1 |
/** |
2 |
* \file CaloPreSampler.cpp |
3 |
* \author Emiliano Mocchiutti (2007/07/18) |
4 |
*/ |
5 |
// |
6 |
// headers |
7 |
// |
8 |
#include <CaloPreSampler.h> |
9 |
//-------------------------------------- |
10 |
/** |
11 |
* Default constructor |
12 |
*/ |
13 |
CaloPreSampler::CaloPreSampler(){ |
14 |
Clear(); |
15 |
} |
16 |
|
17 |
CaloPreSampler::CaloPreSampler(PamLevel2 *l2p){ |
18 |
// |
19 |
L2 = l2p; |
20 |
// |
21 |
if ( !L2->IsORB() ) printf(" WARNING: OrbitalInfo Tree is needed, the plugin could not work properly without it \n"); |
22 |
// |
23 |
OBT = 0; |
24 |
PKT = 0; |
25 |
atime = 0; |
26 |
// |
27 |
// Default variables |
28 |
// |
29 |
event = new CaloLevel0(); |
30 |
cstrip = new CaloStrip(false); |
31 |
// c1 = new CaloLevel1(); |
32 |
pcalo = new CaloLevel2(); |
33 |
N = 4; |
34 |
NC = 22-N; |
35 |
debug = false; |
36 |
sel = true; |
37 |
cont = false; |
38 |
emulate18 = true; |
39 |
simulation = false; |
40 |
withtrk = true; |
41 |
rigdefault = 50.; |
42 |
nox = false; |
43 |
noy = false; |
44 |
forcecalo = false; |
45 |
forcefitmode = -1; |
46 |
memset(mask,0,2*22*sizeof(Int_t)); |
47 |
// |
48 |
Clear(); |
49 |
// |
50 |
// loading magnetic field... |
51 |
// |
52 |
TrkLevel2 *trk = new TrkLevel2(); |
53 |
GL_PARAM *q4 = new GL_PARAM(); |
54 |
TSQLServer *dbc = 0; |
55 |
TString host = "mysql://localhost/pamelaprod"; |
56 |
TString user = "anonymous"; |
57 |
TString psw = ""; |
58 |
const char *pamdbhost=gSystem->Getenv("PAM_DBHOST"); |
59 |
const char *pamdbuser=gSystem->Getenv("PAM_DBUSER"); |
60 |
const char *pamdbpsw=gSystem->Getenv("PAM_DBPSW"); |
61 |
if ( !pamdbhost ) pamdbhost = ""; |
62 |
if ( !pamdbuser ) pamdbuser = ""; |
63 |
if ( !pamdbpsw ) pamdbpsw = ""; |
64 |
if ( strcmp(pamdbhost,"") ) host = pamdbhost; |
65 |
if ( strcmp(pamdbuser,"") ) user = pamdbuser; |
66 |
if ( strcmp(pamdbpsw,"") ) psw = pamdbpsw; |
67 |
dbc = TSQLServer::Connect(host.Data(),user.Data(),psw.Data()); |
68 |
// |
69 |
q4->Query_GL_PARAM(1,1,dbc); |
70 |
printf(" Reading magnetic field maps at %s\n",(q4->PATH+q4->NAME).Data()); |
71 |
trk->LoadField(q4->PATH+q4->NAME); |
72 |
// |
73 |
} |
74 |
|
75 |
void CaloPreSampler::SetNoWpreSampler(Int_t n){ |
76 |
if ( NC+n < 23 ){ |
77 |
N = n; |
78 |
} else { |
79 |
printf(" ERROR! Calorimeter is made of 22 W planes\n"); |
80 |
printf(" you are giving N presampler = %i and N calo = %i \n",n,NC); |
81 |
printf(" WARNING: using default values NWpre = 4, NWcalo = 18\n"); |
82 |
NC = 18; |
83 |
N = 4; |
84 |
}; |
85 |
} |
86 |
|
87 |
void CaloPreSampler::SetNoWcalo(Int_t n){ |
88 |
if ( N+n < 23 ){ |
89 |
NC = n; |
90 |
} else { |
91 |
printf(" ERROR! Calorimeter is made of 22 W planes\n"); |
92 |
printf(" you are giving N W presampler = %i and N W calo = %i \n",N,n); |
93 |
printf(" WARNING: using default values NWpre = 4, NWcalo = 18\n"); |
94 |
NC = 18; |
95 |
N = 4; |
96 |
}; |
97 |
} |
