YODAPROFILER (v2r00) MANUAL
Emiliano Mocchiutti
(Emiliano.Mocchiutti @ts.infn.it)
2006/10/31

1) Installing YodaProfiler
YodaProfiler requires YODA, ROOT and MySQL (version greater equal to 4.1.20) to
be already installed in the system. The package yodaUltility is not needed anymore.

YodaProfiler provides:

executable YodaProfiler
executable R2-D2

library libGLTables.so
library libsgp4.so

header file GLTables.h
header file sgp4.h

header GLTablesStruct.h
bash script retrieve_TLE.sh
bash scrip install_DB.sh
sql script PAMELAProductionDB.sql
this manual

To install the YodaProfiler program follow these step:
- set up the PAMELA environment, as example you can use my setting (it is done

for the BASH shell):

export PAM_DBHOST=mysql://srv-g2-01.ts.infn.it/pamelaflightnew
export PAM_DBUSER=root

export PAM_DBPSW=CaloTs

export PAM_YODA=/wizard3/pamela/sw/slc4

export PAM_BIN=/wizard3/pamela/sw/slc4/bin

export PAM_LIB=/wizard3/pamela/sw/slc4/lib

export PAM_SRC=/wizard3/pamela/sw/slc4/src

export PAM_INC=/wizard3/pamela/sw/slc4/inc

export PAM_MACROS=/wizard3/pamela/sw/slc4/macros
export PAM_DOC=/wizard3/pamela/sw/slc4/docs

export PAM_CALIB=/wizard3/pamela/sw/calib

export ARCH="uname"

the PAM_DB#* variables can be omitted, their use is explained below.
- download the YodaProfiler source code

- enter the directory YodaProfiler

- give the command

make di stclean all upgrade

- create the DB, to do so enter the directory “docs” and give the command:

./linstall_DB.sh --user=root --host=mnysql://|ocal host/panel aprod --psw=Cal 0Ts
where as input you must give username and password of a MySQL user who have
write permissions on the DB. The host must be the computer running the MySQL
server the name of the DB (“pamelaprod” in this example) can be any.

Wait 30 seconds and the DB will be created.

If you have set up the PAM_DB* variables you can just give the command:

./linstall _DB. sh

if you give the input variables the environmental variables will be overridden.
WARNINGS:

1) if a DB already exists with that name it will be dropped and recreated, all DB
data will be lost! You will have 30 seconds to interrupt the procedure before
deleting the DB.

2) NO ERROR OR WARNINGS MUST be issued by this procedure. If you
experience any problem first check that you are using a MySQL version newer or
equal to 4.1.20, than check that you have the InnoDB engine active (look in the file
/etc/my.cnf , the “skip-innodb” must be commented or absent). Notice that if you
need to include “CURRENT_TIMESTAMP” between apices in the
PAMELAProductionDB.sql file you are probably using a wrong MySQL version,
the YodaProfiler will NOT work properly in that case.

The installation is completed.

2) YodaProfiler outlook

YodaProfiler has been written assuming that input files does not contain repeated
events. Some patches have been implemented to be able to process YODA files
which, at present, have repetitions of events. The main patch try to find the repetition
of events at the end of, almost, any file and discard the repeated event from the
processing.

The task of this program is to fill the PAMELA DB with RUN and calibration
informations in order to allow the data/calibration association using the absolute time.
The DB scheme is shown in the figure attached to this document. The DB structure
has been developed around the main table GL_RUN which contains the informations
about the PAMELA runs. The GL_NAME CALIB tables allows the association
between data and calibration for calorimeter, tracker and S4 (where
NAME=CALO,TRK,S4).

YodaProfiler can be run on the files in any order but some small differences between
two DB created processing files with a different order could be noticed due to the
patches implemented to handle repeated events.

The program uniquely identifies the runs using the three variables OBT, PSCU packet
number and the boot number. To find the runs input files are scanned looking for
runtrailers. Once a runtrailer has been found the program search for the corresponding
runheader and check if its PSCU packet counter is correct, this is done subtracting to
the runtrailer packet number the number of events recorded in that run as stated in the

word “PKT_COUNTER?” saved in the runtrailer. If the packet number correspond the
run is saved in the GL_RUN table. If the check is wrong and in case of any problem
(like missing runheader or missing runtrailer or full mass memory, etc.) the program
check for a certain group of physics events if any packet of different type has been
saved in between. This way YodaProfiler can distinguish also run with missing
runheader and runtrailer.

A dedicated routine handle runs which have been transmitted in two different
downloads. That runs are temporary stored in the GL_RUN_FRAGMENTS table (a
clone of the GL_RUN table) till the corresponding piece has been found. In that
moment the two pieces of run are moved in the GL_RUN table and stored as two
different entries. The link between the two pieces is the variable ID_RUN_FRAG
which is cross set to the ID of the other piece while is zero for “normal” runs.

