
The Calorimeter Quick–look Software

Emiliano Mocchiutti

5th December 2005

(Software v. 3.00)

Introduction
The aim of this document is to describe the software for the quick–look analysis of the
calorimeter detector. In the next sections each program will be briefly described, it will
be shown how to call it and what are the input parameters. It will follow a description of
the expected output, hence it will be discussed how to recognize possible problems in the
detector and some constraints to the distribution shown will be shown. The calorimeter
software described here has been written in C and it is supposed to be run with ROOT
using as input the YODA generated files.

The installation procedure is described in the calorimeter common package readme.

1 List of quick–look functions
Two types of functions have been written for the calorimeter analysis: main functions and
programs which can be called directly or from ROOT and subroutines which are used by
the main functions and require input data that cannot be given by hand.

The name of main functions is composed by the word “Calo” followed by a uppercase
name. Functions are contained in files usually of the same name and extension “.c”. This
is the list of functions with a brief description of their use:

CaloQLOOK (Version 3.00) Performs a quick–look analysis of the calorimeter data. As
output three canvas are drawn with informations about the calorimeter status. No
calibration data are needed to run this program. Included in the automate version of
quick–look.

CaloCHKCALIB (Version 3.00) Given a calibration it draws three canvas with the RMS,
thresholds, pedestals, bad strips, variance for each strip of the calorimeter anb with
a report of possible errors occurred during calibration. Included in the automate
version of quick–look.

These programs included in the automate version of the PAMELA quick–look. The
programs that can be used to better understand the calorimeter behaviour if in trouble or to
perform a more dedicated analysis are listed and described later in this document.

1

2 Description of quick–look programs
Programs must be executed from the command line or using root and loading the compiled
library.

2.1 CaloQLOOK file from event to event output dir figure format (Ver-
sion 3.00)

Input variables:

� file
String, name of the root directory created by YODA for the data file is going to be
analyzed. There is no default value, without this input the program will not run.

� from event = 0
Integer, first event to be analyzed. Default value is 0 (= all the events). If different
from zero and with to event zero the program will process only the event number
fromevent.

� to event = 0
Integer, last event to be analyzed. Default value is 0 (= all the events). It can differ
from zero only if from event is not zero.

� output dir = “”
String, path to a directory where to save the output figures. Default is empty, it will
save in file.

� figure format = “ps”
Type of figures to save. Deafult are “ps” figures, can be any format recognized by
ROOT.

Example of a standard call:
bash> CaloQLOOK /home/pamela/filesfromyoda/dw 050301 00100/ 0
0 /tmp/ ps

More examples:

CaloQLOOK /home/data/yodafiles/dw 041126 00400/ 146 0 /tmp/ ps
Analyze only event number 146.

CaloQLOOK /home/data/yodafiles/dw 041126 00400/ 146 1000 /tmp/
ps
Analyze events from 146 to 1000.

CaloQLOOK /home/data/yodafiles/dw 041126 00400/ 69 0
/home/myhome/myyodafigures/ ps
Analyze event number 69 and put figures in the directory “/home/myhome/myyodafigures/”.

CaloQLOOK /home/data/yodafiles/dw 041126 00400/ 0 0
/home/myhome/myyodafigures/ eps
Analyze all events and put “eps” figures in the directory “/home/myhome/myyodafigures/”.

The output is reported in three canvas which have as title “Calorimeter Detector Report x/3”
with “x” from one to three.

Calorimeter Detector Report 1/3 :
This canvas is divided into two main zone, left and right. An example of this canvas
is shown in figure 1.

FIGURE 1 – RIGHT: on the right there could be one or two panels depending
on the acquisition mode of the calorimeter. In the case data were acquired only in
COMPRESS or RAW mode one panel will be shown reporting in a histogram the
number of strip hit. In this case a strip is considered hit if its value is not zero, hence
in RAW mode there must be a delta function centered on the number of working
strips; in the case of COMPRESS mode there must be a distribution which average
is the mean number of strips above the DSP threshold. In the case of FULL mode
or in any case in which there is a mixture of acquisition modes two panels will be
shown, in the upper one there will be the COMPRESS mode distribution while in
the lower one the RAW mode distribution will be shown. If there is no cosmic ray
trigger the mean of the COMPRESS mode must be of about 20 in the case of the
full working calorimeter, with a RMS of about 8. In the case of ground muons there
should be a distribution centered at about 60 plus a distribution of pulser events at
about 20. If everything is working correctly the mean of RAW mode must be 4223
(one strip died during integration in Rome) and no events must be out of the delta.

FIGURE 1 – LEFT: on the left is shown, if no errors occurred, the counter com-
ing from the calorimeter section YE (calevnum(2))versus a counter in YODA (iev).
In the case of RAW mode there is no DSP information, hence no figure. In FULL
and COMPRESS mode a linear dependence must appear between the two variables.
Notice that in case of mixed acquisition the line could start at iev greater than zero.
The program check also the counters coming from the other three sections. If any
difference between the four counters is found instead of the single graph just dis-
cussed above four figures are drawn. From lower right clockwise they represent:
the counter coming from the calorimeter section YE versus a counter in YODA, the
absolute difference between counters from section XE and YO, the absolute differ-
ence between counters from section XE and XO and the absolute difference between
counters from section YE and YO.
Another check performed by CaloQLOOK is the correct corrispondence of RAW
and COMPRESS data in the case of FULL acquisition. If any difference is found in
the left side of the canvas only a figure is shown with the difference between RAW
and COMPRESS data instead of counter figure(s).
Only the calevnum(2)%iev figure must be shown in standard conditions and at least
one FULL or COMPRESS event. In case of pure RAW mode acquisition there will
be written “No calevnum infos from DSP”.

Calorimeter Detector Report 2/3 :

Four figures are plotted in this canvas, an example can be found in figure 2. From
top right clockwise:

DEXYC: the energy distribution in ADC channels in the case of COMPRESS
mode acquisition. If there are no COMPRESS data this pad will remain empty. In
a standard situation there must be a peak at zero and a distribution of data at about
3000/5000 ADC channels. Since there is a dead strip there will be a small peak at
about 32000 ADC channels.
The distribution should not spread over more than about 3000 ADC channels, if it
does there must be some noisy strips (has the calorimeter just been turned on? is the
power supply working correctly?).

DEXY: the energy distribution in ADC channels in the case of RAW mode acqui-
sition. If there are no RAW or FULL data this pad will remain empty. In a standard
situation there must be a distribution of data at about 3000/5000 ADC channels.
There should not be any high signal at about 32000 ADC channels, that would mean
a latch–up alarm in one or more views. Again, since there is a dead strip, it could be
possible to see a small peak at about 32000 ADC channels. The distribution should
not spread over more than about 3000 ADC channels, if it does there must be some
noisy strips (has the calorimeter just been turned on? is the power supply working
correctly?).

CALSTRIPHIT: this is the total number of strips above threshold in the case
of COMPRESS mode acquisition as calculated by the DSP. In case of pure RAW
data this figure will be empty. This distribution must be very similar (could be also
identical) to the one presented in the report sheet number one (right, on the top).
The mean must be of about 10 in the case of the full working calorimeter, with a
RMS of about 10, if there is no trigger. In the case of ground muons there should be
a distribution centered at about 50/60.

