/[PAMELA software]/calo/flight/CaloNuclei/src/CaloNuclei.cpp
ViewVC logotype

Contents of /calo/flight/CaloNuclei/src/CaloNuclei.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.20 - (show annotations) (download)
Mon Apr 20 09:12:05 2015 UTC (9 years, 9 months ago) by pam-fi
Branch: MAIN
CVS Tags: HEAD
Changes since 1.19: +14 -12 lines
Modified to implement new tracking algorithm aoutput (NB no back :compatibility!)

1 #include <CaloNuclei.h>
2 #include <TGraph.h>
3 #include <TSpline.h>
4 #include <TMVA/TSpline1.h>
5
6 //--------------------------------------
7 /**
8 * Default constructor
9 */
10 // CaloNuclei::CaloNuclei(){
11 // Clear();
12 // };
13
14 CaloNuclei::CaloNuclei(PamLevel2 *l2p,const char* alg){
15 //
16 Clear();
17 //
18 L2 = l2p;
19 //
20 if ( !L2->IsORB() ) printf(" WARNING: OrbitalInfo Tree is needed, the plugin could not work properly without it \n");
21 //
22 OBT = 0;
23 PKT = 0;
24 atime = 0;
25 N = 5;
26 R = 3;
27 //
28 debug = false;
29 // debug = true;
30 usetrack = true;
31 usepl18x = false;
32 trkAlg = alg;
33 //
34 };
35
36 void CaloNuclei::Clear(){
37 //
38 UN = 0;
39 tr = 0;
40 sntr = 0;
41 interplane = 0;
42 preq = 0.;
43 postq = 0.;
44 stdedx1 = 0.;
45 ethr = 0.;
46 dedx1 = 0.;
47 dedx3 = 0.;
48 qpremean = 0.;
49 qpremeanN = 0.;
50 maxrel = 0;
51 qNmin1 = 0;
52 qNmin1_w = 0;
53 charge_siegen1 = 0;
54 ZCalo_maxrel_b = 0;
55 ZCalo_dedx_b = 0;
56 ZCalo_dedx_defl= 0;
57 ZCalo_Nmin1_defl= 0;
58 //
59 multhit = false;
60 gap = false;
61 //
62 };
63
64 void CaloNuclei::Print(){
65 //
66 Process();
67 //
68 printf("========================================================================\n");
69 printf(" OBT: %u PKT: %u ATIME: %u Track %i Use track %i \n",OBT,PKT,atime,tr,usetrack);
70 printf(" interplane [number of available dE/dx before interaction]:....... %i\n",interplane);
71 printf(" ethr [threshold used to determine interplane]:................... %f \n",ethr);
72 printf(" dedx1 [dE/dx from the first calorimeter plane]:.................. %f \n",dedx1);
73 printf(" stdedx1 [dE/dx from the first calorimeter plane standalone]:..... %f \n",stdedx1);
74 printf(" dedx3 [dE/dx (average) if the first 3 Si planes]:................ %f \n",dedx3);
75 printf(" multhit [true if interplane determined by multiple hits]:........ %i \n",multhit);
76 printf(" gap [true if interplane determined by a gap]:.................... %i \n",gap);
77 printf(" preq [total energy in MIP before the interaction plane]:......... %f \n",preq);
78 printf(" postq [total energy in MIP after the interaction plane]:......... %f \n",postq);
79 printf(" qpremean [truncated mean using 3 planes and 3 strips]:........... %f \n",qpremean);
80 printf(" N [no of used plane]:............................................ %i \n",N);
81 printf(" R [no strip used per plane ]:.................................... %i \n",R);
82 printf(" qpremeanN [truncated mean using N planes and R strips]:.......... %f \n",qpremeanN);
83 printf(" qNmin1 [truncated mean using N-1 planes and R strips]: .......... %f \n",qNmin1);
84 printf(" maxrel [dE/dx of strip with maximum release (I plane)]:.......... %f \n",maxrel);
85 printf(" ZCalo_maxrel_b [Z from maximum release in I Calo plane vs beta].. %f \n",ZCalo_maxrel_b);
