1 |
#include <CaloNuclei.h> |
2 |
#include <TGraph.h> |
3 |
#include <TSpline.h> |
4 |
#include <TMVA/TSpline1.h> |
5 |
|
6 |
//-------------------------------------- |
7 |
/** |
8 |
* Default constructor |
9 |
*/ |
10 |
CaloNuclei::CaloNuclei(){ |
11 |
Clear(); |
12 |
}; |
13 |
|
14 |
CaloNuclei::CaloNuclei(PamLevel2 *l2p){ |
15 |
// |
16 |
Clear(); |
17 |
// |
18 |
L2 = l2p; |
19 |
// |
20 |
if ( !L2->IsORB() ) printf(" WARNING: OrbitalInfo Tree is needed, the plugin could not work properly without it \n"); |
21 |
// |
22 |
OBT = 0; |
23 |
PKT = 0; |
24 |
atime = 0; |
25 |
N = 5; |
26 |
R = 3; |
27 |
// |
28 |
debug = false; |
29 |
// debug = true; |
30 |
usetrack = true; |
31 |
// |
32 |
}; |
33 |
|
34 |
void CaloNuclei::Clear(){ |
35 |
// |
36 |
UN = 0; |
37 |
tr = 0; |
38 |
sntr = 0; |
39 |
interplane = 0; |
40 |
preq = 0.; |
41 |
postq = 0.; |
42 |
stdedx1 = 0.; |
43 |
ethr = 0.; |
44 |
dedx1 = 0.; |
45 |
dedx3 = 0.; |
46 |
qpremean = 0.; |
47 |
qpremeanN = 0.; |
48 |
maxrel = 0; |
49 |
qNmin1 = 0; |
50 |
qNmin1_w = 0; |
51 |
charge_siegen1 = 0; |
52 |
ZCalo_maxrel_b = 0; |
53 |
ZCalo_dedx_b = 0; |
54 |
ZCalo_dedx_defl= 0; |
55 |
ZCalo_Nmin1_defl= 0; |
56 |
// |
57 |
multhit = false; |
58 |
gap = false; |
59 |
// |
60 |
}; |
61 |
|
62 |
void CaloNuclei::Print(){ |
63 |
// |
64 |
Process(); |
65 |
// |
66 |
printf("========================================================================\n"); |
67 |
printf(" OBT: %u PKT: %u ATIME: %u Track %i Use track %i \n",OBT,PKT,atime,tr,usetrack); |
68 |
printf(" interplane [number of available dE/dx before interaction]:....... %i\n",interplane); |
69 |
printf(" ethr [threshold used to determine interplane]:................... %f \n",ethr); |
70 |
printf(" dedx1 [dE/dx from the first calorimeter plane]:.................. %f \n",dedx1); |
71 |
printf(" stdedx1 [dE/dx from the first calorimeter plane standalone]:..... %f \n",stdedx1); |
72 |
printf(" dedx3 [dE/dx (average) if the first 3 Si planes]:................ %f \n",dedx3); |
73 |
printf(" multhit [true if interplane determined by multiple hits]:........ %i \n",multhit); |
74 |
printf(" gap [true if interplane determined by a gap]:.................... %i \n",gap); |
75 |
printf(" preq [total energy in MIP before the interaction plane]:......... %f \n",preq); |
76 |
printf(" postq [total energy in MIP after the interaction plane]:......... %f \n",postq); |
77 |
printf(" qpremean [truncated mean using 3 planes and 3 strips]:........... %f \n",qpremean); |
78 |
printf(" N [no of used plane]:............................................ %i \n",N); |
79 |
printf(" R [no strip used per plane ]:.................................... %i \n",R); |
80 |
printf(" qpremeanN [truncated mean using N planes and R strips]:.......... %f \n",qpremeanN); |
81 |
printf(" qNmin1 [truncated mean using N-1 planes and R strips]: .......... %f \n",qNmin1); |
82 |
printf(" maxrel [dE/dx of strip with maximum release (I plane)]:.......... %f \n",maxrel); |
83 |
printf(" ZCalo_maxrel_b [Z from maximum release in I Calo plane vs beta].. %f \n",ZCalo_maxrel_b); |
84 |
printf(" ZCalo_dedx_b [Z from dedx in I Calo plane vs beta].. ............ %f \n",ZCalo_dedx_b); |
85 |
printf(" ZCalo_dedx_defl [Z from dedx in I Calo plane vs deflection....... %f \n",ZCalo_dedx_defl); |
86 |
printf(" ZCalo_Nmin1_defl [Z from truncated mean (N-1 pl) vs deflection].. %f \n",ZCalo_Nmin1_defl); |
87 |
printf("========================================================================\n"); |
88 |
// |
89 |
}; |
90 |
|
91 |
void CaloNuclei::Delete(){ |
92 |
Clear(); |
93 |
//delete this; |
94 |
}; |
95 |
|
96 |
|
97 |
void CaloNuclei::Process(){ |
98 |
Process(0); |
99 |
}; |
100 |
|
101 |
void CaloNuclei::Process(Int_t ntr){ |
102 |
// |
103 |