Pieces of runs for which it is not possible to find the corresponding part remains in the
GL_RUN_FRAGMENTS table. YodaProfiler contains a routine which can be used to
clean the fragment table moving pieces of run in the GL_RUN table. These runs can
be identified in the GL_RUN table looking at the ID_RUN_FRAG flag which is, in
this case, equal to the ID of the run.

Another routine is called by the program to validate runs, that is to set to 1 the flag
VALIDATION in the GL_RUN table in case the run is associated to the correct
tracker calibration.

These two last routine are disabled by default and can be enabled giving a running
input. The validation and the cleaning of the fragment table are performed on DB
entries older than a certain time set by the user. Notice that this feature must be
used very carefully since if a file is processed and creates a run inserted in a
already validated region the run WILL NOT be validated and if a piece of run
has been moved from the fragment table to the GL_RUN table it WILL NOT
recognized as a run fragment (a piece of run will be lost). Hence the validation
must be performed only when sure that there are no more files to be processed
for a certain period. If there is the need to process an old file or to reprocess a file
ues the “-force” flag which will remove the file from DB, process it, move run
fragments to the run table and validate runs belonging to the processed file.

Other flags allow to remove a file and all what follows from the DB, to validate a
single file, to clean fragments for a single file and to avoid storing runs in the
fragments table.

When a file is removed from the DB entries in GL_RAW, GL_RUN,
GL_TIMESYNC, GL_RUN_FRAGMENTS and GL_RUN_TRASH are deleted, runs
in the GL_RUN table are moved to the GL_RUN_TRASH table where also the name
of the root file is saved, this way is possible to track already level2 processed runs
which have been deleted for any reason.

The RUN ID is univoquely assigned to each run, reprocessing a file will generate new
run ids. R2-D2 can be used to associated old to new runs.

It is possible to run YodaProfiler twice on the same file, no change will be made to
the DB. A temporary patch has been written to handle the processing of two different
files containing the same download. The program will try to choose the less corrupted
runs by looking at the number of events contained in the run compared to the number
of event saved by the CPU in the runtrailer. Notice that physics events are not scanned
to check their integrity. Hence some difference can arise depending on the order on

which the YodaProfiler is run on two files with the same download. The best would
be to run first on the good file and in case on the bad one. Doing the opposite in
theory could create the following situation: a run contains a lot of physics packets
with errors but all the events of the run are present. In this case when running on the
good file the program will find an already inserted run and since the number of events
is equal it will skip it even if all data inside that run are good!

As already said in this section, the program requires the boot number and needs to
calculate the absolute time. Boot number is by default determined looking in the
VarDump data. If VarDump data are missing or corrupted the program exit with error.
To process the file it will be necessary determine by hand the boot number and give it
as input on the command line to the program. To determine the absolute time three
informations are needed: the Resurs time zero, which is stored in the table
GL_RESURS_OFFSET, the Resurs time sync and the CPU OBT at the time sync.
The program try to find these two last informations in the processed file looking for:
the timesync macrocommand, the timesync saved in a runheader, the timesync saved
in a runtrailer, the timesync that can be found in the inclination macrocommands.
NOTICE that at the first occurrence the program will stop and use what it has found,
hence the absolute time determination in the DB is not the best it can be obtained by
data but it is good enough to allow a univoque association between data and
calibration. Timesync informations are stored for each file in the table
GL_TIMESYNC. The column “TYPE” indicates from where the information was
extracted, 55 = mcmd timesync, 20 runheader, 21 runtrailer, 666 mcmd inclination,
999 given as input to the program. If the program is not able to determine the
timesync it will exit with error. It is possible in that case to determine by hand the
timesync and give it as input on the command line to the program in order to process
the file.

dumron o= L e == [2

- [S EE N HAICH L+
— = [[= g iRl EH SHOEIO -
TE/0T/900T O 320 14 " F TS S g Faii e L
21monns gd YIIINVd raTmpaBan Evocas e s
12 2) xn peuBi s F LT O A f—— o
I5eT) MupmL FILYIH == *
{4z) Ty EL SHLY a+ ez 2 =REs
120 Zo) XA pauEson aH- hzeixs = I
Eq o paBiEn yIgrnIrC1coas FI1TID
{29 2) I pauiEn AMd+H TEYd 1D
136 Z) 1 pauBrmn “18C
130) 11 peuE = SEILLTOLA4+
g o) 1 peuiEimn SHILL IO 3+
1315 o) 2 pauE mn o W= e B
130 o6) peu BRn Ep i Vala i | B
1110 2o) 2 paui = S+
ATV 1D