86 printf(" ZCalo_dedx_b [Z from dedx in I Calo plane vs beta].. ............ %f \n",ZCalo_dedx_b);
87 printf(" ZCalo_dedx_defl [Z from dedx in I Calo plane vs deflection....... %f \n",ZCalo_dedx_defl);
88 printf(" ZCalo_Nmin1_defl [Z from truncated mean (N-1 pl) vs deflection].. %f \n",ZCalo_Nmin1_defl);
89 printf("========================================================================\n");
90 //
91 };
92
93 void CaloNuclei::Delete(){
94 Clear();
95 //delete this;
96 };
97
98
99 void CaloNuclei::Process(){
100 Process(0);
101 };
102
103 void CaloNuclei::Process(Int_t ntr){
104 //
105 if ( !L2 ){
106 printf(" ERROR: cannot find PamLevel2 object, use the correct constructor or check your program!\n");
107 printf(" ERROR: CaloNuclei variables not filled \n");
108 return;
109 };
110 //
111 Bool_t newentry = false;
112 //
113 if ( L2->IsORB() ){
114 if ( L2->GetOrbitalInfo()->pkt_num != PKT || L2->GetOrbitalInfo()->OBT != OBT || L2->GetOrbitalInfo()->absTime != atime || ntr != sntr ){
115 newentry = true;
116 OBT = L2->GetOrbitalInfo()->OBT;
117 PKT = L2->GetOrbitalInfo()->pkt_num;
118 atime = L2->GetOrbitalInfo()->absTime;
119 sntr = ntr;
120 };
121 } else {
122 newentry = true;
123 };
124 //
125 if ( !newentry ) return;
126 //
127 tr = ntr;
128 //
129 if ( debug ) printf(" Processing event at OBT %u PKT %u time %u \n",OBT,PKT,atime);
130 //
131 Clear();
132 //
133 if ( debug ) printf(" Always calculate stdedx1 \n");
134 //
135 // Always calculate stdedx1 and maxrel
136 //
137 Int_t cont=0;
138 Int_t view = 0;
139 Int_t plane = 0;
140 Int_t strip = 0;
141 Int_t indx = 0;
142 Float_t vfpl[96];
143 Int_t stfpl[96];
144 memset(vfpl, 0, 96*sizeof(Float_t));
145 memset(stfpl, 0, 96*sizeof(Int_t));
146 Float_t mip = 0.;
147 for ( Int_t i=0; i<L2->GetCaloLevel1()->istrip; i++ ){
148 //
149 mip = L2->GetCaloLevel1()->DecodeEstrip(i,view,plane,strip);
150 //
151 if ( !usepl18x && view==0 && plane==18 ) mip = 0.;
152 //
153 //
154 // put in vfpl vector the energy release on the first plane
155 //
156 if ( strip != -1 && view == 1 && plane == 0 ) {
157 stfpl[indx] = strip;
158 vfpl[indx] = mip;
159 indx++;
160 };
161 //
162 };
163 //
164 if ( debug ) printf(" find energy released along the strip of maximum on the first plane and on the two neighbour strips \n");
165 //
166 // find energy released along the strip of maximum on the first plane and on the two neighbour strips
167 //
168 if ( indx > 0 ){
169 Int_t mindx = (Int_t)TMath::LocMax(indx,vfpl);
170 for (Int_t ii=0; ii<indx; ii++){
171 if ( stfpl[ii] == stfpl[mindx] ) stdedx1 += vfpl[ii];
172 if ( (mindx-1)>=0 && stfpl[ii] == (stfpl[mindx]-1) ) stdedx1 += vfpl[ii];
173 if ( (mindx+1)<96 && stfpl[ii] == (stfpl[mindx]+1) ) stdedx1 += vfpl[ii];
174 // if ( (mindx-1)>=0 && stfpl[ii] == stfpl[mindx-1] ) stdedx1 += vfpl[ii];
175 // if ( (mindx+1)<96 && stfpl[ii] == stfpl[mindx+1] ) stdedx1 += vfpl[ii];
176 };
177 maxrel = vfpl[mindx];
178 } else {
179 stdedx1 = 0.;
180 maxrel = 0.;
181 };
182 // cout<<stdedx1<<" "<<maxrel<<"\n";
183 //
184 if ( debug ) printf(" if ( !usetrack ) return: usetrack %i ntr %i \n",usetrack,ntr);
185 //
186 //
187 // if ( !usetrack ) return;
188 //
189 PamTrack *ptrack = 0;
190 CaloTrkVar *track = 0;
191 //
192 if ( usetrack ){
193 if ( ntr >= 0 ){
194 ptrack = L2->GetTrack(ntr,trkAlg);