if ( !L2 ){ |
104 |
printf(" ERROR: cannot find PamLevel2 object, use the correct constructor or check your program!\n"); |
105 |
printf(" ERROR: CaloNuclei variables not filled \n"); |
106 |
return; |
107 |
}; |
108 |
// |
109 |
Bool_t newentry = false; |
110 |
// |
111 |
if ( L2->IsORB() ){ |
112 |
if ( L2->GetOrbitalInfo()->pkt_num != PKT || L2->GetOrbitalInfo()->OBT != OBT || L2->GetOrbitalInfo()->absTime != atime || ntr != sntr ){ |
113 |
newentry = true; |
114 |
OBT = L2->GetOrbitalInfo()->OBT; |
115 |
PKT = L2->GetOrbitalInfo()->pkt_num; |
116 |
atime = L2->GetOrbitalInfo()->absTime; |
117 |
sntr = ntr; |
118 |
}; |
119 |
} else { |
120 |
newentry = true; |
121 |
}; |
122 |
// |
123 |
if ( !newentry ) return; |
124 |
// |
125 |
tr = ntr; |
126 |
// |
127 |
if ( debug ) printf(" Processing event at OBT %u PKT %u time %u \n",OBT,PKT,atime); |
128 |
// |
129 |
Clear(); |
130 |
// |
131 |
if ( debug ) printf(" Always calculate stdedx1 \n"); |
132 |
// |
133 |
// Always calculate stdedx1 and maxrel |
134 |
// |
135 |
Int_t cont=0; |
136 |
Int_t view = 0; |
137 |
Int_t plane = 0; |
138 |
Int_t strip = 0; |
139 |
Int_t indx = 0; |
140 |
Float_t vfpl[96]; |
141 |
Int_t stfpl[96]; |
142 |
memset(vfpl, 0, 96*sizeof(Float_t)); |
143 |
memset(stfpl, 0, 96*sizeof(Int_t)); |
144 |
Float_t mip = 0.; |
145 |
for ( Int_t i=0; i<L2->GetCaloLevel1()->istrip; i++ ){ |
146 |
// |
147 |
mip = L2->GetCaloLevel1()->DecodeEstrip(i,view,plane,strip); |
148 |
// |
149 |
// put in vfpl vector the energy release on the first plane |
150 |
// |
151 |
if ( strip != -1 && view == 1 && plane == 0 ) { |
152 |
stfpl[indx] = strip; |
153 |
vfpl[indx] = mip; |
154 |
indx++; |
155 |
}; |
156 |
// |
157 |
}; |
158 |
// |
159 |
if ( debug ) printf(" find energy released along the strip of maximum on the first plane and on the two neighbour strips \n"); |
160 |
// |
161 |
// find energy released along the strip of maximum on the first plane and on the two neighbour strips |
162 |
// |
163 |
if ( indx > 0 ){ |
164 |
Int_t mindx = (Int_t)TMath::LocMax(indx,vfpl); |
165 |
for (Int_t ii=0; ii<indx; ii++){ |
166 |
if ( stfpl[ii] == stfpl[mindx] ) stdedx1 += vfpl[ii]; |
167 |
if ( (mindx-1)>=0 && stfpl[ii] == (stfpl[mindx]-1) ) stdedx1 += vfpl[ii]; |
168 |
if ( (mindx+1)<96 && stfpl[ii] == (stfpl[mindx]+1) ) stdedx1 += vfpl[ii]; |
169 |
// if ( (mindx-1)>=0 && stfpl[ii] == stfpl[mindx-1] ) stdedx1 += vfpl[ii]; |
170 |
// if ( (mindx+1)<96 && stfpl[ii] == stfpl[mindx+1] ) stdedx1 += vfpl[ii]; |
171 |
}; |
172 |
maxrel = vfpl[mindx]; |
173 |
} else { |
174 |
stdedx1 = 0.; |
175 |
maxrel = 0.; |
176 |
}; |
177 |
// cout<<stdedx1<<" "<<maxrel<<"\n"; |
178 |
// |
179 |
if ( debug ) printf(" if ( !usetrack ) return: usetrack %i ntr %i \n",usetrack,ntr); |
180 |
// |
181 |
// |
182 |
// if ( !usetrack ) return; |
183 |
// |
184 |
PamTrack *ptrack = 0; |
185 |
CaloTrkVar *track = 0; |
186 |
// |
187 |
if ( usetrack ){ |
188 |
if ( ntr >= 0 ){ |
189 |
ptrack = L2->GetTrack(ntr); |
190 |
if ( ptrack ) track = ptrack->GetCaloTrack(); |
191 |
} else { |
192 |
track = L2->GetCaloStoredTrack(ntr); |
193 |
}; |
194 |
// |
195 |
if ( !track && ntr >= 0 ){ |
196 |
printf(" ERROR: cannot find any track!\n"); |
197 |
printf(" ERROR: CaloNuclei variables not completely filled \n"); |
198 |
return; |
199 |
}; |
200 |
} else { |
201 |
if ( ntr >= 0 ){ |
202 |
if ( debug ) printf(" ERROR: you asked not to use a track but you are looking for track number %i !\n",ntr); |
203 |
if ( debug ) printf(" ERROR: CaloNuclei variables not completely filled \n"); |
204 |
return; |
205 |
}; |
206 |
}; |
207 |
// |
208 |
// Float_t defethr = 6. * 0.90; |
209 |
Float_t defethr = 6.25; // = (sqrt(9) - 0.5) ** 2.; |
210 |
// |
211 |
// Calculate dedx1 and dedx3 |
212 |