98 |
|
99 |
void CaloPreSampler::SplitInto(Int_t NoWpreSampler, Int_t NoWcalo){ |
100 |
this->SetNoWcalo(0); |
101 |
this->SetNoWpreSampler(0); |
102 |
if ( NoWpreSampler < NoWcalo ){ |
103 |
this->SetNoWpreSampler(NoWpreSampler); |
104 |
this->SetNoWcalo(NoWcalo); |
105 |
} else { |
106 |
this->SetNoWcalo(NoWcalo); |
107 |
this->SetNoWpreSampler(NoWpreSampler); |
108 |
}; |
109 |
} |
110 |
|
111 |
void CaloPreSampler::Clear(){ |
112 |
// |
113 |
pcalo->Clear(); |
114 |
// |
115 |
} |
116 |
|
117 |
void CaloPreSampler::Print(){ |
118 |
// |
119 |
Process(); |
120 |
// |
121 |
printf("========================================================================\n"); |
122 |
printf(" OBT: %u PKT: %u ATIME: %u \n",OBT,PKT,atime); |
123 |
printf(" debug [debug flag]:.. %i\n",debug); |
124 |
printf(" simulation [simulation flag]:.. %i\n",simulation); |
125 |
printf(" emulate18 [emulate dead plane 18]:.. %i\n",emulate18); |
126 |
printf(" selection mode :.. %i\n",sel); |
127 |
printf(" contamination mode :.. %i\n",cont); |
128 |
printf(" pre-sampler planes :.. %i\n",N); |
129 |
printf(" pcalo->qtot :.. %f\n",pcalo->qtot); |
130 |
printf(" pcalo->nstrip :.. %i\n",pcalo->nstrip); |
131 |
if ( pcalo->ntrk() > 0 ){ |
132 |
printf(" pcalo->track0->qtrack :.. %f\n",pcalo->GetCaloTrkVar(0)->qtrack); |
133 |
printf(" pcalo->track0->dX0l :.. %f\n",pcalo->GetCaloTrkVar(0)->dX0l); |
134 |
}; |
135 |
printf("========================================================================\n"); |
136 |
// |
137 |
} |
138 |
|
139 |
void CaloPreSampler::Delete(){ |
140 |
Clear(); |
141 |
delete pcalo; |
142 |
//delete this; |
143 |
} |
144 |
|
145 |
|
146 |
void CaloPreSampler::Process(){ |
147 |
// |
148 |
if ( !L2 ){ |
149 |
printf(" ERROR: cannot find PamLevel2 object, use the correct constructor or check your program!\n"); |
150 |
printf(" ERROR: CaloPreSampler variables _NOT_ filled \n"); |
151 |
return; |
152 |
}; |
153 |
// |
154 |
// Clear structures used to communicate with fortran |
155 |
// |
156 |
event->ClearStructs();//ELENA |
157 |
if ( forcefitmode > 0 ){ |
158 |
if ( forcefitmode != 1000 && forcefitmode != 1001 && forcefitmode != 1002 ){ |
159 |
printf(" ERROR! forcefitmode=%i \n Use forcefitmode = 1000 for fit mode 0, 1001 fit mode 1, 1002 fit mode 3\n",forcefitmode); |
160 |
forcefitmode = -1; |
161 |
} else { |
162 |
event->clevel2->fmode[0] = forcefitmode; |
163 |
event->clevel2->fmode[1] = forcefitmode; |
164 |
}; |
165 |
}; |
166 |
// |
167 |
Bool_t newentry = false; |
168 |
// |
169 |
if ( L2->IsORB() ){ |
170 |
if ( debug ) printf(" I am here, we have orbital infos \n"); |
171 |
if ( L2->GetOrbitalInfo()->pkt_num != PKT || L2->GetOrbitalInfo()->OBT != OBT || L2->GetOrbitalInfo()->absTime != atime || sel != ssel ){ |
172 |
newentry = true; |
173 |
OBT = L2->GetOrbitalInfo()->OBT; |
174 |
PKT = L2->GetOrbitalInfo()->pkt_num; |
175 |
atime = L2->GetOrbitalInfo()->absTime; |