195 if ( ptrack ) track = ptrack->GetCaloTrack();
196 } else {
197 track = L2->GetCaloStoredTrack(ntr);
198 };
199 //
200 if ( !track && ntr >= 0 ){
201 printf(" ERROR: cannot find any track! \n");
202 cout << "ERROR: trk.algorythm --> "<<trkAlg<<endl;
203 printf(" ERROR: CaloNuclei variables not completely filled \n");
204 return;
205 };
206 } else {
207 if ( ntr >= 0 ){
208 if ( debug ) printf(" ERROR: you asked not to use a track but you are looking for track number %i !\n",ntr);
209 if ( debug ) printf(" ERROR: CaloNuclei variables not completely filled \n");
210 return;
211 };
212 };
213 //
214 // Float_t defethr = 6. * 0.90;
215 Float_t defethr = 6.25; // = (sqrt(9) - 0.5) ** 2.;
216 //
217 // Calculate dedx1 and dedx3
218 //
219 for ( Int_t i=0; i<L2->GetCaloLevel1()->istrip; i++ ){
220 //
221 mip = L2->GetCaloLevel1()->DecodeEstrip(i,view,plane,strip);
222 //
223 if ( !usepl18x && view==0 && plane==18 ) mip = 0.;
224 //
225 if ( ntr >= 0 ){
226 //
227 if ( strip != -1 &&
228 view == 1 &&
229 plane == 0 &&
230 ( strip == (track->tibar[0][1]-1) || strip == (track->tibar[0][1]-2) || strip == (track->tibar[0][1]) )
231 && true ){
232 dedx1 += mip;
233 };
234 if ( strip != -1 &&
235 (( view == 1 && ( plane == 0 || plane == 1 ) ) ||
236 ( view == 0 && plane == 0 )) &&
237 (( view == 0 && ( strip == track->tibar[0][0] || strip == (track->tibar[0][0]-1) || strip == (track->tibar[0][0]-2) )) ||
238 ( view == 1 && ( strip == track->tibar[0][1] || strip == (track->tibar[0][1]-1) || strip == (track->tibar[0][1]-2) )) ||
239 ( view == 1 && ( strip == track->tibar[1][1] || strip == (track->tibar[1][1]-1) || strip == (track->tibar[1][1]-2) ))) &&
240 true ){
241 dedx3 += mip;
242 };
243 } else {
244 //
245 if ( strip != -1 &&
246 view == 1 &&
247 plane == 0 &&
248 ( strip == (L2->GetCaloLevel2()->cibar[0][1]-1) || strip == (L2->GetCaloLevel2()->cibar[0][1]-2) || strip == (L2->GetCaloLevel2()->cibar[0][1]) )
249 && true ){
250 dedx1 += mip;
251 };
252 if ( strip != -1 &&
253 (( view == 1 && ( plane == 0 || plane == 1 ) ) ||
254 ( view == 0 && plane == 0 )) &&
255 (( view == 0 && ( strip == L2->GetCaloLevel2()->cibar[0][0] || strip == (L2->GetCaloLevel2()->cibar[0][0]-1) || strip == (L2->GetCaloLevel2()->cibar[0][0]-2) )) ||
256 ( view == 1 && ( strip == L2->GetCaloLevel2()->cibar[0][1] || strip == (L2->GetCaloLevel2()->cibar[0][1]-1) || strip == (L2->GetCaloLevel2()->cibar[0][1]-2) )) ||
257 ( view == 1 && ( strip == L2->GetCaloLevel2()->cibar[1][1] || strip == (L2->GetCaloLevel2()->cibar[1][1]-1) || strip == (L2->GetCaloLevel2()->cibar[1][1]-2) ))) &&
258 true ){
259 dedx3 += mip;
260 };
261 };
262 //
263 };
264 //
265 dedx3 /= 3.;
266 // Float_t mesethr = dedx1 * 0.90;
267 Float_t mesethr = 0.;
268 if ( dedx1 > 0. ) mesethr = (sqrt(dedx1) - 0.50)*(sqrt(dedx1) - 0.50);
269 Bool_t aldone = false;
270 //
271 retry:
272 //
273 if ( debug ) printf("retry\n");
274 //
275 interplane = 0;
276 //
277 ethr = TMath::Max(defethr,mesethr);
278 //
279 // Find the interaction plane "interplane"
280 //
281 Int_t gapth = 3;
282 Int_t nhit[2] = {0,0};
283 Int_t splane[2] = {-1,-1};
284 Int_t sview[2] = {-1,-1};
285 Int_t interpl[2] = {-1,-1};
286 Int_t interv[2] = {-1,-1};
287 Bool_t wmulthit[2] = {false,false};
288 Bool_t wgap[2] = {false,false};