BASELINES: in this figure is reported the distribution of the common noise of
preamplifiers as calculated by the DSP (no information in RAW mode). In a standard
situation there must be a distribution of data at about 3000/5000 ADC channels.
There must be no signal at about 32000 ADC channels, that would mean a latch–up
in one or more views. The distribution should not spread over more than about 3000
ADC channels.

Calorimeter Detector Report 3/3 :
The last canvas summerizes the calorimeter status, checking for errors coming from
the DSP and errors occurred during the unpacking of data, see figure 3. The infor-
mation from the four sections of the calorimeter is displayed in four different pads.
The first four lines, written in green colour, show how many times the calorimeter
acquired data in RAW, COMPRESS or FULL mode and how many time a pream-
plifier was fully transmitted. All the other lines, written in red colour, represent the
possible errors occurred. The lines of errors coming from the DSP of the calorime-
ter start with a star to distinguish them by error coming from the YODA unpacking
program. The possible errors are:

� “* DSP ack error”: the DSP was not able to answer to the CPU.

� “* Temp. alarm”: temperature alarm.
� “* Latch up alarm”: latch–up alarm, one or more views have been turned off.

The number of planes with latch–up is reported. Below under parenthesis there
is the multiplicity of the latch–up as calculated by CaloQLOOK looking at the
data. Notice that sometimes it could be a latch–up alarm that CaloQLOOK
does not recognize on data or a latch–up alarm seen by CaloQLOOK but not
reported by the DSP. The last case as been proved to be a “false” latch–up and
to be the case in which all strips of one plane gave signal zero (even in RAW
mode!). This seems to be due to the fact that the section had just been turned
on and it needed some time to warm up.

� “* CMD length error”: the DSP received a command of an unexpected length.
� “* Execution error”: the DSP was not able to execute the command.
� “* CRC error (st. word)”: the CRC of the command received was wrong.
� “View or command not recognized” (YODA error code = 128): YODA was

not able to recognize the calorimeter view or command.
� “Missing section” (YODA error code = 129): YODA did not find the calorime-

ter section.
� “CRC error (data)” (YODA error code = 132): the calculated CRC on data was

not equal to the CRC transmitted by the DSP.
� “Length problems in RAW mode” (YODA error code = 133): the length of

RAW data was not 1064 words.
� “Length problems in COMPRESS mode” (YODA error code = 134): the length

given by the DSP is not compatible with COMPRESS mode data.
� “Length problems in FULL mode” (YODA error code = 135): the length given

by the DSP is not compatible with FULL mode data.
� “Acquisition mode problems” (YODA error code = 136): the event seems to

be not RAW nor COMPRESS nor FULL.
� “Problems with coding” (YODA error code = 139): in COMPRESS or FULL

mode YODA cannot distinguish the word containing the signal from the word
containing the common noise (baseline).

� “Pedestal checksum wrong” (YODA error code = 140): the table containing the
pedestals which are needed to compress the data and to compute the baseline
has been corrupted (a new calibration procedure is needed!).

� “Thresholds checksum wrong” (YODA error code = 141): the table contain-
ing the thresholds which are needed to compress the data and to compute the
baseline has been corrupted (a new calibration procedure is needed!).

� “Packet length is zero (yoda, input error), skipped” (YODA error code = 142):
the input buffer given to the unpacking routines of the calorimeter had length
equal to zero.

Moreover other two kind of errors are coming from checks made by CaloQLOOK
and can appear in this canvas:

� “Calevnum jump”: in FULL or COMPRESS mode the counter of the section
was incremented by two between to neighbour events. Notice that this can be
due to a CRC error in the previous event.

� “Full mode, differences between raw and compress mode”: in full mode the
program detected differences between the RAW and COMPRESS mode ac-
quisition (when the compress data are above threshold).

� “WARNING! DEXYC � 0”: negative compressed signal.

There should be no red errors. The number of events must be the same for the four
different sections and the preamplifiers can be fully transmitted only in COMPRESS
or FULL mode. In that case the number of preamplifier transmission should not
exceed half of the total number of COMPRESS and FULL mode events on each
section.

2.2 CaloCHKCALIB file calib number output directory matra fig-
ure format (version 3.00)

Input variables:
� file

String, name of the root directory created by YODA for the data file is going to be
analyzed. There is no default value, without this input the program will not run.

� calib number = 0
Integer, the number of the calibration to check. The default value is zero, it will
show one by one all the calibration in the input file.

� output directory = “”
String, path to a directory where to save the output figures. Default is empty, it will
save in file.

� matra = 0
When set to 1 display the colour figure of RMS values.

� TString figure format = “ps”
Type of figures to save. Deafult are “ps” figures, can be any format recognized by
ROOT.

Example of a standard call:
bash> CaloCHKCALIB /home/data/yodafiles/dw 041126 00400 0 /tmp/
0 ps

More examples:

CaloCHKCALIB /home/data/yodafiles/dw 041126 00400/ 3 /tmp/ 0 ps
Analyze calibration number 3.

CaloCHKCALIB /home/data/yodafiles/dw 041126 00400/ 0
/home/myhome/myyodafigures/calorms/ 0 ps
Analyze all the calibrations and write the figures in directory
“/home/myhome/myyodafigures/calorms/”.

The output is reported in different canvas.
In canvas which has the title “Calorimter: strip RMS”, see figure 5, two panels are

shown: in the upper panel the RMS of each strip of each Y–plane is drawn. The same in
the lower one but for X-planes. Tiny white lines between strips are a normal visualization
effect. There should be no white planes (latch–up) and no white strips (dead strips). The
number of “bad” strips can vary and could be a maximum of about 25/30 in each panel
(50/60 in total). Usually the two panels must be bluish, some green strips (about 15/20 in
each panel), some red strips (about 5/10 in each panel), some black strips (about 5/10 in
each panel). No violet strips should be seen.

Other figures:

FIGURE C14:
Description:
The pedestals of calorimeter strips (ADC channels) obtained during a calibration
procedure.
NOMINAL:
Most of values inside yellow region.
STANDARD situations:
- some hits outside yellow region;
- about hundred consecutive values at zero; latch–up alarm from a plane during cal-
ibration?
ACTION: check a following calibration if problem persist contact specialist.
NON–STANDARD situations:
- eleven set of hundred planes at zero. One section is missing.
- all zero.
ACTION: call specialist.

FIGURE C15:
Description:
The RMS of calorimeter strips (ADC channels) obtained during a calibration proce-
dure.
NOMINAL:
Most of values inside yellow region.
STANDARD situations:
- some hits outside yellow region;
- about hundred consecutive values at zero; latch–up alarm from a plane during cal-
ibration?
ACTION: check a following calibration if problem persist contact specialist.
NON–STANDARD situations:
- eleven set of hundred planes at zero. One section is missing.
- all zero.

ACTION: call specialist.

FIGURE C16:
Description:
Bad strips during a calibration procedure (not used in baseline calculation).
NOMINAL:
No more than 50 hits.
NON–STANDARD situations:
- all black.
- no hits.
ACTION: call specialist.

FIGURE C17:
Description:
The thresholds (ADC channels) used during a calibration procedure.
NOMINAL:
Most of values inside yellow region.
STANDARD situations:
- some hits outside yellow region;
- about six consecutive values at zero or 255; latch–up alarm from a plane during
calibration?
- about six consecutive values at higer values; noise on one plane during calibration?
ACTION: check a following calibration if problem persist contact specialist.
NON–STANDARD situations:
- eleven set of hundred planes at zero or 255. One section is missing.
- all zero.
ACTION: call specialist.