176 |
ssel = sel; |
177 |
}; |
178 |
} else { |
179 |
newentry = true; |
180 |
}; |
181 |
// |
182 |
if ( !newentry ) return; |
183 |
// |
184 |
// Some variables |
185 |
// |
186 |
Int_t S3 = 0; |
187 |
Int_t S2 = 0; |
188 |
Int_t S12 = 0; |
189 |
Int_t S11 = 0; |
190 |
Float_t tmptrigty = -1.; |
191 |
Bool_t trackanyway = true; |
192 |
// Float_t rigdefault = 50.; |
193 |
Bool_t hZn = true; |
194 |
// Bool_t withtrk = true; |
195 |
Bool_t st = true; |
196 |
Int_t ntrkentry = 0; |
197 |
TrkLevel2 *trk = L2->GetTrkLevel2(); |
198 |
Bool_t filled = false; |
199 |
// |
200 |
if ( debug ) printf(" Processing event at OBT %u PKT %u time %u \n",OBT,PKT,atime); |
201 |
// |
202 |
this->Clear(); |
203 |
// |
204 |
// find out if we have trkseqno = -1, -2 or -3 |
205 |
// |
206 |
Bool_t m1 = false; |
207 |
Bool_t m2 = false; |
208 |
Bool_t m3 = false; |
209 |
for (Int_t mm=0; mm < L2->GetCaloLevel2()->ntrk(); mm++ ){ |
210 |
if ( L2->GetCaloLevel2()->GetCaloTrkVar(mm)->trkseqno == -1 ) m1 = true; |
211 |
if ( L2->GetCaloLevel2()->GetCaloTrkVar(mm)->trkseqno == -2 ) m2 = true; |
212 |
if ( L2->GetCaloLevel2()->GetCaloTrkVar(mm)->trkseqno == -3 ) m3 = true; |
213 |
}; |
214 |
if ( !withtrk ) m3 = true; |
215 |
// |
216 |
if ( debug ) printf(" Fill estrip matrix needed to calculate variables \n"); |
217 |
// |
218 |
// Fill the estrip matrix |
219 |
// |
220 |
memset(event->clevel1->estrip, 0, 2*22*96*sizeof(Float_t)); |
221 |
Int_t view = 0; |
222 |
Int_t plane = 0; |
223 |
Int_t strip = 0; |
224 |
Float_t mip = 0.; |
225 |
for ( Int_t i=0; i<L2->GetCaloLevel1()->istrip; i++ ){ |
226 |
// |
227 |
mip = L2->GetCaloLevel1()->DecodeEstrip(i,view,plane,strip); |
228 |
// |
229 |
// Mask x or y view if nox and/or noy are true (default false) |
230 |
// |
231 |
if ( mask[view][plane] ) mip = 0.; |
232 |
if ( nox && view == 0 ) mip = 0.; |
233 |
if ( noy && view == 1 ) mip = 0.; |
234 |
// |
235 |
if ( emulate18 && view == 0 && plane == 18 ) mip = 0.; |
236 |
// |
237 |
// Selection mode: fill the matrix only for plane < (22 - N) REMEMBER N = number of W planes to be used as presampler, ie if N = 2 then we want to use planes from 0 to 19 |
238 |
// included so plane < (22 - 2) |
239 |
// |
240 |
if ( sel ){ |
241 |
if ( plane < (22 - N) ){ |
242 |
// |
243 |
if ( emulate18 && plane == (18 - N) && view == 0 ) mip = 0.; |
244 |
if ( plane >= NC ) mip = 0.; |
245 |
event->clevel1->estrip[strip][plane][view] = mip; |
246 |
// |
247 |
}; |
248 |
}; |
249 |
// |
250 |
// Contamination mode: fill the matrix only for planes from N to 22 but shift all planes up to the first one |
251 |
// |
252 |
if ( cont ){ |
253 |
if ( plane >= N ){ |
254 |
// |
255 |
if ( emulate18 && plane == (18 + N) && view == 0 ) mip = 0.; |
256 |
if ( (plane-N) >= NC ) mip = 0.; |
257 |
event->clevel1->estrip[strip][(plane-N)][view] = mip; |
258 |
// |
259 |
}; |
260 |
}; |
261 |
// |