289 Int_t ii = 0;
290 while ( ii<L2->GetCaloLevel1()->istrip ){
291 //
292 mip = L2->GetCaloLevel1()->DecodeEstrip(ii,view,plane,strip);
293 //
294 if ( !usepl18x && view==0 && plane==18 ) mip = 0.;
295 //
296 //
297 if ( ntr >= 0 ){
298 if ( strip != -1 && mip > ethr && !wmulthit[view] && !wgap[view] &&
299 ( strip == (track->tibar[plane][view]-1) || strip == (track->tibar[plane][view]-2) || strip == (track->tibar[plane][view]) )
300 && true ){
301 if ( debug ) printf(" inside loop: ii %i mip %f view %i plane %i strip %i tibar %i nhit %i splane %i sview %i \n",ii,mip,view,plane,strip,track->tibar[plane][view]-1,nhit[view],splane[view],sview[view]);
302 interpl[view] = plane;
303 interv[view] = view;
304 if ( splane[view] != plane || sview[view] != view ){
305 if ( nhit[view] > 1 ){
306 wmulthit[view] = true;
307 // if ( splane[view] == -1 ) splane[view] = 0; //
308 // if ( sview[view] == -1 ) sview[view] = view; //
309 interpl[view] = splane[view];
310 interv[view] = sview[view];
311 };
312 if ( plane > splane[view]+gapth ){
313 wgap[view] = true;
314 // if ( splane[view] == -1 ) splane[view] = 0;//
315 // if ( sview[view] == -1 ) sview[view] = view; //
316 interpl[view] = splane[view];
317 interv[view] = sview[view];
318 };
319 splane[view] = plane;
320 sview[view] = view;
321 nhit[view] = 1;
322 } else {
323 nhit[view]++;
324 };
325 };
326 } else {
327 if ( strip != -1 && mip > ethr && !wmulthit[view] && !wgap[view] &&
328 ( strip == (L2->GetCaloLevel2()->cibar[plane][view]-1) || strip == (L2->GetCaloLevel2()->cibar[plane][view]-2) || strip == (L2->GetCaloLevel2()->cibar[plane][view]) )
329 && true ){
330 if ( debug ) printf(" inside loop: ii %i mip %f view %i plane %i strip %i cibar %i nhit %i splane %i sview %i \n",ii,mip,view,plane,strip,L2->GetCaloLevel2()->cibar[plane][view]-1,nhit[view],splane[view],sview[view]);
331 interpl[view] = plane;
332 interv[view] = view;
333 if ( splane[view] != plane || sview[view] != view ){
334 if ( nhit[view] > 1 ){
335 wmulthit[view] = true;
336 // if ( splane[view] == -1 ) splane[view] = 0; //
337 // if ( sview[view] == -1 ) sview[view] = view; //
338 interpl[view] = splane[view];
339 interv[view] = sview[view];
340 };
341 if ( plane > splane[view]+gapth ){
342 wgap[view] = true;
343 // if ( splane[view] == -1 ) splane[view] = 0;//
344 // if ( sview[view] == -1 ) sview[view] = view; //
345 interpl[view] = splane[view];
346 interv[view] = sview[view];
347 };
348 splane[view] = plane;
349 sview[view] = view;
350 nhit[view] = 1;
351 } else {
352 nhit[view]++;
353 };
354 };
355 };
356 //
357 ii++;
358 //
359 };
360 //
361 if (debug ) printf("conversion interpl %i interv %i multhit %i interplane %i \n",interpl[0],interv[0],multhit,interplane);
362 Int_t winterplane[2] = {-1,-1};
363 //
364 for ( Int_t view = 0; view < 2; view++){
365 //
366 if ( nhit[view] > 1 && !wmulthit[view] && !wgap[view] ){
367 wmulthit[view] = true;
368 interpl[view] = splane[view];
369 interv[view] = sview[view];
370 };
371 //
372 if ( wmulthit[view] ) multhit = true;
373 if ( wgap[view] ) gap = true;
374 //
375 // convert view and plane number of interaction plane into number of available dE/dx measurements before the interaction plane
376 //
377 if ( interpl[view] >= 0 ) {
378 if ( interv[view] == 0 ){
