //////////////////////////////////////////////////////////////////////////////
556 class cNoradSDP4 : public cNoradBase
557 {
558 public:
559 cNoradSDP4(const cOrbit &orbit);
560 virtual ~cNoradSDP4() {};
561
562 virtual bool getPosition(double tsince, cEci &eci);
563
564 protected:
565 bool DeepInit(double *eosq, double *sinio, double *cosio, double *m_betao,
566 double *m_aodp, double *m_theta2, double *m_sing, double *m_cosg,
567 double *m_betao2,double *xmdot, double *omgdot, double *xnodott);
568
569 bool DeepSecular(double *xmdf, double *omgadf,double *xnode, double *emm,
570 double *xincc, double *xnn, double *tsince);
571 bool DeepCalcDotTerms (double *pxndot, double *pxnddt, double *pxldot);
572 void DeepCalcIntegrator(double *pxndot, double *pxnddt, double *pxldot,
573 const double &delt);
574 bool DeepPeriodics(double *e, double *xincc, double *omgadf,
575 double *xnode, double *xmam);
576 double m_sing;
577 double m_cosg;
578
579 // Deep Initialization
580 double eqsq; double siniq; double cosiq; double rteqsq; double ao;
581 double cosq2; double sinomo; double cosomo; double bsq; double xlldot;
582 double omgdt; double xnodot;
583
584 // Deep Secular, Periodic
585 double xll; double omgasm; double xnodes; double _em;
586 double xinc; double xn; double t;
587
588 // Variables shared by "Deep" routines
589 double dp_e3; double dp_ee2; double dp_savtsn; double dp_se2;
590 double dp_se3; double dp_sgh2; double dp_sgh3; double dp_sgh4;
591 double dp_sghs; double dp_sh2; double dp_sh3; double dp_si2;
592 double dp_si3; double dp_sl2; double dp_sl3; double dp_sl4;
593 double dp_xgh2; double dp_xgh3; double dp_xgh4; double dp_xh2;
594 double dp_xh3; double dp_xi2; double dp_xi3; double dp_xl2;
595 double dp_xl3; double dp_xl4; double dp_xqncl; double dp_zmol;
596 double dp_zmos;
597
598 double dp_atime; double dp_d2201; double dp_d2211; double dp_d3210;
599 double dp_d3222; double dp_d4410; double dp_d4422; double dp_d5220;
600 double dp_d5232; double dp_d5421; double dp_d5433; double dp_del1;
601 double dp_del2; double dp_del3; double dp_fasx2; double dp_fasx4;
602 double dp_fasx6; double dp_omegaq; double dp_sse; double dp_ssg;
603 double dp_ssh; double dp_ssi; double dp_ssl; double dp_step2;
604 double dp_stepn; double dp_stepp; double dp_thgr; double dp_xfact;
605 double dp_xlamo; double dp_xli; double dp_xni;
606
607 bool dp_iresfl;
608 bool dp_isynfl;
609
610 // DeepInit vars that change with epoch
611 double dpi_c; double dpi_ctem; double dpi_day; double dpi_gam;
612 double dpi_stem; double dpi_xnodce; double dpi_zcosgl; double dpi_zcoshl;
613 double dpi_zcosil; double dpi_zsingl; double dpi_zsinhl; double dpi_zsinil;
614 double dpi_zx; double dpi_zy;
615
616 };
617
618 #endif
619 #endif
620

  ViewVC Help
Powered by ViewVC 1.1.23