42 |
nox = false; |
nox = false; |
43 |
noy = false; |
noy = false; |
44 |
forcecalo = false; |
forcecalo = false; |
45 |
|
forcefitmode = -1; |
46 |
memset(mask,0,2*22*sizeof(Int_t)); |
memset(mask,0,2*22*sizeof(Int_t)); |
47 |
// |
// |
48 |
Clear(); |
Clear(); |
96 |
}; |
}; |
97 |
} |
} |
98 |
|
|
99 |
|
void CaloPreSampler::SplitInto(Int_t NoWpreSampler, Int_t NoWcalo){ |
100 |
|
this->SetNoWcalo(0); |
101 |
|
this->SetNoWpreSampler(0); |
102 |
|
if ( NoWpreSampler < NoWcalo ){ |
103 |
|
this->SetNoWpreSampler(NoWpreSampler); |
104 |
|
this->SetNoWcalo(NoWcalo); |
105 |
|
} else { |
106 |
|
this->SetNoWcalo(NoWcalo); |
107 |
|
this->SetNoWpreSampler(NoWpreSampler); |
108 |
|
}; |
109 |
|
} |
110 |
|
|
111 |
void CaloPreSampler::Clear(){ |
void CaloPreSampler::Clear(){ |
112 |
// |
// |
113 |
pcalo->Clear(); |
pcalo->Clear(); |
151 |
return; |
return; |
152 |
}; |
}; |
153 |
// |
// |
154 |
|
// Clear structures used to communicate with fortran |
155 |
|
// |
156 |
|
event->ClearStructs();//ELENA |
157 |
|
if ( forcefitmode > 0 ){ |
158 |
|
if ( forcefitmode != 1000 && forcefitmode != 1001 && forcefitmode != 1002 ){ |
159 |
|
printf(" ERROR! forcefitmode=%i \n Use forcefitmode = 1000 for fit mode 0, 1001 fit mode 1, 1002 fit mode 3\n",forcefitmode); |
160 |
|
forcefitmode = -1; |
161 |
|
} else { |
162 |
|
event->clevel2->fmode[0] = forcefitmode; |
163 |
|
event->clevel2->fmode[1] = forcefitmode; |
164 |
|
}; |
165 |
|
}; |
166 |
|
// |
167 |
Bool_t newentry = false; |
Bool_t newentry = false; |
168 |
// |
// |
169 |
if ( L2->IsORB() ){ |
if ( L2->IsORB() ){ |
520 |
if ( debug ) printf(" Selftrigger: problems with event \n"); |
if ( debug ) printf(" Selftrigger: problems with event \n"); |
521 |
}; |
}; |
522 |
}; |
}; |
523 |
// |
// // |
524 |
// Clear structures used to communicate with fortran |
// // Clear structures used to communicate with fortran |
525 |
// |
// // |
526 |
event->ClearStructs(); |
// event->ClearStructs(); |
527 |
|
// ELENA: moved @ beginning |
528 |
// |
// |
529 |
// |
// |
530 |
// |
// |
532 |
if ( debug ) printf(" exit \n"); |
if ( debug ) printf(" exit \n"); |
533 |
// |
// |
534 |
} |
} |
535 |
|
|
536 |
|
// |
537 |
|
// Method to add a calorimeter track, evaluated around a tracker track defined by a status vector. |
538 |
|
// (can be used to evaluate the calorimeter track around an arbitrary axis, by setting the status vector with zero deflection ) |
539 |
|
// |
540 |
|
// |
541 |
|
CaloTrkVar* CaloPreSampler::AddCaloTrkVar(float *al,int trktag){ |
542 |
|
|
543 |
|
int ntrkentry = pcalo->ntrk(); |
544 |
|
// |
545 |
|
for (Int_t nt=0; nt < ntrkentry; nt++){ |
546 |
|
if( pcalo->GetCaloTrkVar(nt)->trkseqno == trktag){ |
547 |
|
cout << " CaloTrkVar* CaloPreSampler::AddCaloTrkVar(float *al,int trktag)"<<endl; |
548 |
|
cout << " --> trktag = "<<trktag<<" already defined "<<endl; |
549 |
|
return NULL; |
550 |
|
} |
551 |
|
} |
552 |
|
// |
553 |
|
event->clevel1->good2 = 1; //is a trk track |
554 |
|
event->clevel1->trkchi2 = 0; |
555 |
|
event->clevel1->hzn = 0; |
556 |
|
// |
557 |
|
// Copy the alpha vector in the input structure |
558 |
|
// |
559 |
|
for (Int_t e = 0; e < 5 ; e++){ |
560 |
|
event->clevel1->al_p[e][0] = al[e]; |
561 |
|
}; |
562 |
|
// |
563 |
|
// Get tracker related variables for this track |
564 |
|
// |
565 |
|
if ( debug ) printf("track %i Call GetTrkVar() \n",trktag); |
566 |
|
event->GetTrkVar(); |
567 |
|
if ( debug ) printf(" event->clevel2->dX0l %f \n",event->clevel2->dX0l); |
568 |
|
// |
569 |
|
// Save tracker track sequence number |
570 |
|
// |
571 |
|
event->trkseqno = trktag; |
572 |
|
// |
573 |
|
// Copy values in the class ca from the structure clevel2 |
574 |
|
// |
575 |
|
if ( debug ) printf("track %i Call FillTrkVar() \n",trktag); |
576 |
|
event->FillTrkVar(pcalo,ntrkentry); |
577 |
|
|
578 |
|
return pcalo->GetCaloTrkVar(ntrkentry); |
579 |
|
|
580 |
|
|
581 |
|
};//ELENA |