// |
213 |
for ( Int_t i=0; i<L2->GetCaloLevel1()->istrip; i++ ){ |
214 |
// |
215 |
mip = L2->GetCaloLevel1()->DecodeEstrip(i,view,plane,strip); |
216 |
// |
217 |
if ( ntr >= 0 ){ |
218 |
// |
219 |
if ( strip != -1 && |
220 |
view == 1 && |
221 |
plane == 0 && |
222 |
( strip == (track->tibar[0][1]-1) || strip == (track->tibar[0][1]-2) || strip == (track->tibar[0][1]) ) |
223 |
&& true ){ |
224 |
dedx1 += mip; |
225 |
}; |
226 |
if ( strip != -1 && |
227 |
(( view == 1 && ( plane == 0 || plane == 1 ) ) || |
228 |
( view == 0 && plane == 0 )) && |
229 |
(( view == 0 && ( strip == track->tibar[0][0] || strip == (track->tibar[0][0]-1) || strip == (track->tibar[0][0]-2) )) || |
230 |
( view == 1 && ( strip == track->tibar[0][1] || strip == (track->tibar[0][1]-1) || strip == (track->tibar[0][1]-2) )) || |
231 |
( view == 1 && ( strip == track->tibar[1][1] || strip == (track->tibar[1][1]-1) || strip == (track->tibar[1][1]-2) ))) && |
232 |
true ){ |
233 |
dedx3 += mip; |
234 |
}; |
235 |
} else { |
236 |
// |
237 |
if ( strip != -1 && |
238 |
view == 1 && |
239 |
plane == 0 && |
240 |
( strip == (L2->GetCaloLevel2()->cibar[0][1]-1) || strip == (L2->GetCaloLevel2()->cibar[0][1]-2) || strip == (L2->GetCaloLevel2()->cibar[0][1]) ) |
241 |
&& true ){ |
242 |
dedx1 += mip; |
243 |
}; |
244 |
if ( strip != -1 && |
245 |
(( view == 1 && ( plane == 0 || plane == 1 ) ) || |
246 |
( view == 0 && plane == 0 )) && |
247 |
(( view == 0 && ( strip == L2->GetCaloLevel2()->cibar[0][0] || strip == (L2->GetCaloLevel2()->cibar[0][0]-1) || strip == (L2->GetCaloLevel2()->cibar[0][0]-2) )) || |
248 |
( view == 1 && ( strip == L2->GetCaloLevel2()->cibar[0][1] || strip == (L2->GetCaloLevel2()->cibar[0][1]-1) || strip == (L2->GetCaloLevel2()->cibar[0][1]-2) )) || |
249 |
( view == 1 && ( strip == L2->GetCaloLevel2()->cibar[1][1] || strip == (L2->GetCaloLevel2()->cibar[1][1]-1) || strip == (L2->GetCaloLevel2()->cibar[1][1]-2) ))) && |
250 |
true ){ |
251 |
dedx3 += mip; |
252 |
}; |
253 |
}; |
254 |
// |
255 |
}; |
256 |
// |
257 |
dedx3 /= 3.; |
258 |
// Float_t mesethr = dedx1 * 0.90; |
259 |
Float_t mesethr = 0.; |
260 |
if ( dedx1 > 0. ) mesethr = (sqrt(dedx1) - 0.50)*(sqrt(dedx1) - 0.50); |
261 |
Bool_t aldone = false; |
262 |
// |
263 |
retry: |
264 |
// |
265 |
if ( debug ) printf("retry\n"); |
266 |
// |
267 |
interplane = 0; |
268 |
// |
269 |
ethr = TMath::Max(defethr,mesethr); |
270 |
// |
271 |
// Find the interaction plane "interplane" |
272 |
// |
273 |
Int_t gapth = 3; |
274 |
Int_t nhit[2] = {0,0}; |
275 |
Int_t splane[2] = {-1,-1}; |
276 |
Int_t sview[2] = {-1,-1}; |
277 |
Int_t interpl[2] = {-1,-1}; |
278 |
Int_t interv[2] = {-1,-1}; |
279 |
Bool_t wmulthit[2] = {false,false}; |
280 |
Bool_t wgap[2] = {false,false}; |
281 |
Int_t ii = 0; |
282 |
while ( ii<L2->GetCaloLevel1()->istrip ){ |
283 |
// |
284 |
mip = L2->GetCaloLevel1()->DecodeEstrip(ii,view,plane,strip); |
285 |
// |
286 |
if ( ntr >= 0 ){ |
287 |
if ( strip != -1 && mip > ethr && !wmulthit[view] && !wgap[view] && |
288 |
( strip == (track->tibar[plane][view]-1) || strip == (track->tibar[plane][view]-2) || strip == (track->tibar[plane][view]) ) |
289 |
&& true ){ |
290 |
if ( debug ) printf(" inside loop: ii %i mip %f view %i plane %i strip %i tibar %i nhit %i splane %i sview %i \n",ii,mip,view,plane,strip,track->tibar[plane][view]-1,nhit[view],splane[view],sview[view]); |
291 |
interpl[view] = plane; |
292 |
interv[view] = view; |
293 |
if ( splane[view] != plane || sview[view] != view ){ |
294 |
if ( nhit[view] > 1 ){ |
295 |
wmulthit[view] = true; |
296 |
// if ( splane[view] == -1 ) splane[view] = 0; // |
297 |
// if ( sview[view] == -1 ) sview[view] = view; // |
298 |
interpl[view] = splane[view]; |
299 |
interv[view] = sview[view]; |