130 =) 10 pauBnn SHESFLLFOIL T At
130 of 3 1n peuEimn IO IooE+ .
g oo 2 peu o THd+
130 2 1 peuEimn et = T2
131 o) A peuE = 1Hds
139 Zx) peuiisn rigce
1315 o) 2 pauE man b= | LT I A
1315 T) 2 pauil mn SHIMLLT I A+
130 T 18 pRUBEIN WYL ELITY 2T LOCH T AT+
120 T 1 pRuBsI0 YL ET Y DT Lo T AT dumsIu CATNLT1M3 S 0+
pralis =l e A e
' o 1 pauiEl E nnnn”uuu_l_ﬂ.l SHIYTI L+
£ i T 11 M e Jopac THL¥a+
““H Egzoian pulinn DI sIrLLa
(29 21 2 pauBi=n ST+
139 2) L peuEimn AL+
120 5) 1 pauBiEn SICAL YO TTY Ak 2= S LT
el pafien CHIErIN T LoCa
1315 o 2 pauson 1Hd+
131 2) 2 pauE mn ~1acH-
130 2) 2 peuiEi=En R) e = 8
13 T 2 pauBisun I T+
120 Zoh 1 pauEisImn AL 1M+
130 Z) I pauBimn S1CESHT AT
1210) 18 paufimn SO LR T
130 2o pauimn S
h= 1 R N A B o

DB time is expressed in seconds starting from 1970-01-01 00:00:00 UTC.
YodaProfiler must be used to fill the GL_TLE table needed to analyze orbital
informations with DarthVader. To do so use the -tle tlefile option. To retrieve the
TLEs from spacetrack.com a ‘“pamela” account has been created, username
“pam2006”, password ‘“Resurs05”. A script is provided to retrieve the TLEs
automatically, you can find it in the “docs” directory, it is called “retrieve_TLE.sh”.
Can be used this way:

Jretrieve_TLE.sh

it will create a file called “tle.txt” that can be used diretcly with YodaProfiler. Use the
“--help” option to know more options of this script.

A file called “tle_061017.txt” can be used as example for the TLE filling, it contains
TLE till October 31* 2006.

3) Running YodaProfiler
The program build an executable which is called YodaProfiler. For online help give
the --help option which will print:
Usage:
YodaProfiler [options] -rawFile raw fil ename -yodaFil e yoda_fil enanme

-rawrFil e full path to the raw file
-yodaFil e full path to the YODA file

Options can be:

--version print informations about conpilation and exit
-h | --help print this help and exit

-v | --verbose be verbose [default]

-s | --silent print nothing on STDOUT

-g | --debug be very verbose [default: no]

-boot nunber CPU boot nunber [default = taken from Var Dunp]
-tsync nunber timesync (s) [default = taken from data]

-obt 0 nunber obt at tinesync (ns) [default = taken from data]
-cl ean nunber nunber in seconds after which the fragnent table
can be cl eaned and runs validated [default = -1 do not clean],
if O force cleaning imediatly, if negative do not clean
-renmove file renove file and all related runs and calibrations from DB

file must be the YODA filenanme (full path is not needed)

'same' can be used if in conjuction with -yodaFile
-validate file validates runs between the two closest calibration to file

not belonging to file itself. File nmust be the YODA fil enane

'same' can be used if in conjuction with -yodaFile
-cleanfrag file clean run fragnenst for file only

File nust be the YODA fil enane

'sane' can be used if in conjuction with -yodaFile

-nofrag do not leave runs in the fragment table and | ook for fragments
in the GL_RUN tabl e.
-force to be used to reprocess a file or to process a file

when already validated the surroundings, it is equivalent to:
-renove sane -validate same -cleanfrag sane -nofrag

- host name for the host

[default = $PAM DBHOST or nysql:/ /1 ocal host/ panel apr od]
-user usernane for the DB [default = $PAM DBUSER or "anonynous"]
- psw password for the DB [default = $PAM DBPSWor ""]
-tle <file> ascii file containing TLE obtai ned from cel estrak.org or

space-track.org [default = no]
The order of input files and options does not matter.
Exanpl e:

YodaProfiler -yodaFile /path/to/raw eader/files/00000 _000_000_cln2.pam -rawFile /

path/to/fil esfronyoda/ 00000_000_000_cl n2.root -v

The standard call will be like the one in the example. Notice that if you have set the
PAM_DB* environmental variables they will be used for the DB connection. If they
are missing and no input is given, the default will Dbe
host=mysql://localhost/pamelaprod, user=anonymous, psw="". The DB connection
can be controlled using the input flags -host, -user and -psw. Notice that these flags
will override the environmental variables if set.

WARNING: a user with write permissions on the DB must be used!