FIGURE C18:
Description:
Strip variance (ADC channels) during a calibration procedure.
NOMINAL:
Most of values inside yellow region.
STANDARD situations:
- some hits outside yellow region;
- about six consecutive values at zero or 255; latch–up alarm from a plane during
calibration?
- about six consecutive values at higer values; noise on one plane during calibration?
ACTION: check a following calibration if problem persist contact specialist.
NON–STANDARD situations:
- eleven set of hundred planes at zero or 255. One section is missing.
- all zero.
ACTION: call specialist.

FIGURE C18:
Description:
Baselines (ADC channels) obtained during a calibration procedure.
NOMINAL:
Most of values inside yellow region. STANDARD situations:
- some hits outside yellow region;
- about six consecutive values at zero or 32000; latch–up alarm from a plane during
calibration?
- about six consecutive values at higer values; noise on one plane during calibration?
ACTION: check a following calibration if problem persist contact specialist.
NON–STANDARD situations:
- eleven set of hundred planes at zero or 32000. One section is missing.
- all zero.
ACTION: call specialist.

FIGURE C20:
Description:
Calorimeter calibration status, checking for errors coming from the DSP and errors
occurred during the calibration procedure.
NOMINAL:
No “red” errors. The number of calibrations must be the same for the four different
sections.
NON–STANDARD situations:
- different number of calibrations for different sections.
- any “red” error.
ACTION: call specialist.

3 List of other functions and subroutines
CaloPULSE (Version 1.05) Shows the distribution of ADC channels transmitted during

the pulse calorimeter calibration. Included in the automate version of quick–look.

CaloLEVEL1 (Version 1.21) Calibrate the calorimeter (first order calibration) and save
data in a rootple inside the YODA structure (under /Physics/Level1/). It search for
calibrations using CaloFindCalibs subroutine, if it fails because there are no calibra-
tions in the file and no previous files processed it requires as input a calibration file
to be used.

CaloPLANES (Version 2.13) Shows the number of hit for each strip and each plane of
the calorimeter in a data file. It requires at least one calibration in the data file. It can
be used as tool to see tracks in the calorimeter.

CaloMIP (Version 2.12) Calls the calibration program and print out the energy distribu-
tion together with the number of strip hit (nstrip) and the distribution of the energy
released (qtot) for each event.

CaloMATRA (Version 3.00) Tools to look at calorimeter tracks. It requires at least one
calibration in the data file.

CaloFINDCALIBS.c (Version 2.06) This macro has been moved in the package “COM-
MON”. It provides:

CaloFINDCALIBS Search for calibration in the data file and print out on the termi-
nal the results. Look also in previous files to associate correctly at each event
a calibration.

CaloOLDFINDCALIBS Search for calibration in the data file and print out on the
terminal the results.

CaloMySQLFINDCALIBS Search for calibration in the database and print out on
the terminal the results.

CaloMySQLFILLCALIBS Fill the calibrations in the database and print out on
the terminal the results.

CaloADC2MIP.c (Version 4.01) This macro has been moved in the package “UTILI-
TIES”. This file contains calorimeter functions that can be used to determine the
ADC to MIP conversion value for each strip. This file provides:

CaloADC2MIP Given a file list it will put in 4224 histograms the ADC value for
each strip and at the end it will perform a convoluted Landau–Gaussian fit for
each strip.

Calo4224BAK Shows the 4224 histograms from backup files.

Calo4224FIT Shows the 4224 histograms from final file.

Calo4224STATUS Shows the error on the fitted peak for each strip.

Calo4224MIPVALUES Shows 22 histograms with the value of the conversion fac-
tor as function of the strip number.

CaloBAKFIT Performs the fit on backup figures.

CaloRAWADC2MIPDATA Save in a rootple the ADC values for each strip for
each event of a list of files.

CaloLOOKATSTRIP Shows the strip ADC distribution as function of the event
number or OBT (only for RAW and FULL data).

CaloRAWADC2MIPPLOT Save in a rootple histograms with the ADC values for
each strip for each event of a list of files.

CaloCALIBSCAN (Version 1.05) Moved to “UTILITIES”. Save in a rootple calorimeter
calibration values and time, to check how calibration values vary on time.

CaloTRKCALOALIG (Version 1.01) Moved to “UTILITIES”. Given an input file deter-
mine alignement parameters between tracker and calorimeter.

Notice that CaloPLANES, CaloMIP, and CaloMATRA requires the output of CaloLEVEL1
function. If CaloLEVEL1 has not been run before launching one of that programs CaloLEVEL1
will be automatically called.

The name of subroutines is composed again by the word “Calo” but it is not followed
by all upper case letters. Subroutines are written in the file “CaloFunctions.h” (version
3.04, moved to “COMMON”) which is included in the program files. The subroutines are:

CaloCompressData Compression algorithm for RAW data.

CaloFindBaseRaw Determines the baseline starting from raw data. The resulting base-
line must be identical to the one computed by the DSP in the case of FULL mode
acquisition.

CaloFindBaseRawNC Determines the baseline starting from raw data. The resulting
baseline must be identical to the one computed by the DSP in the case of FULL
mode acquisition. Same as before but do not compress data.

CaloFindBase Determines the baseline starting from raw data but using relaxed condition
on the minimum number of strips needed and discarding the lowest energy strip.

CaloFindCalibs Finds the calibration inside the data file and determine time limits for
which each calibration has to be used. Looks also in previous file if the case. Asso-
ciates events to the previous calibration in time.

OLDCaloFindCalibs Finds the calibration inside the data file and determine time limits
for which each calibration has to be used. To be used in conjuction with CaloOLDFIND-
CALIBS. Associates events to the closer calibration.

Calo1stCalib Calls the first calibration on the file and store data into memory. To be used
with CaloFINDCALIBS.

OLDCalo1stCalib Calls the first calibration on the file and store data into memory. To be
used with CaloOLDFINDCALIBS.

CaloPede Given the calibration that must be used it returns the pedestal for each strip of
the calorimeter.

getFilename Given the path to the YODA directory it returns the .dat filename.

getLEVname Given the path to the YODA directory and the data level number returns a
filename formatted as YODA does.

ColorMip Given the energy in MIP it returns the colour to be used in figure for hit of the
given energy.

fetchpreviousfile looks for a file containing a good calibration for a given section and
returns a set of parameters. Used in CaloFindCalibs.

whatnamewith given the set of parameters from “fetchpreviousfile” returns the filename
of the file which match that set. Used in CaloFindCalibs.

WhatToDo user interactive subroutine.

PrintFigure prints a figure with a special formatting.

langaufun Gaussian–Landau convoluted function.

langaufit Gaussian–Landau convoluted fit.

langaupro Finds the peak of the Gaussian–Landau fitted function.

delay Given the TDC channels of the self–trigger calorimeter delay it returns a time in
milliseconds.

stringcopy copies strings.

stringappend appends strings.

getEmiFile almost the same as getFile in yodautility.c but it does not crash when running
over a large number of files.

fitraw exponential function to be used in fitting routines.

The classes defined in caloclasses.h are:

CalorimeterLevel1 calorimeter Level1 class.

CalorimeterADCRAW contains ADC values for RAW mode data.

CalorimeterCalibration class to contain the 4224 conversion values.

CalorimeterCalibScan contains calibration data values.