379 winterplane[view] = (1 + interpl[view]) * 2;
380 } else {
381 winterplane[view] = (1 + interpl[view]) + (1 + interpl[view] - 1);
382 };
383 if ( wmulthit[view] ) winterplane[view]--;
384 };
385 };
386 if ( winterplane[0] > 0 && winterplane[1] > 0 ){
387 if ( multhit ){
388 interplane = TMath::Min(winterplane[0],winterplane[1]);
389 } else {
390 interplane = TMath::Max(winterplane[0],winterplane[1]);
391 };
392 } else {
393 if ( !winterplane[0] || !winterplane[1] ){
394 interplane = 0;
395 } else {
396 interplane = TMath::Max(winterplane[0],winterplane[1]);
397 };
398 };
399 //
400 if ( debug ) printf("2conversion interpl %i interv %i multhit %i interplane %i \n",interpl[1],interv[1],multhit,interplane);
401 if ( debug ) printf("3conversion winterpl0 %i winterpl1 %i \n",winterplane[0],winterplane[1]);
402 //
403 Int_t ipl = 0;
404 if ( interplane > 0 ){
405 //
406 // Calculate preq, postq, qpremean
407 //
408 cont++;
409 ii = 0;
410 Int_t ind = -1;
411 Int_t qsplane = -1;
412 Int_t qsview = -1;
413 Int_t ind2 = -1;
414 Int_t qsplane2 = -1;
415 Int_t qsview2 = -1;
416 Float_t qme[200];
417 memset(qme,0,200*sizeof(Float_t));
418 Float_t qme2[2112];
419 memset(qme2,0,2112*sizeof(Float_t));
420 //
421 while ( ii<L2->GetCaloLevel1()->istrip ){
422 //
423 mip = L2->GetCaloLevel1()->DecodeEstrip(ii,view,plane,strip);
424 //
425 if ( !usepl18x && view==0 && plane==18 ) mip = 0.;
426 //
427 //
428 if ( strip != -1 ){
429 if ( view == 0 ){
430 ipl = (1 + plane) * 2;
431 } else {
432 ipl = (1 + plane) + (1 + plane - 1 );
433 };
434 if ( ipl > interplane ){
435 postq += mip;
436 } else {
437 preq += mip;
438 if ( ntr >= 0 ){
439 if ( strip == (track->tibar[plane][view]-1) || strip == (track->tibar[plane][view]-2) || strip == (track->tibar[plane][view]) ){
440 if ( qsplane != plane || qsview != view ){
441 qsplane = plane;
442 qsview = view;
443 ind++;
444 if ( debug && ind > 199 ) printf(" AAAGH!! \n");
445 qme[ind] = 0.;
446 };
447 qme[ind] += mip;
448 };
449 for ( Int_t ns = 0; ns < R ; ns++){
450 Int_t ms = track->tibar[plane][view] - 1 - ns + (R - 1)/2;
451 if ( strip == ms ){
452 if ( qsplane2 != plane || qsview2 != view ){
453 qsplane2 = plane;
454 qsview2 = view;
455 ind2++;
456 if ( debug && ind2 > 2112 ) printf(" AAAGH!! \n");
457 qme2[ind2] = 0.;
458 };
459 qme2[ind2] += mip;
460 };
461 };
462 } else {
463 if ( strip == (L2->GetCaloLevel2()->cibar[plane][view]-1) || strip == (L2->GetCaloLevel2()->cibar[plane][view]-2) || strip == (L2->GetCaloLevel2()->cibar[plane][view]) ){
464 if ( qsplane != plane || qsview != view ){
465 qsplane = plane;
466 qsview = view;
467 ind++;
468 if ( debug && ind > 199 ) printf(" AAAGH!! \n");
469 qme[ind] = 0.;
470 };
471 qme[ind] += mip;
472 };
473 for ( Int_t ns = 0; ns < R ; ns++){
474 Int_t ms = L2->GetCaloLevel2()->cibar[plane][view] - 1 - ns + (R - 1)/2;
475 if ( strip == ms ){
476 if ( qsplane2 != plane || qsview2 != view ){
477 qsplane2 = plane;
478 qsview2 = view;
479 ind2++;
480 if ( debug && ind2 > 2112 ) printf(" AAAGH!! \n");
481 qme2[ind2] = 0.;
482 };
483 qme2[ind2] += mip;
484 };
485 };
486 };
487 };
488 //
489 };
490 //
491 ii++;
492 //
493 };
494
495
496 //
497 // here we must calculate qpremean, order vector qme, select 3 lowest measurements and caculate the mean...