300 |
}; |
301 |
if ( plane > splane[view]+gapth ){ |
302 |
wgap[view] = true; |
303 |
// if ( splane[view] == -1 ) splane[view] = 0;// |
304 |
// if ( sview[view] == -1 ) sview[view] = view; // |
305 |
interpl[view] = splane[view]; |
306 |
interv[view] = sview[view]; |
307 |
}; |
308 |
splane[view] = plane; |
309 |
sview[view] = view; |
310 |
nhit[view] = 1; |
311 |
} else { |
312 |
nhit[view]++; |
313 |
}; |
314 |
}; |
315 |
} else { |
316 |
if ( strip != -1 && mip > ethr && !wmulthit[view] && !wgap[view] && |
317 |
( strip == (L2->GetCaloLevel2()->cibar[plane][view]-1) || strip == (L2->GetCaloLevel2()->cibar[plane][view]-2) || strip == (L2->GetCaloLevel2()->cibar[plane][view]) ) |
318 |
&& true ){ |
319 |
if ( debug ) printf(" inside loop: ii %i mip %f view %i plane %i strip %i cibar %i nhit %i splane %i sview %i \n",ii,mip,view,plane,strip,L2->GetCaloLevel2()->cibar[plane][view]-1,nhit[view],splane[view],sview[view]); |
320 |
interpl[view] = plane; |
321 |
interv[view] = view; |
322 |
if ( splane[view] != plane || sview[view] != view ){ |
323 |
if ( nhit[view] > 1 ){ |
324 |
wmulthit[view] = true; |
325 |
// if ( splane[view] == -1 ) splane[view] = 0; // |
326 |
// if ( sview[view] == -1 ) sview[view] = view; // |
327 |
interpl[view] = splane[view]; |
328 |
interv[view] = sview[view]; |
329 |
}; |
330 |
if ( plane > splane[view]+gapth ){ |
331 |
wgap[view] = true; |
332 |
// if ( splane[view] == -1 ) splane[view] = 0;// |
333 |
// if ( sview[view] == -1 ) sview[view] = view; // |
334 |
interpl[view] = splane[view]; |
335 |
interv[view] = sview[view]; |
336 |
}; |
337 |
splane[view] = plane; |
338 |
sview[view] = view; |
339 |
nhit[view] = 1; |
340 |
} else { |
341 |
nhit[view]++; |
342 |
}; |
343 |
}; |
344 |
}; |
345 |
// |
346 |
ii++; |
347 |
// |
348 |
}; |
349 |
// |
350 |
if (debug ) printf("conversion interpl %i interv %i multhit %i interplane %i \n",interpl[0],interv[0],multhit,interplane); |
351 |
Int_t winterplane[2] = {-1,-1}; |
352 |
// |
353 |
for ( Int_t view = 0; view < 2; view++){ |
354 |
// |
355 |
if ( nhit[view] > 1 && !wmulthit[view] && !wgap[view] ){ |
356 |
wmulthit[view] = true; |
357 |
interpl[view] = splane[view]; |
358 |
interv[view] = sview[view]; |
359 |
}; |
360 |
// |
361 |
if ( wmulthit[view] ) multhit = true; |
362 |
if ( wgap[view] ) gap = true; |
363 |
// |
364 |
// convert view and plane number of interaction plane into number of available dE/dx measurements before the interaction plane |
365 |
// |
366 |
if ( interpl[view] >= 0 ) { |
367 |
if ( interv[view] == 0 ){ |
368 |
winterplane[view] = (1 + interpl[view]) * 2; |
369 |
} else { |
370 |
winterplane[view] = (1 + interpl[view]) + (1 + interpl[view] - 1); |
371 |
}; |
372 |
if ( wmulthit[view] ) winterplane[view]--; |
373 |
}; |
374 |
}; |
375 |
if ( winterplane[0] > 0 && winterplane[1] > 0 ){ |
376 |
if ( multhit ){ |
377 |
interplane = TMath::Min(winterplane[0],winterplane[1]); |
378 |
} else { |
379 |
interplane = TMath::Max(winterplane[0],winterplane[1]); |
380 |
}; |
381 |
} else { |
382 |
if ( !winterplane[0] || !winterplane[1] ){ |
383 |
interplane = 0; |
384 |
} else { |
385 |
interplane = TMath::Max(winterplane[0],winterplane[1]); |
386 |
}; |
387 |
}; |
388 |
// |
389 |
if ( debug ) printf("2conversion interpl %i interv %i multhit %i interplane %i \n",interpl[1],interv[1],multhit,interplane); |
390 |
if ( debug ) printf("3conversion winterpl0 %i winterpl1 %i \n",winterplane[0],winterplane[1]); |
391 |
// |
392 |
Int_t ipl = 0; |
393 |
if ( interplane > 0 ){ |
394 |
// |
395 |
// Calculate preq, postq, qpremean |
396 |
// |
397 |
cont++; |
398 |
ii = 0; |
399 |
Int_t ind = -1; |
400 |
Int_t qsplane = -1; |
401 |
Int_t qsview = -1; |
402 |
Int_t ind2 = -1; |
403 |
Int_t qsplane2 = -1; |
