/[PAMELA software]/calo/flight/CaloNuclei/src/CaloNuclei.cpp
ViewVC logotype

Contents of /calo/flight/CaloNuclei/src/CaloNuclei.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.19 - (show annotations) (download)
Mon Dec 14 14:42:53 2009 UTC (15 years, 2 months ago) by mocchiut
Branch: MAIN
Changes since 1.18: +12 -0 lines
Do not use plane 18x by default

1 #include <CaloNuclei.h>
2 #include <TGraph.h>
3 #include <TSpline.h>
4 #include <TMVA/TSpline1.h>
5
6 //--------------------------------------
7 /**
8 * Default constructor
9 */
10 CaloNuclei::CaloNuclei(){
11 Clear();
12 };
13
14 CaloNuclei::CaloNuclei(PamLevel2 *l2p){
15 //
16 Clear();
17 //
18 L2 = l2p;
19 //
20 if ( !L2->IsORB() ) printf(" WARNING: OrbitalInfo Tree is needed, the plugin could not work properly without it \n");
21 //
22 OBT = 0;
23 PKT = 0;
24 atime = 0;
25 N = 5;
26 R = 3;
27 //
28 debug = false;
29 // debug = true;
30 usetrack = true;
31 usepl18x = false;
32 //
33 };
34
35 void CaloNuclei::Clear(){
36 //
37 UN = 0;
38 tr = 0;
39 sntr = 0;
40 interplane = 0;
41 preq = 0.;
42 postq = 0.;
43 stdedx1 = 0.;
44 ethr = 0.;
45 dedx1 = 0.;
46 dedx3 = 0.;
47 qpremean = 0.;
48 qpremeanN = 0.;
49 maxrel = 0;
50 qNmin1 = 0;
51 qNmin1_w = 0;
52 charge_siegen1 = 0;
53 ZCalo_maxrel_b = 0;
54 ZCalo_dedx_b = 0;
55 ZCalo_dedx_defl= 0;
56 ZCalo_Nmin1_defl= 0;
57 //
58 multhit = false;
59 gap = false;
60 //
61 };
62
63 void CaloNuclei::Print(){
64 //
65 Process();
66 //
67 printf("========================================================================\n");
68 printf(" OBT: %u PKT: %u ATIME: %u Track %i Use track %i \n",OBT,PKT,atime,tr,usetrack);
69 printf(" interplane [number of available dE/dx before interaction]:....... %i\n",interplane);
70 printf(" ethr [threshold used to determine interplane]:................... %f \n",ethr);
71 printf(" dedx1 [dE/dx from the first calorimeter plane]:.................. %f \n",dedx1);
72 printf(" stdedx1 [dE/dx from the first calorimeter plane standalone]:..... %f \n",stdedx1);
73 printf(" dedx3 [dE/dx (average) if the first 3 Si planes]:................ %f \n",dedx3);
74 printf(" multhit [true if interplane determined by multiple hits]:........ %i \n",multhit);
75 printf(" gap [true if interplane determined by a gap]:.................... %i \n",gap);
76 printf(" preq [total energy in MIP before the interaction plane]:......... %f \n",preq);
77 printf(" postq [total energy in MIP after the interaction plane]:......... %f \n",postq);
78 printf(" qpremean [truncated mean using 3 planes and 3 strips]:........... %f \n",qpremean);
79 printf(" N [no of used plane]:............................................ %i \n",N);
80 printf(" R [no strip used per plane ]:.................................... %i \n",R);
81 printf(" qpremeanN [truncated mean using N planes and R strips]:.......... %f \n",qpremeanN);
82 printf(" qNmin1 [truncated mean using N-1 planes and R strips]: .......... %f \n",qNmin1);
83 printf(" maxrel [dE/dx of strip with maximum release (I plane)]:.......... %f \n",maxrel);