498 //
499 if ( debug ){
500 for (Int_t l=0; l < interplane; l++){
501 printf(" qme[%i] = %f \n",l,qme[l]);
502 };
503 };
504 //
505 Long64_t work[200];
506 ind = 0;
507 Int_t l = 0;
508 Int_t RN = 0;
509 Float_t qm = 0.;
510 Float_t qm2 = 0.;
511 //
512 Float_t qmt = ethr*0.8; // *0.9
513 //
514 Int_t uplim = TMath::Max(3,N);
515 Int_t uplim2 = interplane-1;
516 //
517 while ( l < uplim && ind < interplane ){
518 qm = TMath::KOrdStat((Long64_t)interplane,qme,(Long64_t)ind,work);
519 if ( qm >= qmt ){
520 if ( l < 3 ){
521 qpremean += qm;
522 RN++;
523 };
524 l++;
525 if ( debug ) printf(" value no %i qm %f qmt %f \n",l,qm,qmt);
526 };
527 ind++;
528 };
529 //
530 qpremean /= (Float_t)RN;
531 ind = 0;
532 l = 0;
533 RN = 0;
534 while ( l < uplim && ind < interplane ){
535 qm2 = TMath::KOrdStat((Long64_t)interplane,qme2,(Long64_t)ind,work);
536 if ( qm2 >= qmt ){
537 if ( l < N ){
538 qpremeanN += qm2;
539 RN++;
540 };
541 l++;
542 if ( debug ) printf(" qm2 value no %i qm %f qmt %f RN %i \n",l,qm2,qmt,RN);
543 };
544 ind++;
545 };
546 ////////////////////////////////////
547 //to calculate qNmin1///////////////
548 ///////////////////////////////////
549 //values under threshold
550 qm2=0;
551 ind = 0;
552 l = 0;
553 RN = 0;
554 S2=0;
555 while ( l < uplim2 && ind<interplane){
556 qm2 = TMath::KOrdStat((Long64_t)interplane,qme2,(Long64_t)ind,work);
557 if ( qm2 < qmt ) S2++;
558 ind++;
559 }
560 qm2=0;
561 ind = 0;
562 l = 0;
563 RN = 0;
564 while ( l < uplim2 && ind < interplane ){
565 qm2 = TMath::KOrdStat((Long64_t)interplane,qme2,(Long64_t)ind,work);
566 if ( qm2 >= qmt ){
567 if ( l < (interplane - 1 - S2)){
568 qNmin1_w += qm2;
569 RN++;
570 };
571 l++;
572 if ( debug ) printf(" qm2 value no %i qm %f qmt %f RN %i \n",l,qm2,qmt,RN);
573 };
574 ind++;
575 };
576 qpremeanN /= (Float_t)RN;
577 qNmin1_w /= (Float_t)RN;
578 UN = RN;
579 ///////set qNmin1 definition///////////
580 if (interplane==1 || interplane==2){
581 if (dedx1>0) qNmin1=dedx1;
582 else if (stdedx1>0) qNmin1=stdedx1;
583 }
584 else if (interplane > 2){
585 qNmin1 = qNmin1_w;
586 }
587 ////////////////////////////////////
588 //////////////////////////////////
589 //
590 if ( debug ) printf(" charge is %f \n",sqrt(qpremean));
591 //
592 if ( mesethr != ethr && interplane >= 3 && !aldone ){
593 Float_t mesethr2 = (sqrt(qpremean) - 0.50)*(sqrt(qpremean) - 0.50);
594 if ( mesethr2 < mesethr*0.90 ){
595 mesethr = (sqrt(dedx1) - 0.25)*(sqrt(dedx1) - 0.25);
596 } else {
597 mesethr = mesethr2;
598 };
599 aldone = true;
600 if ( mesethr > defethr ){
601 interplane = 0;
602 preq = 0.;
603 postq = 0.;
604 qpremean = 0.;
605 qpremeanN = 0.;
606 qNmin1 = 0;
607 multhit = false;
608 gap = false;
609 goto retry;
610 };
611 };
612 };
613
614
615
616 //=======================================================================
617 //=========== charge determination stdedx1 vs. beta ===============
618 //====================== Siegen method ===========================
619 //=======================================================================
620
621 // Data from file Calo_Bands_New_7.dat
622 Float_t C0[9] = {0 , 1 , 2 , 3 , 4 , 5 , 6 , 8 , 90 };
623 Float_t B0[9] = {0 , -2.03769 , 7.61781 , 19.7098 , 60.5598 , 57.9226 , 14.8368 , -1358.83 , 8200 };
624 Float_t B1[9] = {0 , 0.0211274 , 9.32057e-010 , 4.47241e-07 , 1.44826e-06 , 2.6189e-05 , 0.00278178 , 55.5445 , 0 };
625 Float_t B2[9] = {0 , -3.91742 , -20.0359 , -16.3043 , -16.9471 , -14.4622 , -10.9594 , -2.38014 , 0 };
626 Float_t B3[9] = {0 , 11.1469 , -6.63105 , -27.8834 , -132.044 , -55.341 , 173.25 , 4115 , 0 };
627 Float_t B4[9] = {0 , -14.3465 , -0.485215 , 18.8122 , 117.533 , -14.0898 , -325.269 , -4388.89 , 0 };
628 Float_t B5[9] = {0 , 6.24281 , 3.96018 , 0 , -26.1881 , 42.9731 , 182.697 , 1661.01 , 0 };
629
630 Float_t x1[9],y1[9];
631 Int_t n1 = 9;
632
633 Float_t charge = 1000.;
634 Float_t beta = 100.;
635
636 //------- First try track dependent beta
637 if( L2->GetNTracks(trkAlg)>=1 ){
638 PamTrack *TRKtrack = L2->GetTrack(0,trkAlg);
639 if (fabs(TRKtrack->GetToFTrack()->beta[12]) < 100.) beta = fabs(TRKtrack->GetToFTrack()->beta[12]);
640 }
641 //------- If no beta found, try standalone beta
642 if (beta == 100.) {
643 ToFTrkVar *ttrack = L2->GetToFStoredTrack(-1);
644 beta = fabs(ttrack->beta[12]);
645 }
646
647 if (beta<2.) { // it makes no sense to allow beta=5 or so...