404 |
Int_t qsview2 = -1; |
405 |
Float_t qme[200]; |
406 |
memset(qme,0,200*sizeof(Float_t)); |
407 |
Float_t qme2[2112]; |
408 |
memset(qme2,0,2112*sizeof(Float_t)); |
409 |
// |
410 |
while ( ii<L2->GetCaloLevel1()->istrip ){ |
411 |
// |
412 |
mip = L2->GetCaloLevel1()->DecodeEstrip(ii,view,plane,strip); |
413 |
// |
414 |
if ( strip != -1 ){ |
415 |
if ( view == 0 ){ |
416 |
ipl = (1 + plane) * 2; |
417 |
} else { |
418 |
ipl = (1 + plane) + (1 + plane - 1 ); |
419 |
}; |
420 |
if ( ipl > interplane ){ |
421 |
postq += mip; |
422 |
} else { |
423 |
preq += mip; |
424 |
if ( ntr >= 0 ){ |
425 |
if ( strip == (track->tibar[plane][view]-1) || strip == (track->tibar[plane][view]-2) || strip == (track->tibar[plane][view]) ){ |
426 |
if ( qsplane != plane || qsview != view ){ |
427 |
qsplane = plane; |
428 |
qsview = view; |
429 |
ind++; |
430 |
if ( debug && ind > 199 ) printf(" AAAGH!! \n"); |
431 |
qme[ind] = 0.; |
432 |
}; |
433 |
qme[ind] += mip; |
434 |
}; |
435 |
for ( Int_t ns = 0; ns < R ; ns++){ |
436 |
Int_t ms = track->tibar[plane][view] - 1 - ns + (R - 1)/2; |
437 |
if ( strip == ms ){ |
438 |
if ( qsplane2 != plane || qsview2 != view ){ |
439 |
qsplane2 = plane; |
440 |
qsview2 = view; |
441 |
ind2++; |
442 |
if ( debug && ind2 > 2112 ) printf(" AAAGH!! \n"); |
443 |
qme2[ind2] = 0.; |
444 |
}; |
445 |
qme2[ind2] += mip; |
446 |
}; |
447 |
}; |
448 |
} else { |
449 |
if ( strip == (L2->GetCaloLevel2()->cibar[plane][view]-1) || strip == (L2->GetCaloLevel2()->cibar[plane][view]-2) || strip == (L2->GetCaloLevel2()->cibar[plane][view]) ){ |
450 |
if ( qsplane != plane || qsview != view ){ |
451 |
qsplane = plane; |
452 |
qsview = view; |
453 |
ind++; |
454 |
if ( debug && ind > 199 ) printf(" AAAGH!! \n"); |
455 |
qme[ind] = 0.; |
456 |
}; |
457 |
qme[ind] += mip; |
458 |
}; |
459 |
for ( Int_t ns = 0; ns < R ; ns++){ |
460 |
Int_t ms = L2->GetCaloLevel2()->cibar[plane][view] - 1 - ns + (R - 1)/2; |
461 |
if ( strip == ms ){ |
462 |
if ( qsplane2 != plane || qsview2 != view ){ |
463 |
qsplane2 = plane; |
464 |
qsview2 = view; |
465 |
ind2++; |
466 |
if ( debug && ind2 > 2112 ) printf(" AAAGH!! \n"); |
467 |
qme2[ind2] = 0.; |
468 |
}; |
469 |
qme2[ind2] += mip; |
470 |
}; |
471 |
}; |
472 |
}; |
473 |
}; |
474 |
// |
475 |
}; |
476 |
// |
477 |
ii++; |
478 |
// |
479 |
}; |
480 |
|
481 |
|
482 |
// |
483 |
// here we must calculate qpremean, order vector qme, select 3 lowest measurements and caculate the mean... |
484 |
// |
485 |
if ( debug ){ |
486 |
for (Int_t l=0; l < interplane; l++){ |
487 |
printf(" qme[%i] = %f \n",l,qme[l]); |
488 |
}; |
489 |
}; |
490 |
// |
491 |
Long64_t work[200]; |
492 |
ind = 0; |
493 |
Int_t l = 0; |
494 |
Int_t RN = 0; |
495 |
Float_t qm = 0.; |
496 |
Float_t qm2 = 0.; |
497 |
// |
498 |
Float_t qmt = ethr*0.8; // *0.9 |
499 |
// |
500 |
Int_t uplim = TMath::Max(3,N); |
501 |
Int_t uplim2 = interplane-1; |
502 |
// |
503 |
while ( l < uplim && ind < interplane ){ |
504 |
qm = TMath::KOrdStat(interplane,qme,ind,work); |
505 |
if ( qm >= qmt ){ |
506 |
if ( l < 3 ){ |
507 |
qpremean += qm; |
508 |
RN++; |
509 |
}; |
510 |
l++; |
511 |
if ( debug ) printf(" value no %i qm %f qmt %f \n",l,qm,qmt); |
512 |
}; |
513 |
ind++; |
514 |
}; |
515 |
// |
516 |
qpremean /= (Float_t)RN; |
517 |
ind = 0; |
518 |
l = 0; |
519 |
RN = 0; |
520 |
while ( l < uplim && ind < interplane ){ |
521 |
qm2 = TMath::KOrdStat(interplane,qme2,ind,work); |
522 |
if ( qm2 >= qmt ){ |
523 |
if ( l < N ){ |
524 |
qpremeanN += qm2; |
525 |
RN++; |
526 |
}; |
527 |
l++; |
528 |
if ( debug ) printf(" qm2 value no %i qm %f qmt %f RN %i \n",l,qm2,qmt,RN); |
529 |
}; |
530 |
ind++; |
531 |
}; |
532 |
//////////////////////////////////// |
533 |
//to calculate qNmin1/////////////// |