4 Description of the other programs
In the following session all examples are given starting from ROOT but now each pro-
gram can be called as a compiled executable without entering ROOT. If you still want to
use ROOT please use the compiled version loading libraries with “.x CaloNAMEOFPRO-
RAM.C”.

4.1 CaloPULSE(TString filename, TString outDir = “”, Int t tosave =
0, TString saveas = “eps”) (Version 1.05)

Input variables:

� TString filename
String, name of the root directory created by YODA for the data file is going to be
analyzed. There is no default value, without this input the program will not run.

� TString outDir = “”
String, path to a directory where to save the output figures. Default is empty, it will
save in filename.

� Int t tosave = 0
Flag to tell the function to save figures or not. Default is 0, do not save figures.

� TString saveas = “eps”
Type of figures to save. Deafult are “eps” figures, can be any format recognized by
ROOT.

Example of a standard call:
bash> root
root [1] .L CaloPULSE.c
root [2] CaloPULSE("/home/data/yodafiles/dw 041126 00400/");

More examples (the first two steps are mandatory):

root [2] CaloPULSE("/home/data/yodafiles/dw 041126 00400/",
"/home/mocchiut/myfigures/",1,"gif");
Save “gif” figures in the directory “/home/mocchiut/myfigures/”.

The output is reported canvases which has the title “calpulse”, see figure 4.
Due to a known bug the pulse type and strip number reported in figures are wrong when

a file contains more than one calibration.
Usually when injecting with pulse type 8005 a distribution at about 3000/5000 ADC

channel should be seen. When injecting with pulse type 8015 it should be possible to see
another small distribution at higher ADC channel values. If the distribution is centered
at about zero with values spreading from about -32000 to about 32000 ADC channels do
nothing, it is a known bug in CPU software. If the last case, just report to calorimeter
people (LOW severity).

For each calibration four figures are produced, one for each section; each figure shows
as zero also the values of the other sections.

4.2 CaloLEVEL1(TString filename, TString calcalibfile = “”,
Int t FORCE = 0)
(Version 1.21)

Input variables:

� TString filename
String, name of the root directory created by YODA for the data file is going to be
analyzed. There is no default value, without this input the program will not run.

� TString calcalibfile = “”
String, path to a file which contains calorimeter calibration. Default is empty.

� Int t FORCE = 0
Flag to force the reprocessing of data overwriting existing files. Default is 0, the
program will exit if it will find the LEVEL1 rootple.

Example of a standard call:
bash> root
root [1] .L CaloLEVEL1.c

root [2] CaloLEVEL1("/home/data/yodafiles/dw 041126 00400/");

More examples (the first two steps are mandatory):

root [2] CaloLEVEL1("/home/data/yodafiles/dw 041126 00400/",
"",1);
Force the reprocessing of data.

Due to a known bug (to be solved in next version) the processing time could become high
if the files contains events which calibration has to be found in a previous (in time) file
but this file has not been processed with yoda. In that case “CaloLEVEL1” will process
anyway the data if it will find at least one calibration in the processed file or if a calibration
file has been given as input. It will exit if no calibration are found.

No output is produced but the Level1 rootple.

4.3 CaloPLANES(TString filename, TString viewxy=“both”,
TString parity=“both”, Int t plane = 0, Int t fromevent = 0,
Int t toevent = 0, TString outDir = “”, TString saveas = “eps”)
(Version 2.13)

Input variables:
� TString filename

String, name of the root directory created by YODA for the data file is going to be
analyzed. There is no default value, without this input the program will not run.

� TString viewxy
String, calorimeter view to analyze. Default value is “both”, can be “x” or “y”.

� TString parity
String, calorimeter planes to analyze. Default value is “both”, can be “odd” or
“even”.

� Int t plane = 0
Integer, plane number to analyze. Default value is zero, all planes. The range goes
from 1 to 11.

� Int t fromevent = 0
Integer, first event to be analyzed. Default value is 0 (= all the events). If toevent is
zero the program will process only the event number fromevent when different from
zero.

� Int t toevent = 0
Integer, last event to be analyzed. Default value is 0 (= all the events). It can differ
from zero only if “fromevent” is not zero.

� TString outDir = “”
String, path to a directory where to save the output figures. Default is empty, it will
save in the YODA root directory for the data file that will be analyzed.

� TString saveas = “eps”
Type of figures to save. Deafult are “eps” figures, can be any format recognized by
ROOT.

Example of a standard call:
bash> root
root [1] .L CaloPLANES.c
root [2] CaloPLANES("/home/data/yodafiles/dw 041126 00400/");

More examples (the first two steps are mandatory):

root [2] CaloPLANES("/home/data/yodafiles/dw 041126 00400/",
"both","odd",0);
Analyze x and y odd views, all planes, all events.

root [2] CaloPLANES("/home/data/yodafiles/dw 041126 00400/",
"both","both",7,146,1000);
Analyze x and y, odd and even plane number 7 from event 146 to event 1000.

root [2] CaloPLANES("/home/data/yodafiles/dw 041126 00400/",
"both","both",0,0,0,"/home/myhome/myyodafigures/");
Analyze the whole calorimeter, all events and put figures in the directory
“/home/myhome/myyodafigures/”.

root [2] CaloPLANES("/home/data/yodafiles/dw 041126 00400/",
"both","both",0,143);
Analyze the whole calorimeter, only event number 143.

The output is reported in one or two canvas depending on the input parameters. The whole
calorimeter, standard execution of the program, fills two canvas. The first contains x even
and y odd planes, the second one x odd and y even planes, see figure 6. For each event the
energy distributed on each plane has been normalized to one in order to enhance noisy or
bad working strips.

Notice, last example and figure 7, that this program can be used to see tracks and to
check the trasversal distribution of energy for each plane in the case of the single event.
However, since the energy is normalized in each plane there could be some distorsions in
the visualization.

In standard conditions each plane should show a uniform distribution without any hole
(dead strips) or peak (noisy strips). The shape of the distribution will depend on the number
of plane and on the PAMELA acceptance as function of rigidity. Two neighbour planes
must have similar distributions. In the case of a noisy strip it could be difficult to distinguish
the signal of the other strips, in that case it will be necessary to change the y–scale from
linear to logarithmic (click with the right button of the mouse on the figure and click on
SetLogy). The linear scale is essential to notice any distorsion in the distribution (a bad
calibration of one preamplifier, for example).

4.4 CaloMIP(TString filename, Int t view = 0, Int t plane = 0, Int t
strip = 0, Int t fromevent = 0, Int t toevent = 0, TString outDir = “”,
TString saveas = “eps”)
(Version 2.12)

Input variables:

� TString filename
String, name of the root directory created by YODA for the data file is going to be
analyzed. There is no default value, without this input the program will not run.

� Int t view
String, calorimeter view to analyze. Default value is 0 (both), can be 1 (x) or 2 (y).

� Int t plane = 0
Integer, plane number to analyze. Default value is zero, all planes. The range goes
from 1 to 22.

� Int t strip = 0
Integer, strip to be analyzed. Default value is 0 (all the strips). The range goes from
1 to 96.

� Int t fromevent = 0
Integer, first event to be analyzed. Default value is 0 (= all the events). If toevent is
zero the program will process only the event number fromevent when different from
zero.

� Int t toevent = 0
Integer, last event to be analyzed. Default value is 0 (= all the events). It can differ
from zero only if “fromevent” is not zero.

� TString outDir = “”
String, path to a directory where to save the output figures. Default is empty, it will
save in the YODA root directory for the data file that will be analyzed.