262 |
}; |
263 |
// |
264 |
// if data comes from the simulation we must use mechanical alignment parameters (default is flight parameters) |
265 |
// |
266 |
if ( simulation ){ |
267 |
cstrip->UseMechanicalAlig(); |
268 |
}; |
269 |
// |
270 |
// Set alignment parameter |
271 |
// |
272 |
event->clevel1->xalig = cstrip->GetXalig(); |
273 |
event->clevel1->yalig = cstrip->GetYalig(); |
274 |
event->clevel1->zalig = cstrip->GetZalig(); |
275 |
// |
276 |
event->clevel1->emin = 0.7; |
277 |
// |
278 |
// in case of the contamination mode we must play with the Z alignment in order to have the correct track in the calo since we have moved the planes up... |
279 |
// |
280 |
if ( cont ){ |
281 |
if ( !(N%2) ){ |
282 |
event->clevel1->reverse = 0; // if the number of planes is even we have taken away a full module no need to do anything strange... |
283 |
event->clevel1->zalig -= (N/2) * (8.09 + 10.09); |
284 |
} else { |
285 |
event->clevel1->reverse = 1; // if the number of planes is odd we have taken away half a module, we need to reverse silicon planes shifting |
286 |
event->clevel1->zalig -= ((N+1)/2) * 8.09 + ((N-1)/2) * 10.09; |
287 |
}; |
288 |
}; |
289 |
if ( debug ) printf(" xalig = %f \n",event->clevel1->xalig); |
290 |
if ( debug ) printf(" yalig = %f \n",event->clevel1->yalig); |
291 |
if ( debug ) printf(" zalig = %f \n",event->clevel1->zalig); |
292 |
// |
293 |
if ( debug ) printf(" Calculate variables as done in CaloCore, N = %i \n",N); |
294 |
// |
295 |
// Calculate variables |
296 |
// |
297 |
// |
298 |
// use only N W planes |
299 |
// |
300 |
// event->clevel1->npla = 22-N; |
301 |
event->clevel1->npla = NC; |
302 |
// |
303 |
S3 = 0; |
304 |
S2 = 0; |
305 |
S12 = 0; |
306 |
S11 = 0; |
307 |
S3 = L2->GetTrigLevel2()->patterntrig[2]; |
308 |
S2 = L2->GetTrigLevel2()->patterntrig[3]; |
309 |
S12 = L2->GetTrigLevel2()->patterntrig[4]; |
310 |
S11 = L2->GetTrigLevel2()->patterntrig[5]; |
311 |
if ( L2->GetTrigLevel2()->patterntrig[1] & (1<<0) ) tmptrigty = 1.; |
312 |
if ( L2->GetTrigLevel2()->patterntrig[0] ) tmptrigty = 2.; |
313 |
if ( S3 || S2 || S12 || S11 ) tmptrigty = 0.; |
314 |
if ( !(L2->GetTrigLevel2()->patterntrig[1] & (1<<0)) && !L2->GetTrigLevel2()->patterntrig[0] && !S3 && !S2 && !S12 && !S11 ) tmptrigty = 1.; |
315 |
event->clevel2->trigty = tmptrigty; |
316 |
// |
317 |
// do we have at least one track from the tracker? this check has been disabled |
318 |
// |
319 |
event->clevel1->good2 = 1; |
320 |
// |
321 |
// copy variables calculated during calibration process which is skipped here... |
322 |
// |
323 |
event->clevel2->good = L2->GetCaloLevel2()->good; |
324 |
memcpy(event->clevel2->perr,L2->GetCaloLevel2()->perr,sizeof(L2->GetCaloLevel2()->perr)); |
325 |
memcpy(event->clevel2->swerr,L2->GetCaloLevel2()->swerr,sizeof(L2->GetCaloLevel2()->swerr)); |
326 |
memcpy(event->clevel2->crc,L2->GetCaloLevel2()->crc,sizeof(L2->GetCaloLevel2()->crc)); |