The standard output of the program will be:

Wel cone to the PAMELA YodaProfiler, version v2r00

=> |nitialize and open SQ connection

=> Insert a RAWfile in G._RAW

=> Update a single G._RAWrecord with its BOOT_NUMBER

=> Insert an entry in G__TI MESYNC

Insert unpack ROOT file in G._ROOT

=> Scan physics and store runs in the G._RUN table

=> Insert calorineter calibrations in the G._CALO CALIB table
=> Insert tracker calibrations in the G._TRK CALIB table

=> Insert S4 calibrations in the GL_S4_CALIB table

3 => Free objects and close SQ connection

P OoO~NOUA~WNPE
1l
\%

Fi ni shed, exiting...

If any error is issued it will be printed before exiting.

5) Running R2-D2

This is a utility program. Can be used to:

a) Given the run number determine in which YODA file it is contained:
| Eni @rv-g2-01 ~>R2-D2 -idRun 1

Run 1 belongs to file /gpfs/wi zard/flight/filesfronyoda/001_001_01177_cl n2.root

b) Given a YODA file determine which runs are contained in it:
| EmM @rv-g2-01 ~>R2-D2 -filename 001_001_01177_cl n2.r oot
File 001_001_01177_cln2.root contains the follow ng runs:

=> |ID =1 _-_-_ the run started at 2006-08-30 10:16:07 UTC ended at 2006-08-30
10: 46: 07 UTC

= |D =2 _-_- the run started at 2006-08-30 10:46:08 UTC ended at 2006-08-30
10: 59: 39 UTC

=> |ID = 3 _-_-_ the run started at 2006-08-30 11:00:43 UTC ended at 2006-08-30
11: 02: 23 UTC

= |ID = 4 - - the run started at 2006-08-30 11:02:23 UTC ended at 2006-08-30
11: 32: 23 UTC

=> |ID =5 _- -_the run started at 2006-08-30 11:32:24 UTC ended at 2006-08-30
11:48: 12 UTC

=> |ID =6 _- -_ the run started at 2006-08-30 11:48:15 UTC ended at 2006-08-30
12:18: 15 UTC

=> |ID =7 _-_-_ the run started at 2006-08-30 12:18:15 UTC ended at 2006-08-30
12: 24: 58 UTC

= |D = 8 _-_-_the run started at 2006-08-30 12:24:59 UTC ended at 2006-08-30

12:26:19 UTC

=> |ID =9 _-_-_ the run started at 2006-08-30 12:26:20 UTC ended at 2006-08-30

12: 33: 40 UTC

=> |D = 10 _-_-_ the run started at 2006-08-30 12:34:43 UTC ended at 2006-08-30

12: 36: 23 UTC

=> |ID = 11 _-_-_ the run started at 2006-08-30 12:36:24 UTC ended at 2006-08-30

13: 06: 24 UTC

=> |ID = 12 _-_-_ the run started at 2006-08-30 13:06:24 UTC ended at 2006-08-30

13:36: 24 UTC

=> |D = 3199 - -_ the run started at 2006-08-30 13:36:25 UTC ended at 2006-08-30

13:48: 06 UTC

File 001_001_01177_cl n2. r oot bel ongs to raw dat a file
gpfs/w zard/flight/data//001_001_01177_cl n2. pam

¢) Convert a DB time (in seconds) into a date using a certain time zone (default

MSK):
| EmM @rv-g2-01 ~>R2-D2 -convert 1156936567 -tzone UTC

DB tine 1156936567 is 2006-08-30 10:16: 07 UTC

d) Search for a run containing a given date in a certain time zone (default MSK):

| Em @rv-g2-01 ~>R2-D2 -runat "2006-08-30 10: 16: 07" -tzone UTC

Dat e 2006-08-30 10:16:07 UTC (DB tine 1156936567) is contained in run 1

e) Search for a run contained in a given DB time:
| EmM @rv-g2-01 ~>R2-D2 -runatDB 1158091366

DB tinme 1158091366 is contained in run 37

f) Given a root file and an OBT to convert it to DB time and a date:
| EmM @rv-g2-01 ~>R2-D2 -tsfile 01400_004_001_cln2.root -obt 12000

OBT 12000 in the file 01400_004_001_cln2.root corresponds to DBtinme 1157036668
and date 2006-08-31 17:04:28 UTC

g) To print on the screen and save as tle.txt file the TLE for a given date:
| Eni @rv-g2-01 ~>R2-D2 - dunpTLEfor "2006-08- 15 12: 00: 00"
Date 2006-08-15 12:00: 00 UTC (DB tinme 1155636000) is contained in TLE 237

RESURS DK- 1
1 29228U 06021A 06227.37047658 .00002168 00000-0 48562-4 0 2077
2 29228 069. 9354 262. 4321 0167536 034. 2679 326. 9166 15.32012453 9367

TLE has been dunped in file tle.txt

These time zones are (at the moment) recognized:
1) MSK — Moscow Winter Time
2) MSD — Moscow Summer Time

3) UTC (or GMT) — Coordinated Universal Time
4) CET - Central European Time
5) CEST - Central European Summer Time