� TString saveas = “eps”
Type of figures to save. Deafult are “eps” figures, can be any format recognized by
ROOT.

Example of a standard call:
bash> root
root [1] .L CaloMIP.c
root [2] CaloMIP("/home/data/yodafiles/dw 041126 00400/");

More examples (the first two steps are mandatory):

root [2] CaloMIP("/home/data/yodafiles/dw 041126 00400/",
1,17,0);
Analyze x view, plane 17, all strips and all events.

root [2] CaloMIP("/home/data/yodafiles/dw 041126 00400/",
2,13,45);
Analyze x view, plane 13, strip 45, all events.

The output are two canvas. The first one, figure 8, shows the MIP distribution. The
second one, figure 9, shows on the left the number of strip hit discarding bad strips and on
the right the corresponding total energy deposit in the calorimeter. In the case of protons
and muons the two distribution should peak at about 44 strips and 50 mips.

4.5 CaloMATRA(TString filename, Int t fromevent = 1, Int t toevent =
0, TString tyhist = “box”, TString outFile = “”, TString saveas =
“eps”)
(Version 3.00)

Input variables:

� TString filename
String, name of the root directory created by YODA for the data file is going to be
analyzed. There is no default value, without this input the program will not run.

� Int t fromevent = 1
Integer, first event to be analyzed. Default value is one, the first event of the file. It
can be zero, in that case it will show all the events one by one all the calibration in
the input file waiting for the user to press enter in between. If toevent is zero the
program will process only the event number fromevent when different from zero.

� Int t toevent = 0
Integer, last event to be analyzed. Default value is 0 (= all the events). It can differ
from zero only if “fromevent” is not zero.

� TString tyhist = “box”
String, type of visualitation. Default is “box”, it can be “lego” to see three dimen-
sional, black and white figures.

� TString outDir = “”
String, path to a directory where to save the output figures. Default is empty, it will
save in the YODA root directory for the data file that will be analyzed.

� TString saveas = “eps”
Type of figures to save. Deafult are “eps” figures, can be any format recognized by
ROOT.

Example of a standard call (it will show event number one):
bash> root
root [1] .L CaloMATRA.c
root [2] CaloMATRA("/home/data/yodafiles/dw 041126 00400/");

More examples (the first two steps are mandatory):

root [2] CaloMATRA("/home/data/yodafiles/dw 041126 00400/",
1,10);
Analyze events from 1 to 10.

Two panels with the strip hit in the x and y views of the calorimeter are drawn, see fig-
ure 10. Below the lower panel the number of strip hit (nstrip), the total energy released
(QTOT) and the number of bad strips are printed. The bad strips are not used in the calcu-
lation of NSTRIP and QTOT but are shown in the figures. Only strips with energy above
0.7 MIP are plotted and used in the calculation.

4.6 CaloFINDCALIBS(TString filename) (Version 2.06)
Input variables:

� TString filename
String, name of the root directory created by YODA for the data file is going to be
analyzed. There is no default value, without this input the program will not run.

This program searches in the file if there is any good calibration. If so it will divide the
file in time bins and it will associate at each bin a calibration. This is done for each section
without any connection to the other sections.

This is an example of the output is printed on the screen:

bash> root
root [1] .L CaloFINDCALIBS.c
root [2] CaloFINDCALIBS("/home/filesfromyoda/dw_050301_00200/");

Obtjump = 0 - FIRST OBT 26622578 - LAST OBT 36637127

------ /home/filesfromyoda/dw_050301_00200/ -------

** SECTION 0 **
- from time 26622578 to time 27028067 use calibration at
time 23709196, file: /home/filesfromyoda/dw_050301_00100
- from time 27028067 to time 29311525 use calibration at
time 27028067, file: /home/filesfromyoda/dw_050301_00200/
- from time 29311525 to time 32980945 use calibration at
time 29311525, file: /home/filesfromyoda/dw_050301_00200/
- from time 32980945 to time 36637127 use calibration at
time 32980945, file: /home/filesfromyoda/dw_050301_00200/

** SECTION 1 **
- from time 26622578 to time 27028121 use calibration at
time 23709250, file: /home/filesfromyoda/dw_050301_00100

- from time 27028121 to time 29311579 use calibration at
time 27028121, file: /home/filesfromyoda/dw_050301_00200/
- from time 29311579 to time 32980999 use calibration at
time 29311579, file: /home/filesfromyoda/dw_050301_00200/
- from time 32980999 to time 36637127 use calibration at
time 32980999, file: /home/filesfromyoda/dw_050301_00200/

** SECTION 2 **
- from time 26622578 to time 27028174 use calibration at
time 23709303, file: /home/filesfromyoda/dw_050301_00100
- from time 27028174 to time 29311639 use calibration at
time 27028174, file: /home/filesfromyoda/dw_050301_00200/
- from time 29311639 to time 32981053 use calibration at
time 29311639, file: /home/filesfromyoda/dw_050301_00200/
- from time 32981053 to time 36637127 use calibration at
time 32981053, file: /home/filesfromyoda/dw_050301_00200/

** SECTION 3 **
- from time 26622578 to time 27028228 use calibration at
time 23709357, file: /home/filesfromyoda/dw_050301_00100
- from time 27028228 to time 29311693 use calibration at
time 27028228, file: /home/filesfromyoda/dw_050301_00200/
- from time 29311693 to time 32981106 use calibration at
time 29311693, file: /home/filesfromyoda/dw_050301_00200/
- from time 32981106 to time 36637127 use calibration at
time 32981106, file: /home/filesfromyoda/dw_050301_00200/

--

The program CaloMySQLFINDCALIBS.c will query the database and print on the
screen the same kind informations.

The old program will divide the time intervals using only calibrations inside the pro-
cessed file and associating at each event the closer calibration (in time). This is an example
of the output:

bash> root
root [1] .L CaloFINDCALIBS.c
root [2] CaloOLDFINDCALIBS("/home/filesfromyoda/dw_050301_00200/");
--

Section 0 from time 0 to time 28169796 use calibration
at time 27028067

Section 0 from time 28169796 to time 31146235 use calibration
at time 29311525

Section 0 from time 31146235 use calibration at time 32980945

Section 1 from time 0 to time 28169850 use calibration
at time 27028121

Section 1 from time 28169850 to time 31146289 use calibration
at time 29311579

Section 1 from time 31146289 use calibration at time 32980999

Section 2 from time 0 to time 28169906 use calibration
at time 27028174

Section 2 from time 28169906 to time 31146346 use calibration
at time 29311639

Section 2 from time 31146346 use calibration at time 32981053

Section 3 from time 0 to time 28169960 use calibration
at time 27028228

Section 3 from time 28169960 to time 31146399 use calibration
at time 29311693

Section 3 from time 31146399 use calibration at time 32981106

--
/home/filesfromyoda/dw_050301_00200/

4.7 CaloADC2MIP.c (Version 4.01)

Only the main program can be called with the executables without using ROOT. For other
routines start ROOT and load the compiled library.

4.7.1 CaloADC2MIP(TString filename, TString calcalibfile = “”, TString flist = “”)

Input variables:

� TString filename
String, name of the root directory created by YODA for the data file is going to be
analyzed. There is no default value, without this input the program will not run. If
used in conjuction with “flist” this variable must contain the path to the directory
containing the YODA directories from unpacked files.