327 |
event->clevel2->selftrigger = L2->GetCaloLevel2()->selftrigger; |
328 |
// |
329 |
// Calculate variables common to all tracks (qtot, nstrip, etc.) |
330 |
// |
331 |
if ( debug ) printf("1 Call GetCommonVar() \n"); |
332 |
event->GetCommonVar(); |
333 |
// |
334 |
// Fill common variables |
335 |
// |
336 |
if ( debug ) printf("1 Call FillCommonVar() \n"); |
337 |
event->FillCommonVar(NULL,pcalo); |
338 |
// |
339 |
// Calculate variables related to tracks only if we have at least one track (from selftrigger and/or tracker) |
340 |
// |
341 |
ntrkentry = 0; |
342 |
// |
343 |
filled = false; |
344 |
// |
345 |
// Run over tracks (tracker or calorimeter ) |
346 |
// |
347 |
if ( withtrk ){ |
348 |
// |
349 |
for (Int_t nt=0; nt < trk->ntrk(); nt++){ |
350 |
// |
351 |
event->clevel1->good2 = 1; |
352 |
// |
353 |
TrkTrack *ptt = trk->GetStoredTrack(nt); |
354 |
// |
355 |
event->clevel1->trkchi2 = 0; |
356 |
// |
357 |
// Copy the alpha vector in the input structure |
358 |
// |
359 |
for (Int_t e = 0; e < 5 ; e++){ |
360 |
event->clevel1->al_p[e][0] = ptt->al[e]; |
361 |
}; |
362 |
// |
363 |
// Get tracker related variables for this track |
364 |
// |
365 |
if ( debug ) printf("track %i Call GetTrkVar() \n",nt); |
366 |
event->GetTrkVar(); |
367 |
if ( debug ) printf(" event->clevel2->dX0l %f \n",event->clevel2->dX0l); |
368 |
// |
369 |
// Save tracker track sequence number |
370 |
// |
371 |
event->trkseqno = nt; |
372 |
// |
373 |
// Copy values in the class ca from the structure clevel2 |
374 |
// |
375 |
if ( debug ) printf("track %i Call FillTrkVar() \n",nt); |
376 |
event->FillTrkVar(pcalo,ntrkentry); |
377 |
|
378 |
|
379 |
ntrkentry++; |
380 |
filled = true; |
381 |
// |
382 |
}; // loop on all the tracks |
383 |
}; |
384 |
// |
385 |
// if no tracks found but there is the possibility to have a good track we should try to calculate anyway the track related variables using the calorimeter |
386 |
// fit of the track (to be used for example when TRK is off due to any reason like IPM3/5 off). |
387 |
// here we make an event selection so it must be done very carefully... |
388 |
// |
389 |
// conditions are: 0) no track from the tracker 1) we have a track fit both in x and y 2) no problems with calo for this event 3) no selftrigger event |
390 |
// |
391 |
// if ( trackanyway && !filled && event->clevel2->npcfit[0] >= 2 && event->clevel2->npcfit[1] >= 2 && event->clevel2->good != 0 && event->clevel2->trigty < 2. ){ |
392 |
if ( (trackanyway && m3) || forcecalo ){ |
393 |
if ( debug ) printf(" Event with a track not fitted by the tracker \n"); |
394 |
// |
395 |
// Disable "track mode" in the fortran routine |
396 |
// |
397 |
event->clevel1->good2 = 0; |
398 |
event->clevel1->riginput = rigdefault; |
399 |
if ( debug ) printf(" Using as default rigidity: %f \n",event->clevel1->riginput); |
400 |
// |
401 |