648
649 Float_t mip=0;
650 mip=stdedx1 ;
651
652 if (mip>0) {
653
654 Float_t betahelp = pow(beta, 1.8);
655 Float_t ym = mip*betahelp;
656 Float_t xb = beta;
657
658 for ( Int_t jj=0; jj<9; jj++ ){
659 x1[jj] = B0[jj]+B1[jj]*pow(xb,B2[jj])+B3[jj]*xb+B4[jj]*xb*xb+B5[jj]*xb*xb*xb;
660 y1[jj] = C0[jj]*C0[jj] ;
661 }
662
663 TGraph *gr1 = new TGraph(n1,x1,y1);
664 TSpline3 *spl1 = new TSpline3("grs",gr1); // use a cubic spline
665 Float_t chelp = spl1->Eval(ym);
666 charge = TMath::Sqrt(chelp);
667 gr1->Delete();
668 spl1->Delete();
669
670 } // if (mip1>0)
671 } // beta < 100
672
673
674 charge_siegen1 = charge;
675
676 //======================= end charge Siegen ===========================
677
678
679 // //=======================================================================
680 // //=========== charge determination Maximum release vs. beta ===============
681 // //====================== Rome method ===========================
682 // //=======================================================================
683
684 Float_t D0[9] = {0, 1, 2, 3 , 4 , 5 , 6, 8, 90};
685 Float_t E1[9] = {0, 500, 500, 923.553 , 659.842, 1113.97, 3037.25, 3034.84, 0};
686 Float_t E2[9] = {0, 11.0, 7.5, 6.92574 , 5.08865, 5.29349, 6.41442, 5.52969, 0};
687 Float_t E3[9] = {0, 1.2, 4, 9.7227 , 13.18, 23.5444, 38.2057, 63.6784, 80000};
688
689 Float_t xx1[9],yy1[9];
690 n1 = 9;
691
692 charge = 1000.;
693 mip=0;
694
695
696 if (beta<2.) { // it makes no sense to allow beta=5 or so...
697
698
699 mip=maxrel;
700
701 if (mip>0) {
702 Float_t ym = mip;
703 Float_t xb = beta;
704
705 for ( Int_t jj=0; jj<n1; jj++ ){
706 xx1[jj] = E1[jj]*exp(-E2[jj]*xb)+E3[jj];
707 yy1[jj] = D0[jj]*D0[jj] ;
708 }
709
710 TGraph *gr1 = new TGraph(n1,xx1,yy1);
711 TSpline3 *spl1 = new TSpline3("grs",gr1); // use a cubic spline
712 Float_t chelp = spl1->Eval(ym);
713 charge = TMath::Sqrt(chelp);
714 gr1->Delete();
715 spl1->Delete();
716
717
718 } // if (mip1>0)
719 } // beta < 100
720
721
722 ZCalo_maxrel_b = charge;
723
724 //======================= end charge Rome: maxril vs beta ===========================
725
726
727
728 // =======================================================================
729 // =========== charge determination dedx vs. beta ===============
730 // ====================== Rome method ===========================
731 // =======================================================================
732
733 Float_t F0[9] = {0., 1., 2., 3. ,4., 5. , 6., 8, 90};
734 Float_t G1[9] = {0, 500, 500, 642.935 , 848.684, 1346.05, 3238.82, 3468.6, 0};
735 Float_t G2[9] = {0, 11, 7.5, 6.2038 , 5.51723, 5.65265, 6.54089, 5.72723, 0};
736 Float_t G3[9] = {0, 1.2, 4, 9.2421 , 13.9858, 25.3912, 39.6332, 64.5674, 80000};
737
738
739 charge = 1000.;
740 mip=0;
741
742
743 if (beta<2.) { // it makes no sense to allow beta=5 or so...