� TString calcalibfile = “”
File containing a valid calibration for calorimeter. Default is empty, it will search
for calibrations. In certain cases it could be necessary to give an input file here.

� TString flist = “”
Path to a file containing a list of files to process. The list must contain YODA
filenames separated by spaces or in columns. For example the file could contain a
list of four files like:
dw 050302 00100 dw 050302 00200 dw 050302 00300 dw 050224 00100

Example of a standard call:
bash> root
root [1] .L CaloADC2MIP.c
root [2] CaloADC2MIP("/home/data/yodafiles/",
"/home/data/yodafiles/dw 041126 00400/","mylist.txt");
Run over files listed in mylist.txt file using file dw 041126 00400/ as calibration file if it
fails in searching the best calibration.

4.7.2 Calo4224BAK(TString filename)

Input variables:
� TString filename

Name of the backup file to look into.

Example of a standard call:
bash> root
root [1] .L CaloADC2MIP.c
root [2] Calo4224BAK("CaloADC2MIPf10.bak");
Look at figures contained in the file “CaloADC2MIPf10.bak”.

4.7.3 Calo4224FIT(TString filename = “CaloADC2MIPf.root”, TString filevalue =
“CaloADC2MIP.root”, TString type=“”)

Input variables:
� TString filename

Name of the file containing figures.
� TString filevalue

Name of the file containing calorimeter conversion values.
� TString type

Description of the data contained in the two previous files (backup data or final data).
Default is “”, final data, can be “bak” instead.

Example of a standard call:
bash> root
root [1] .L CaloADC2MIP.c
root [2] Calo4224FIT();
Look at figures and data contained in the files “CaloADC2MIPf.root” and “CaloADC2MIP.root”.
It allows to fit again figures and to modify values by hand changing the “CaloADC2MIP.root”
file used by CaloLEVEL1. See figure 11.

4.7.4 Calo4224STATUS(TString filename = “CaloADC2MIP.root”, TString type=“”)

Input variables:
� TString filename

Name of the file containing calorimeter conversion values.

� TString type
Not used variable (yet).

Example of a standard call:
bash> root
root [1] .L CaloADC2MIP.c
root [2] Calo4224STATUS();
See figure 12.

4.7.5 Calo4224MIPVALUES(TString filename = “CaloADC2MIP.root”, TString type=“”)

Input variables:
� TString filename

Name of the file containing calorimeter conversion values.
� TString type

Not used variable (yet).

Example of a standard call:
bash> root
root [1] .L CaloADC2MIP.c
root [2] Calo4224MIPVALUES();
Returns eleven figures with ADC to MIP conversion values as function of the strip number.
100 is summed to y–views strip number. It requires to press enter to switch from a figure
to the next one. See figure 13.

4.7.6 CaloBAKFIT(TString filename)

Input variables:
� TString filename

Name of the file containing the backup figures from CaloADC2MIP function.

Example of a standard call:
bash> root
root [1] .L CaloADC2MIP.c
root [2] CaloBAKFIT("CaloADC2MIPf120.bak");

4.7.7 CaloRAWADC2MIPDATA(TString filename, TString calcalibfile = “”, TString
flist = “”)

Input variables:
� TString filename

String, name of the root directory created by YODA for the data file is going to be
analyzed. There is no default value, without this input the program will not run. If
used in conjuction with “flist” this variable must contain the path to the directory
containing the YODA directories from unpacked files.

� TString calcalibfile = “”
File containing a valid calibration for calorimeter. Default is empty, it will search
for calibrations. In certain cases it could be necessary to give an input file here.

� TString flist = “”
Path to a file containing a list of files to process. The list must contain YODA
filenames separated by spaces or in columns. For example the file could contain a
list of four files like:
dw 050302 00100 dw 050302 00200 dw 050302 00300 dw 050224 00100

Example of a standard call:
bash> root
root [1] .L CaloADC2MIP.c
root [2] CaloRAWADC2MIPDATA("/home/data/yodafiles/",
"/home/data/yodafiles/dw 041126 00400/","mylist.txt");
Create the file CaloADC2MIPdata.raw and fill it with ADC values of the files contained in
mylist.txt. If necessary use file dw 041126 00400/ to calibrate data.

4.7.8 CaloRAWADC2MIPPLOT(TString filename, TString calcalibfile = “”, TString
flist = “”)

Input variables:

� TString filename
String, name of the root directory created by YODA for the data file is going to be
analyzed. There is no default value, without this input the program will not run. If
used in conjuction with “flist” this variable must contain the path to the directory
containing the YODA directories from unpacked files.

� TString calcalibfile = “”
File containing a valid calibration for calorimeter. Default is empty, it will search
for calibrations. In certain cases it could be necessary to give an input file here.

� TString flist = “”
Path to a file containing a list of files to process. The list must contain YODA
filenames separated by spaces or in columns. For example the file could contain a
list of four files like:
dw 050302 00100 dw 050302 00200 dw 050302 00300 dw 050224 00100

Example of a standard call:
bash> root
root [1] .L CaloADC2MIP.c
root [2] CaloRAWADC2MIPDATA("/home/data/yodafiles/",
"/home/data/yodafiles/dw 041126 00400/","mylist.txt");
Create the file CaloADC2MIP.raw and fill it with 4224 histograms of RAW ADC values of
the files contained in mylist.txt. If necessary use file dw 041126 00400/ to calibrate data.

4.7.9 CaloLOOKATSTRIP(Int t view, Int t plane, Int t strip, Int t fromevno, Int t
toevno, Int t fromtime = 0, Int t totime = 1000000000, Int t fit = 0)

Input variables:

� Int t view
Calorimeter view (“view” = 0 means x-view, “view” = 1 means y-view);

� Int t plane
Calorimeter plane (from 0 to 21);

� Int t strip
Calorimeter strip (from 0 to 95);

� Int t fromevno
Starting event number (YODA counter);

� Int t toevno
Last event number (YODA counter);

� Int t fromtime
Starting OBT time number. If given the ADC values will be shown as function of
time, elsewhere they will be shown as function of event number;

� Int t totime
Last OBT time number;

� Int t fit
Flag to tell the program to (1) or not to (0, default) perform an exponential fit.

Example of a standard call:
bash> root
root [1] .L CaloADC2MIP.c
root [2] CaloLOOKATSTRIP(0,21,31,780000,830000,19200000,22000000,1);
Reads the file CaloADC2MIPdata.raw and draw as function of time strip 32 of x–plane 22.
Then fit the result.

bash> root
root [2] CaloLOOKATSTRIP(0,21,31,780000,830000);
Reads the file CaloADC2MIPdata.raw and draw as function of event number strip 32 of
x–plane 22. Do not fit.