534 |
/////////////////////////////////// |
535 |
//values under threshold |
536 |
qm2=0; |
537 |
ind = 0; |
538 |
l = 0; |
539 |
RN = 0; |
540 |
S2=0; |
541 |
while ( l < uplim2 && ind<interplane){ |
542 |
qm2 = TMath::KOrdStat(interplane,qme2,ind,work); |
543 |
if ( qm2 < qmt ) S2++; |
544 |
ind++; |
545 |
} |
546 |
qm2=0; |
547 |
ind = 0; |
548 |
l = 0; |
549 |
RN = 0; |
550 |
while ( l < uplim2 && ind < interplane ){ |
551 |
qm2 = TMath::KOrdStat(interplane,qme2,ind,work); |
552 |
if ( qm2 >= qmt ){ |
553 |
if ( l < (interplane - 1 - S2)){ |
554 |
qNmin1_w += qm2; |
555 |
RN++; |
556 |
}; |
557 |
l++; |
558 |
if ( debug ) printf(" qm2 value no %i qm %f qmt %f RN %i \n",l,qm2,qmt,RN); |
559 |
}; |
560 |
ind++; |
561 |
}; |
562 |
qpremeanN /= (Float_t)RN; |
563 |
qNmin1_w /= (Float_t)RN; |
564 |
UN = RN; |
565 |
///////set qNmin1 definition/////////// |
566 |
if (interplane==1 || interplane==2){ |
567 |
if (dedx1>0) qNmin1=dedx1; |
568 |
else if (stdedx1>0) qNmin1=stdedx1; |
569 |
} |
570 |
else if (interplane > 2){ |
571 |
qNmin1 = qNmin1_w; |
572 |
} |
573 |
//////////////////////////////////// |
574 |
////////////////////////////////// |
575 |
// |
576 |
if ( debug ) printf(" charge is %f \n",sqrt(qpremean)); |
577 |
// |
578 |
if ( mesethr != ethr && interplane >= 3 && !aldone ){ |
579 |
Float_t mesethr2 = (sqrt(qpremean) - 0.50)*(sqrt(qpremean) - 0.50); |
580 |
if ( mesethr2 < mesethr*0.90 ){ |
581 |
mesethr = (sqrt(dedx1) - 0.25)*(sqrt(dedx1) - 0.25); |
582 |
} else { |
583 |
mesethr = mesethr2; |
584 |
}; |
585 |
aldone = true; |
586 |
if ( mesethr > defethr ){ |
587 |
interplane = 0; |
588 |
preq = 0.; |
589 |
postq = 0.; |
590 |
qpremean = 0.; |
591 |
qpremeanN = 0.; |
592 |
qNmin1 = 0; |
593 |
multhit = false; |
594 |
gap = false; |
595 |
goto retry; |
596 |
}; |
597 |
}; |
598 |
}; |
599 |
|
600 |
|
601 |
|
602 |
//======================================================================= |
603 |
//=========== charge determination stdedx1 vs. beta =============== |
604 |
//====================== Siegen method =========================== |
605 |
//======================================================================= |
606 |
|
607 |
// Data from file Calo_Bands_New_7.dat |
608 |
Float_t C0[9] = {0 , 1 , 2 , 3 , 4 , 5 , 6 , 8 , 90 }; |
609 |
Float_t B0[9] = {0 , -2.03769 , 7.61781 , 19.7098 , 60.5598 , 57.9226 , 14.8368 , -1358.83 , 8200 }; |
610 |
Float_t B1[9] = {0 , 0.0211274 , 9.32057e-010 , 4.47241e-07 , 1.44826e-06 , 2.6189e-05 , 0.00278178 , 55.5445 , 0 }; |
611 |
Float_t B2[9] = {0 , -3.91742 , -20.0359 , -16.3043 , -16.9471 , -14.4622 , -10.9594 , -2.38014 , 0 }; |
612 |
Float_t B3[9] = {0 , 11.1469 , -6.63105 , -27.8834 , -132.044 , -55.341 , 173.25 , 4115 , 0 }; |
613 |
Float_t B4[9] = {0 , -14.3465 , -0.485215 , 18.8122 , 117.533 , -14.0898 , -325.269 , -4388.89 , 0 }; |
614 |
Float_t B5[9] = {0 , 6.24281 , 3.96018 , 0 , -26.1881 , 42.9731 , 182.697 , 1661.01 , 0 }; |
615 |
|
616 |
Float_t x1[9],y1[9]; |
617 |
Int_t n1 = 9; |
618 |
|
619 |
Float_t charge = 1000.; |
620 |
Float_t beta = 100.; |
621 |
|
622 |
//------- First try track dependent beta |
623 |
if( L2->GetTrkLevel2()->GetNTracks()>=1 ){ |
624 |
PamTrack *TRKtrack = L2->GetTrack(0); |
625 |
if (fabs(TRKtrack->GetToFTrack()->beta[12]) < 100.) beta = fabs(TRKtrack->GetToFTrack()->beta[12]); |
626 |
} |
627 |
//------- If no beta found, try standalone beta |
628 |
if (beta == 100.) { |
629 |
ToFTrkVar *ttrack = L2->GetToFStoredTrack(-1); |
630 |
beta = fabs(ttrack->beta[12]); |
631 |
} |
632 |
|
633 |
if (beta<2.) { // it makes no sense to allow beta=5 or so... |
634 |
|
635 |
Float_t mip=0; |
636 |
mip=stdedx1 ; |
637 |
|
638 |
if (mip>0) { |
639 |
|
640 |
Float_t betahelp = pow(beta, 1.8); |
641 |