// We have a selftrigger event to analyze. |
402 |
// |
403 |
for (Int_t e = 0; e < 5 ; e++){ |
404 |
event->clevel1->al_p[e][0] = 0.; |
405 |
event->clevel1->al_p[e][1] = 0.; |
406 |
}; |
407 |
event->clevel1->trkchi2 = 0; |
408 |
// |
409 |
if ( debug ) printf("-3 a Call GetTrkVar() \n"); |
410 |
event->GetTrkVar(); |
411 |
// |
412 |
// if we had no problem (clevel1->good2 = 0, NOTICE zero, not one in this mode!), fill and go on |
413 |
// |
414 |
if ( event->clevel1->good2 == 0 ) { |
415 |
// |
416 |
// In selftrigger mode the trkentry variable is set to -1 |
417 |
// |
418 |
event->trkseqno = -3; |
419 |
// |
420 |
// Copy values in the class ca from the structure clevel2 |
421 |
// |
422 |
if ( debug ) printf("-3 a Call FillTrkVar() \n"); |
423 |
event->FillTrkVar(pcalo,ntrkentry); |
424 |
ntrkentry++; |
425 |
filled = true; |
426 |
// |
427 |
} else { |
428 |
if ( debug ) printf(" Selftrigger: problems with event \n"); |
429 |
}; |
430 |
// |
431 |
}; |
432 |
// |
433 |
// Call high energy nuclei routine |
434 |
// |
435 |
// if ( hZn && event->clevel2->trigty >= 2. ){ |
436 |
if ( hZn && m2 ){ |
437 |
if ( debug ) printf(" Calling selftrigger high energy nuclei routine \n"); |
438 |
// |
439 |
// Disable "track mode" in the fortran routine |
440 |
// |
441 |
event->clevel1->good2 = 0; |
442 |
// |
443 |
// Set high energy nuclei flag to one |
444 |
// |
445 |
event->clevel1->hzn = 1; |
446 |
event->clevel1->riginput = rigdefault; |
447 |
// |
448 |
// We have a selftrigger event to analyze. |
449 |
// |
450 |
for (Int_t e = 0; e < 5 ; e++){ |
451 |
event->clevel1->al_p[e][0] = 0.; |
452 |
event->clevel1->al_p[e][1] = 0.; |
453 |
}; |
454 |
event->clevel1->trkchi2 = 0; |
455 |
// |
456 |
if ( debug ) printf("-2 a Call GetTrkVar() \n"); |
457 |
event->GetTrkVar(); |
458 |
// |
459 |
// if we had no problem (clevel1->good2 = 0, NOTICE zero, not one in this mode!), fill and go on |
460 |
// |
461 |
if ( event->clevel1->good2 == 0 ) { |
462 |
// |
463 |
// In selftrigger mode the trkentry variable is set to -1 |
464 |
// |
465 |
event->trkseqno = -2; |
466 |
// |
467 |
// Copy values in the class ca from the structure clevel2 |
468 |
// |
469 |
if ( debug ) printf("-2 a Call FillTrkVar() \n"); |
470 |
event->FillTrkVar(pcalo,ntrkentry); |
471 |
ntrkentry++; |
472 |
filled = true; |
473 |
// |
474 |
} else { |
475 |
if ( debug ) printf(" Selftrigger: problems with event \n"); |
476 |
}; |
477 |
// |
478 |
}; |
479 |
// |
480 |
// self trigger event |
481 |
// |
482 |
// if ( st && event->clevel2->trigty >= 2. ){ |
483 |
if ( st && m1 ){ |
484 |
if ( debug ) printf(" Selftrigger event \n"); |
485 |
// |
486 |
// Disable "track mode" in the fortran routine |
487 |
// |
488 |
event->clevel1->good2 = 0; |
489 |
// |
490 |
// disable high enery nuclei flag; |
491 |
// |
492 |
event->clevel1->hzn = 0; |
493 |
// |
494 |
// We have a selftrigger event to analyze. |