5 Figures

File: dw_041126_00402.Physics.Calorimeter.Event.root

Number of hit (dexyc>0)
0 10 20 30 40 50 60

N
um

be
r

of
 e

ve
nt

s

0

100

200

300

400

500

h1
Entries 8074
Mean 21.45
RMS 7.752

Strips hit, compress mode

Number of hit (dexy>0)
-2000 -1000 0 1000 2000 3000 4000 5000 6000

N
um

be
r

of
 e

ve
nt

s

1

10

210

310

410

h1r
Entries 12681
Mean 4035
RMS 29.51

Strips hit, raw mode

iev
0 2000 4000 6000 8000 10000120001400016000

ca
le

vn
um

 2

0

1000

2000

3000

4000

5000

6000

7000

8000

calev2

Entries 14144

Mean x 7072

Mean y 1028

RMS x 4083

RMS y 2052

calev2

Entries 14144

Mean x 7072

Mean y 1028

RMS x 4083

RMS y 2052

calevnum(2)%iev

Figure 1: Calorimeter Detector Report 1/3. On the left the calorimeter counter is shown as
function of the YODA counter. The calorimeter counter remain at zero in the RAW mode
acquisition and start to increase when the acquisition is changed at iev of about 6000. At
iev of about 13000 there was a DSP reset and the counting started again from one. On
the right two panels are shown. In the top panel the strip hit in the COMPRESS mode
is reported. The strange “two peaks” behaviour is due to noisy strips due to problems in
the power supply during the acquisition of this data file. The same problem caused some
latch–up alarm, which means that some views of the calorimeter switched off during the
acquisition. This can be noticed in the lower figure were four lines can be noticed instead
of the one expected. This means that there were four calorimeter “status” in which there
were four different number of strips working (during the acquisition in RAW mode only).

File: dw_041126_00402.Physics.Calorimeter.Event.root
Baseline

Entries 3.410458e+07

Mean 4605

RMS 6158

ADC channels
0 5000 1000015000200002500030000350004000045000

N
um

be
r

of
 e

ve
nt

s

0

2

4

6

8

10

12

14

16

610×

Baseline
Entries 3.410458e+07

Mean 4605

RMS 6158

baselines Dexyc
Entries 3.410458e+07

Mean 16.75

RMS 239.2

ADC channels
0 20004000600080001000012000140001600018000200002200024000

N
um

be
r

of
 e

ve
nt

s

1

10

210

310

410

510

610

710

Dexyc
Entries 3.410458e+07

Mean 16.75

RMS 239.2

dexyc

Calstriphit
Entries 14144
Mean 12.28
RMS 12.18

Number of hit
0 10 20 30 40 50 60

N
um

be
r

of
 e

ve
nt

s

0

1000

2000

3000

4000

5000

6000

Calstriphit
Entries 14144
Mean 12.28
RMS 12.18

calstriphit[1:4] Dexy
Entries 5.356454e+07

Mean 4568

RMS 6104

ADC channels
0 5000 1000015000200002500030000350004000045000

N
um

be
r

of
 e

ve
nt

s

0

2

4

6

8

10

12

14

16

610×

Dexy
Entries 5.356454e+07

Mean 4568

RMS 6104

dexy

Figure 2: Calorimeter Detector Report 2/3. Clockwise from the top right figure: the dexyc
dsitribution.Some noisy strips spread the detected signal over a large ADC channel range.
Ususally there should be only a peak at zero and a distribution of values between 2000
and 4000 ADC channels. Below there is the dexy distribution. Notice the presence of a
peak at about 32000, meaning a latch–up alarm in one or more planes. On the left the strip
hit distribution as determined by the DSP; the same behaviour of figure 1 top right can be
noticed. On the top left there is the baselines distribution, again the value at about 32000
indicates a latch–up alarm.

Figure 3: Calorimeter Detector Report 3/3. This is the report sheet of the quick–look.
Each section has recorded 6070 events in RAW mode, 1463 events in COMPRESS mode
and 6611 events in FULL mode. The section YO was the one which transmitted the higher
number of times the preamplifier in raw mode (2585) which is about the 30% of the FULL
and COMPRESS mode acquisition. In this file there were some latch–up alarms in sections
YE and YO. Notice that in the case of section YE the DSP recorded a latch–up alarm 13839
times while CaloQLOOK only 13838 times, one time less since there are some capacitors
which take time to discharge and during the first latch–up event that section recorded some
data even if the plane was not powered on. The opposite can be noticed in section YO,
where the latch up was recorded 13837 times by the DSP but 13843 times by CaloQLOOK.
As discussed in section 2.1 the exceeding latch–up alarm are not real latch–up but an effect
of the warming up of that section.

calpulse
Entries 4224
Mean 853.2
RMS 1484

0 1000 2000 3000 4000 5000 6000 7000 80001

10

210

310

calpulse
Entries 4224
Mean 853.2
RMS 1484

Pulse1 PULSE TYPE = 8005 STRIP = 100

Figure 4: Calorimeter pulse 1 for one of the four sections (the other sections have ADC val-
ues at zero). Notice that the pulse type and strip is not correct if more than one calibration
exists on a file (known bug).

Thu Dec 2 11:42:06 2004

ADC ch.

strip
0 10 20 30 40 50 60 70 80 90

X
 -

pl
an

e

0

5

10

15

20

strip
0 10 20 30 40 50 60 70 80 90

Y
 -

pl
an

e

0

5

10

15

20

OFF

0-1.5

1.5-3

3-4.5

4.5-10

>10

BAD

Calorimeter: strip RMS - file dw_041126_00402.Physics.Calorimeter.Event.root - calibration number 1

Figure 5: The status at calibration one of file dw 041126 004 (YODA processing number
02). There can be easily notice the two planes of latch–up in the X–view. Moreover the
fourth strip of X–plane 21 is off. A part this the calorimeter is working fine and only one
noisy preamplifier can be seen, strips from 80 to 96 X–plane number 16.

View x even View y odd

pl. 1
0 10 20 30 40 50 60 70 80 90

-3
10

-210

-1
10

0 10 20 30 40 50 60 70 80 90

-3
10

-2
10

-110

pl. 2
0 10 20 30 40 50 60 70 80 90

-3
10

-2
10

0 10 20 30 40 50 60 70 80 90

-3

10

-2
10

pl. 3
0 10 20 30 40 50 60 70 80 90

-410

-3
10

-2
10

0 10 20 30 40 50 60 70 80 90

-3

10

-2
10

pl. 4
0 10 20 30 40 50 60 70 80 90

-3
10

-210

0 10 20 30 40 50 60 70 80 90

-4
10

-3

10

-2
10

pl. 5
0 10 20 30 40 50 60 70 80 90

-3
10

-2
10

0 10 20 30 40 50 60 70 80 90

-4
10

-3
10

-2
10

pl. 6
0 10 20 30 40 50 60 70 80 90

-3
10

-210

0 10 20 30 40 50 60 70 80 90

-3
10

-210

pl. 7
0 10 20 30 40 50 60 70 80 90

-3

10

-2
10

0 10 20 30 40 50 60 70 80 90

-3
10

-210

pl. 8
0 10 20 30 40 50 60 70 80 90

-3

10

-2
10

0 10 20 30 40 50 60 70 80 90

-3
10

-210

pl. 9
0 10 20 30 40 50 60 70 80 90

-5
10

-410

-3

10

-2
10

-110

0 10 20 30 40 50 60 70 80 90

-5
10

-4
10

-3
10

-210

-1
10

pl. 10
0 10 20 30 40 50 60 70 80 90

-3
10

-210

0 10 20 30 40 50 60 70 80 90

-3
10

-210

pl. 11
0 10 20 30 40 50 60 70 80 90

-3
10

-2
10

View x odd View y even

pl. 1
0 10 20 30 40 50 60 70 80 90

-1

-0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 900

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

pl. 2
0 10 20 30 40 50 60 70 80 900

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 10 20 30 40 50 60 70 80 900

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

pl. 3
0 10 20 30 40 50 60 70 80 90

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 10 20 30 40 50 60 70 80 90
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

pl. 4
0 10 20 30 40 50 60 70 80 900

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 10 20 30 40 50 60 70 80 900