Float_t ym = mip*betahelp; |
642 |
Float_t xb = beta; |
643 |
|
644 |
for ( Int_t jj=0; jj<9; jj++ ){ |
645 |
x1[jj] = B0[jj]+B1[jj]*pow(xb,B2[jj])+B3[jj]*xb+B4[jj]*xb*xb+B5[jj]*xb*xb*xb; |
646 |
y1[jj] = C0[jj]*C0[jj] ; |
647 |
} |
648 |
|
649 |
TGraph *gr1 = new TGraph(n1,x1,y1); |
650 |
TSpline3 *spl1 = new TSpline3("grs",gr1); // use a cubic spline |
651 |
Float_t chelp = spl1->Eval(ym); |
652 |
charge = TMath::Sqrt(chelp); |
653 |
gr1->Delete(); |
654 |
spl1->Delete(); |
655 |
|
656 |
} // if (mip1>0) |
657 |
} // beta < 100 |
658 |
|
659 |
|
660 |
charge_siegen1 = charge; |
661 |
|
662 |
//======================= end charge Siegen =========================== |
663 |
|
664 |
|
665 |
// //======================================================================= |
666 |
// //=========== charge determination Maximum release vs. beta =============== |
667 |
// //====================== Rome method =========================== |
668 |
// //======================================================================= |
669 |
|
670 |
Float_t D0[9] = {0, 1, 2, 3 , 4 , 5 , 6, 8, 90}; |
671 |
Float_t E1[9] = {0, 500, 500, 923.553 , 659.842, 1113.97, 3037.25, 3034.84, 0}; |
672 |
Float_t E2[9] = {0, 11.0, 7.5, 6.92574 , 5.08865, 5.29349, 6.41442, 5.52969, 0}; |
673 |
Float_t E3[9] = {0, 1.2, 4, 9.7227 , 13.18, 23.5444, 38.2057, 63.6784, 80000}; |
674 |
|
675 |
Float_t xx1[9],yy1[9]; |
676 |
n1 = 9; |
677 |
|
678 |
charge = 1000.; |
679 |
mip=0; |
680 |
|
681 |
|
682 |
if (beta<2.) { // it makes no sense to allow beta=5 or so... |
683 |
|
684 |
|
685 |
mip=maxrel; |
686 |
|
687 |
if (mip>0) { |
688 |
Float_t ym = mip; |
689 |
Float_t xb = beta; |
690 |
|
691 |
for ( Int_t jj=0; jj<n1; jj++ ){ |
692 |
xx1[jj] = E1[jj]*exp(-E2[jj]*xb)+E3[jj]; |
693 |
yy1[jj] = D0[jj]*D0[jj] ; |
694 |
} |
695 |
|
696 |
TGraph *gr1 = new TGraph(n1,xx1,yy1); |
697 |
TSpline3 *spl1 = new TSpline3("grs",gr1); // use a cubic spline |
698 |
Float_t chelp = spl1->Eval(ym); |
699 |
charge = TMath::Sqrt(chelp); |
700 |
gr1->Delete(); |
701 |
spl1->Delete(); |
702 |
|
703 |
|
704 |
} // if (mip1>0) |
705 |
} // beta < 100 |
706 |
|
707 |
|
708 |
ZCalo_maxrel_b = charge; |
709 |
|
710 |
//======================= end charge Rome: maxril vs beta =========================== |
711 |
|
712 |
|
713 |
|
714 |
// ======================================================================= |
715 |
// =========== charge determination dedx vs. beta =============== |
716 |
// ====================== Rome method =========================== |
717 |
// ======================================================================= |
718 |
|
719 |
Float_t F0[9] = {0., 1., 2., 3. ,4., 5. , 6., 8, 90}; |
720 |
Float_t G1[9] = {0, 500, 500, 642.935 , 848.684, 1346.05, 3238.82, 3468.6, 0}; |
721 |
Float_t G2[9] = {0, 11, 7.5, 6.2038 , 5.51723, 5.65265, 6.54089, 5.72723, 0}; |
722 |
Float_t G3[9] = {0, 1.2, 4, 9.2421 , 13.9858, 25.3912, 39.6332, 64.5674, 80000}; |
723 |
|
724 |
|
725 |
charge = 1000.; |
726 |
mip=0; |
727 |
|
728 |
|
729 |
if (beta<2.) { // it makes no sense to allow beta=5 or so... |
730 |
|
731 |
|
732 |
if( L2->GetTrkLevel2()->GetNTracks()>=1 ){ |
733 |
mip=dedx1; |
734 |
} |
735 |
if (mip==0) mip=stdedx1; |
736 |
|
737 |
|
738 |
if (mip>0) { |
739 |
|
740 |
Float_t ym = mip; |
741 |
Float_t xb = beta; |
742 |
|
743 |
for ( Int_t jj=0; jj<n1; jj++ ){ |
744 |
xx1[jj] = G1[jj]*exp(-G2[jj]*xb)+G3[jj]; |
745 |
yy1[jj] = F0[jj]*F0[jj] ; |
746 |
} |
747 |
|
748 |
TGraph *gr1 = new TGraph(n1,xx1,yy1); |
749 |
TSpline3 *spl1 = new TSpline3("grs",gr1); // use a cubic spline |
750 |
Float_t chelp = spl1->Eval(ym); |
751 |
charge = TMath::Sqrt(chelp); |
752 |
gr1->Delete(); |
753 |
spl1->Delete(); |
754 |
|
755 |
} //if (mip1>0) |
756 |
} //beta < 100 |
757 |
|
758 |