495 |
// |
496 |
for (Int_t e = 0; e < 5 ; e++){ |
497 |
event->clevel1->al_p[e][0] = 0.; |
498 |
event->clevel1->al_p[e][1] = 0.; |
499 |
}; |
500 |
event->clevel1->trkchi2 = 0; |
501 |
// |
502 |
if ( debug ) printf("-1 a Call GetTrkVar() \n"); |
503 |
event->GetTrkVar(); |
504 |
// |
505 |
// if we had no problem (clevel2->good = 0, NOTICE zero, not one in selftrigger mode!), fill and go on |
506 |
// |
507 |
if ( event->clevel1->good2 == 0 ) { |
508 |
// |
509 |
// In selftrigger mode the trkentry variable is set to -1 |
510 |
// |
511 |
event->trkseqno = -1; |
512 |
// |
513 |
// Copy values in the class ca from the structure clevel2 |
514 |
// |
515 |
if ( debug ) printf("-1 a Call FillTrkVar() \n"); |
516 |
event->FillTrkVar(pcalo,ntrkentry); |
517 |
ntrkentry++; |
518 |
filled = true; |
519 |
// |
520 |
} else { |
521 |
if ( debug ) printf(" Selftrigger: problems with event \n"); |
522 |
}; |
523 |
}; |
524 |
// // |
525 |
// // Clear structures used to communicate with fortran |
526 |
// // |
527 |
// event->ClearStructs(); |
528 |
// ELENA: moved @ beginning |
529 |
// |
530 |
// |
531 |
// |
532 |
if ( debug ) this->Print(); |
533 |
if ( debug ) printf(" exit \n"); |
534 |
// |
535 |
} |
536 |
|
537 |
// |
538 |
// Method to add a calorimeter track, evaluated around a tracker track defined by a status vector. |
539 |
// (can be used to evaluate the calorimeter track around an arbitrary axis, by setting the status vector with zero deflection ) |
540 |
// |
541 |
// |
542 |
CaloTrkVar* CaloPreSampler::AddCaloTrkVar(float *al,int trktag){ |
543 |
|
544 |
int ntrkentry = pcalo->ntrk(); |
545 |
// |
546 |
for (Int_t nt=0; nt < ntrkentry; nt++){ |
547 |
if( pcalo->GetCaloTrkVar(nt)->trkseqno == trktag){ |
548 |
cout << " CaloTrkVar* CaloPreSampler::AddCaloTrkVar(float *al,int trktag)"<<endl; |
549 |
cout << " --> trktag = "<<trktag<<" already defined "<<endl; |
550 |
return NULL; |
551 |
} |
552 |
} |
553 |
// |
554 |
event->clevel1->good2 = 1; //is a trk track |
555 |
event->clevel1->trkchi2 = 0; |
556 |
event->clevel1->hzn = 0; |
557 |
// |
558 |
// Copy the alpha vector in the input structure |
559 |
// |
560 |
for (Int_t e = 0; e < 5 ; e++){ |
561 |
event->clevel1->al_p[e][0] = al[e]; |
562 |
}; |
563 |
// |
564 |
// Get tracker related variables for this track |
565 |
// |
566 |
if ( debug ) printf("track %i Call GetTrkVar() \n",trktag); |
567 |
event->GetTrkVar(); |
568 |
if ( debug ) printf(" event->clevel2->dX0l %f \n",event->clevel2->dX0l); |
569 |
// |
570 |
// Save tracker track sequence number |
571 |
// |
572 |
event->trkseqno = trktag; |
573 |
// |
574 |
// Copy values in the class ca from the structure clevel2 |
575 |
// |
576 |
if ( debug ) printf("track %i Call FillTrkVar() \n",trktag); |
577 |
event->FillTrkVar(pcalo,ntrkentry); |
578 |
|
579 |
return pcalo->GetCaloTrkVar(ntrkentry); |
580 |
|
581 |
|
582 |
};//ELENA |