0.05

0.1

0.15

0.2

0.25

0.3

0.35

pl. 5
0 10 20 30 40 50 60 70 80 90

-1

-0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

pl. 6
0 10 20 30 40 50 60 70 80 90

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 10 20 30 40 50 60 70 80 90
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

pl. 7
0 10 20 30 40 50 60 70 80 900

0.002

0.004

0.006

0.008

0.01

0 10 20 30 40 50 60 70 80 900

0.002

0.004

0.006

0.008

0.01

0.012
0.014
0.016
0.018

0.02

0.022

0.024

pl. 8
0 10 20 30 40 50 60 70 80 900

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 10 20 30 40 50 60 70 80 900

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

pl. 9
0 10 20 30 40 50 60 70 80 900

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 10 20 30 40 50 60 70 80 900

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

pl. 10
0 10 20 30 40 50 60 70 80 90

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 10 20 30 40 50 60 70 80 90
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

pl. 11
0 10 20 30 40 50 60 70 80 90

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 10 20 30 40 50 60 70 80 90
0

0.02

0.04

0.06

0.08

0.1

Figure 6: The strip hit for each plane in the case of about 100 events. Notice that in the
two upper figures the scale is logarithmic in each panel, while it is linear in the two lower
figures. When the number of events is high there should not be any hole in the distributions.
Notice that in this case there are three planes with latch–up, x even 11, x odd 5 and x odd
1. Planes with one or more noisy strips like, for example, y even 4 should be seen also in
logarithmic scale to see better the signal on the other strips.

Thu Dec 2 17:35:51 2004

View x odd View y even

pl. 1
0 10 20 30 40 50 60 70 80 90

-1

-0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 900

0.2

0.4

0.6

0.8

1

pl. 2
0 10 20 30 40 50 60 70 80 900

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 900

0.2

0.4

0.6

0.8

1

pl. 3
0 10 20 30 40 50 60 70 80 90

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

pl. 4
0 10 20 30 40 50 60 70 80 900

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 900

0.05

0.1

0.15

0.2

0.25

0.3

0.35

pl. 5
0 10 20 30 40 50 60 70 80 90

-1

-0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

pl. 6
0 10 20 30 40 50 60 70 80 90

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

pl. 7
0 10 20 30 40 50 60 70 80 900

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 900

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

pl. 8
0 10 20 30 40 50 60 70 80 900

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 900

0.05

0.1

0.15

0.2

0.25

0.3

pl. 9
0 10 20 30 40 50 60 70 80 900

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 900

0.05

0.1

0.15

0.2

0.25

pl. 10
0 10 20 30 40 50 60 70 80 90

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

pl. 11
0 10 20 30 40 50 60 70 80 90

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

Thu Dec 2 17:36:00 2004

View x even View y odd

pl. 1
0 10 20 30 40 50 60 70 80 900

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10 20 30 40 50 60 70 80 900

0.2

0.4

0.6

0.8

1

pl. 2
0 10 20 30 40 50 60 70 80 900

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 900

0.05

0.1

0.15

0.2

0.25

pl. 3
0 10 20 30 40 50 60 70 80 90

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

pl. 4
0 10 20 30 40 50 60 70 80 900

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 900

0.2

0.4

0.6

0.8

1

pl. 5
0 10 20 30 40 50 60 70 80 90

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

pl. 6
0 10 20 30 40 50 60 70 80 90

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

pl. 7
0 10 20 30 40 50 60 70 80 900

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 900

0.2

0.4

0.6

0.8

1

pl. 8
0 10 20 30 40 50 60 70 80 900

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 900

0.2

0.4

0.6

0.8

1

pl. 9
0 10 20 30 40 50 60 70 80 900

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 10 20 30 40 50 60 70 80 900

0.05

0.1

0.15

0.2

0.25

0.3

0.35

pl. 10
0 10 20 30 40 50 60 70 80 90

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90

-1

-0.5

0

0.5

1

pl. 11
0 10 20 30 40 50 60 70 80 90

-1

-0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

Figure 7: A muon track in the calorimeter as seen by CaloPLANES.

the MIP
Entries 13658
Mean 0.6153
RMS 0.4394

MIP
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

N
um

be
r

of
 e

ve
nt

s

10

210

310

the MIP
Entries 13658
Mean 0.6153
RMS 0.4394

Figure 8: The MIP in the case of about 400 events. The peak on the left is what remain of
the pedestal after the compression of data. On the right the average Landau distribution of
minimum ionizing particles for all the strips of the calorimeter.

Number of hit (E>0.7 MIP)
0 20 40 60 80 100 120

nstrip

Entries 180

Mean 24.21

RMS 19.34

Number of hit (E>0.7 MIP)
0 20 40 60 80 100 120

N
um

be
r

of
 e

ve
nt

s

1

10

210

nstrip

Entries 180

Mean 24.21

RMS 19.34

MIP
0 20 40 60 80 100120140 160180200 220240

qtot

Entries 180

Mean 35.23

RMS 29.84

MIP
0 20 40 60 80 100120140 160180200 220240

N
um

be
r

of
 e

ve
nt

s

1

10

210

qtot

Entries 180

Mean 35.23

RMS 29.84

Figure 9: Number of strip hit (nstrip) and energy released (qtot) in the calorimeter for
ground muon events. The “nstrip” distribution is peaked at about 41, number of working
planes while the “qtot” distribution is peaked at about 50 MIP.

Thu Dec 2 17:35:04 2004

MIP

strip
0 10 20 30 40 50 60 70 80 90

X
 -

pl
an

e

0

5

10

15

20

strip
0 10 20 30 40 50 60 70 80 90

Y
 -

pl
an

e

0

5

10

15

20

0

0-2

2-10

10-100

100-1000

>1000

Calorimeter tracks - file dw_040709_003.Physics.Calorimeter.Event.root - event number 152

QTOT = 81 NSTRIP = 45 Bad strips = 8

Figure 10: A muon track in the calorimeter as seen by CaloMATRA (the same track of
figure 7).

0 10 20 30 40 50

fmip 0 0 22
Entries 8426
Mean 20.47
RMS 11.54

 / ndf 2χ 54.52 / 32
Width 0.107± 2.305
MP 0.16± 22.75
Area 101.8± 5534
GSigma 0.331± 2.933

0 10 20 30 40 50
10

210

310

fmip 0 0 22
Entries 8426
Mean 20.47
RMS 11.54

 / ndf 2χ 54.52 / 32
Width 0.107± 2.305
MP 0.16± 22.75
Area 101.8± 5534
GSigma 0.331± 2.933

Figure 11: Fit of the data for strip 23 plane 1 x–view.

Tue May 3 15:27:50 2005

error

strip
0 10 20 30 40 50 60 70 80 90

X
 -

pl
an

e

0

5

10

15

20

strip
0 10 20 30 40 50 60 70 80 90

Y
 -

pl
an

e

0

5

10

15

20

no fit

< 0.15

0.15 - 0.25

0.25 - 0.55

0.55 - 1

1 - 5

> 5

Figure 12: Figure showing with colours the error in determining the position of the MIP
peak for x (lower panel) and y (upper panel) views.

0 50 100 150 200
0

5

10

15

20

25

30

35

40

45

50
Plane 0

Figure 13: ADC to MIP conversion values for plane 1, x–view from 0 to 95 and y–view
from 100 to 195.