744
745
746 if( L2->GetNTracks(trkAlg)>=1 ){
747 mip=dedx1;
748 }
749 if (mip==0) mip=stdedx1;
750
751
752 if (mip>0) {
753
754 Float_t ym = mip;
755 Float_t xb = beta;
756
757 for ( Int_t jj=0; jj<n1; jj++ ){
758 xx1[jj] = G1[jj]*exp(-G2[jj]*xb)+G3[jj];
759 yy1[jj] = F0[jj]*F0[jj] ;
760 }
761
762 TGraph *gr1 = new TGraph(n1,xx1,yy1);
763 TSpline3 *spl1 = new TSpline3("grs",gr1); // use a cubic spline
764 Float_t chelp = spl1->Eval(ym);
765 charge = TMath::Sqrt(chelp);
766 gr1->Delete();
767 spl1->Delete();
768
769 } //if (mip1>0)
770 } //beta < 100
771
772 ZCalo_dedx_b = charge;
773
774 //======================= end charge Rome: dedx vs beta ===========================
775
776
777 //=======================================================================
778 //=========== charge determination dedx vs. defl ===============
779 //====================== Rome method ===========================
780 //=======================================================================
781
782 Float_t H0[9] = {0, 1, 2, 3 , 4 , 5 , 6, 8, 90 };
783 Float_t I1[9] = {0, 3.5, 40, 56.1019, 101.673, 109.225, 150.599, 388.531, 0};
784 Float_t I2[9] = {0, -1, -13.6, -12.5581, -22.5543, -15.9823, -28.2207, -93.6871, 0};
785 Float_t I3[9] = {0, 1, 5.3, 11.6218, 19.664, 32.1817, 45.7527, 84.5992, 80000};
786
787
788 charge = 1000.;
789 mip=0;
790 Float_t defl=0;
791
792
793 if (beta<2.) { // it makes no sense to allow beta=5 or so...
794
795 if( L2->GetNTracks(trkAlg)>=1 ){
796 PamTrack *TRKtrack = L2->GetTrack(0,trkAlg);
797 mip=dedx1;
798 if (mip==0) mip=stdedx1;
799 defl=TRKtrack->GetTrkTrack()->al[4];
800
801
802 if (mip>0 && defl<0.7 && defl>0) {
803
804 Float_t ym = mip;
805 Float_t xb = defl;
806
807 for ( Int_t jj=0; jj<n1; jj++ ){
808 xx1[jj] = I1[jj]*xb*xb+I2[jj]*xb+I3[jj];
809 yy1[jj] = H0[jj]*H0[jj] ;
810 }
811
812 TGraph *gr1 = new TGraph(n1,xx1,yy1);
813 TSpline3 *spl1 = new TSpline3("grs",gr1); // use a cubic spline
814 Float_t chelp = spl1->Eval(ym);
815 charge = TMath::Sqrt(chelp);
816 gr1->Delete();
817 spl1->Delete();
818
819 } // if (mip1>0 && defl<0.5 && defl>0)
820 }//Ntrack>=1
821 } //beta < 100
822
823 ZCalo_dedx_defl = charge;
824
825 //======================= end charge Rome: dedx vs defl ===========================
826
827
828 //============================================================================================
829 //=========== charge determination Truncated mean (N-1 planes) vs. defl ===================
830 //================================ Rome method ========================================
831 //============================================================================================
832
833 Float_t L0[9] = {0, 1, 2, 3 , 4 , 5 , 6, 8, 90};
834 Float_t M1[9] = {0, 3.5, 27, 63.0145, 120.504, 173.663, 245.33, 236.517, 0};
835 Float_t M2[9] = {0, -1, -10.6, -15.005, -31.0635, -39.4988, -60.5011, -46.3992, 0};
836 Float_t M3[9] = {0, 1, 7, 12.5037, 22.8652, 35.2907, 51.4678, 86.4155, 80000};
837
838 charge = 1000.;
839 mip=0;
840
841
842 if (beta<2.) { // it makes no sense to allow beta=5 or so...
843
844 if( L2->GetNTracks(trkAlg)>=1 ){
845 mip=qNmin1;
846
847 if (mip>0 && defl<0.7 && defl>0) {
848
849 Float_t ym = mip;
850 Float_t xb = defl;
851
852 for ( Int_t jj=0; jj<n1; jj++ ){
853 xx1[jj] = M1[jj]*xb*xb+M2[jj]*xb+M3[jj];
854 yy1[jj] = L0[jj]*L0[jj] ;
855 }
856
857 TGraph *gr1 = new TGraph(n1,xx1,yy1);
858 TSpline3 *spl1 = new TSpline3("grs",gr1); // use a cubic spline
859 Float_t chelp = spl1->Eval(ym);
860 charge = TMath::Sqrt(chelp);
861 gr1->Delete();
862 spl1->Delete();
863
864 } // if (mip1>0 && defl<0.5 && defl>0)
865 }//Ntrack>=1
866 } //beta < 100
867
868 ZCalo_Nmin1_defl = charge;
869
870 //======================= end charge Rome: Nmin1 vs defl ===========================
871
872
873
874
875
876 //
877 if ( debug ) this->Print();
878 if ( debug ) printf(" esci \n");
879 //
880 };

  ViewVC Help
Powered by ViewVC 1.1.23