ZCalo_dedx_b = charge; |
759 |
|
760 |
//======================= end charge Rome: dedx vs beta =========================== |
761 |
|
762 |
|
763 |
//======================================================================= |
764 |
//=========== charge determination dedx vs. defl =============== |
765 |
//====================== Rome method =========================== |
766 |
//======================================================================= |
767 |
|
768 |
Float_t H0[9] = {0, 1, 2, 3 , 4 , 5 , 6, 8, 90 }; |
769 |
Float_t I1[9] = {0, 3.5, 40, 56.1019, 101.673, 109.225, 150.599, 388.531, 0}; |
770 |
Float_t I2[9] = {0, -1, -13.6, -12.5581, -22.5543, -15.9823, -28.2207, -93.6871, 0}; |
771 |
Float_t I3[9] = {0, 1, 5.3, 11.6218, 19.664, 32.1817, 45.7527, 84.5992, 80000}; |
772 |
|
773 |
|
774 |
charge = 1000.; |
775 |
mip=0; |
776 |
Float_t defl=0; |
777 |
|
778 |
|
779 |
if (beta<2.) { // it makes no sense to allow beta=5 or so... |
780 |
|
781 |
if( L2->GetTrkLevel2()->GetNTracks()>=1 ){ |
782 |
PamTrack *TRKtrack = L2->GetTrack(0); |
783 |
mip=dedx1; |
784 |
if (mip==0) mip=stdedx1; |
785 |
defl=TRKtrack->GetTrkTrack()->al[4]; |
786 |
|
787 |
|
788 |
if (mip>0 && defl<0.7 && defl>0) { |
789 |
|
790 |
Float_t ym = mip; |
791 |
Float_t xb = defl; |
792 |
|
793 |
for ( Int_t jj=0; jj<n1; jj++ ){ |
794 |
xx1[jj] = I1[jj]*xb*xb+I2[jj]*xb+I3[jj]; |
795 |
yy1[jj] = H0[jj]*H0[jj] ; |
796 |
} |
797 |
|
798 |
TGraph *gr1 = new TGraph(n1,xx1,yy1); |
799 |
TSpline3 *spl1 = new TSpline3("grs",gr1); // use a cubic spline |
800 |
Float_t chelp = spl1->Eval(ym); |
801 |
charge = TMath::Sqrt(chelp); |
802 |
gr1->Delete(); |
803 |
spl1->Delete(); |
804 |
|
805 |
} // if (mip1>0 && defl<0.5 && defl>0) |
806 |
}//Ntrack>=1 |
807 |
} //beta < 100 |
808 |
|
809 |
ZCalo_dedx_defl = charge; |
810 |
|
811 |
//======================= end charge Rome: dedx vs defl =========================== |
812 |
|
813 |
|
814 |
//============================================================================================ |
815 |
//=========== charge determination Truncated mean (N-1 planes) vs. defl =================== |
816 |
//================================ Rome method ======================================== |
817 |
//============================================================================================ |
818 |
|
819 |
Float_t L0[9] = {0, 1, 2, 3 , 4 , 5 , 6, 8, 90}; |
820 |
Float_t M1[9] = {0, 3.5, 27, 63.0145, 120.504, 173.663, 245.33, 236.517, 0}; |
821 |
Float_t M2[9] = {0, -1, -10.6, -15.005, -31.0635, -39.4988, -60.5011, -46.3992, 0}; |
822 |
Float_t M3[9] = {0, 1, 7, 12.5037, 22.8652, 35.2907, 51.4678, 86.4155, 80000}; |
823 |
|
824 |
charge = 1000.; |
825 |
mip=0; |
826 |
|
827 |
|
828 |
if (beta<2.) { // it makes no sense to allow beta=5 or so... |
829 |
|
830 |
if( L2->GetTrkLevel2()->GetNTracks()>=1 ){ |
831 |
mip=qNmin1; |
832 |
|
833 |
if (mip>0 && defl<0.7 && defl>0) { |
834 |
|
835 |
Float_t ym = mip; |
836 |
Float_t xb = defl; |
837 |
|
838 |
for ( Int_t jj=0; jj<n1; jj++ ){ |
839 |
xx1[jj] = M1[jj]*xb*xb+M2[jj]*xb+M3[jj]; |
840 |
yy1[jj] = L0[jj]*L0[jj] ; |
841 |
} |
842 |
|
843 |
TGraph *gr1 = new TGraph(n1,xx1,yy1); |
844 |
TSpline3 *spl1 = new TSpline3("grs",gr1); // use a cubic spline |
845 |
Float_t chelp = spl1->Eval(ym); |
846 |
charge = TMath::Sqrt(chelp); |
847 |
gr1->Delete(); |
848 |
spl1->Delete(); |
849 |
|
850 |
} // if (mip1>0 && defl<0.5 && defl>0) |
851 |
}//Ntrack>=1 |
852 |
} //beta < 100 |
853 |
|
854 |
ZCalo_Nmin1_defl = charge; |
855 |
|
856 |
//======================= end charge Rome: Nmin1 vs defl =========================== |
857 |
|
858 |
|
859 |
|
860 |
|
861 |
|
862 |
// |
863 |
if ( debug ) this->Print(); |
864 |
if ( debug ) printf(" esci \n"); |
865 |
// |
866 |
}; |