84 printf(" ZCalo_maxrel_b [Z from maximum release in I Calo plane vs beta].. %f \n",ZCalo_maxrel_b);
85 printf(" ZCalo_dedx_b [Z from dedx in I Calo plane vs beta].. ............ %f \n",ZCalo_dedx_b);
86 printf(" ZCalo_dedx_defl [Z from dedx in I Calo plane vs deflection....... %f \n",ZCalo_dedx_defl);
87 printf(" ZCalo_Nmin1_defl [Z from truncated mean (N-1 pl) vs deflection].. %f \n",ZCalo_Nmin1_defl);
88 printf("========================================================================\n");
89 //
90 };
91
92 void CaloNuclei::Delete(){
93 Clear();
94 //delete this;
95 };
96
97
98 void CaloNuclei::Process(){
99 Process(0);
100 };
101
102 void CaloNuclei::Process(Int_t ntr){
103 //
104 if ( !L2 ){
105 printf(" ERROR: cannot find PamLevel2 object, use the correct constructor or check your program!\n");
106 printf(" ERROR: CaloNuclei variables not filled \n");
107 return;
108 };
109 //
110 Bool_t newentry = false;
111 //
112 if ( L2->IsORB() ){
113 if ( L2->GetOrbitalInfo()->pkt_num != PKT || L2->GetOrbitalInfo()->OBT != OBT || L2->GetOrbitalInfo()->absTime != atime || ntr != sntr ){
114 newentry = true;
115 OBT = L2->GetOrbitalInfo()->OBT;
116 PKT = L2->GetOrbitalInfo()->pkt_num;
117 atime = L2->GetOrbitalInfo()->absTime;
118 sntr = ntr;
119 };
120 } else {
121 newentry = true;
122 };
123 //
124 if ( !newentry ) return;
125 //
126 tr = ntr;
127 //
128 if ( debug ) printf(" Processing event at OBT %u PKT %u time %u \n",OBT,PKT,atime);
129 //
130 Clear();
131 //
132 if ( debug ) printf(" Always calculate stdedx1 \n");
133 //
134 // Always calculate stdedx1 and maxrel
135 //
136 Int_t cont=0;
137 Int_t view = 0;
138 Int_t plane = 0;
139 Int_t strip = 0;
140 Int_t indx = 0;
141 Float_t vfpl[96];
142 Int_t stfpl[96];
143 memset(vfpl, 0, 96*sizeof(Float_t));
144 memset(stfpl, 0, 96*sizeof(Int_t));
145 Float_t mip = 0.;
146 for ( Int_t i=0; i<L2->GetCaloLevel1()->istrip; i++ ){
147 //
148 mip = L2->GetCaloLevel1()->DecodeEstrip(i,view,plane,strip);
149 //
150 if ( !usepl18x && view==0 && plane==18 ) mip = 0.;
151 //
152 //
153 // put in vfpl vector the energy release on the first plane
154 //
155 if ( strip != -1 && view == 1 && plane == 0 ) {
156 stfpl[indx] = strip;
157 vfpl[indx] = mip;
158 indx++;
159 };
160 //
161 };
162 //
163 if ( debug ) printf(" find energy released along the strip of maximum on the first plane and on the two neighbour strips \n");
164 //
165 // find energy released along the strip of maximum on the first plane and on the two neighbour strips
166 //
167 if ( indx > 0 ){
168 Int_t mindx = (Int_t)TMath::LocMax(indx,vfpl);
169 for (Int_t ii=0; ii<indx; ii++){
170 if ( stfpl[ii] == stfpl[mindx] ) stdedx1 += vfpl[ii];
171 if ( (mindx-1)>=0 && stfpl[ii] == (stfpl[mindx]-1) ) stdedx1 += vfpl[ii];
172 if ( (mindx+1)<96 && stfpl[ii] == (stfpl[mindx]+1) ) stdedx1 += vfpl[ii];
173 // if ( (mindx-1)>=0 && stfpl[ii] == stfpl[mindx-1] ) stdedx1 += vfpl[ii];
174 // if ( (mindx+1)<96 && stfpl[ii] == stfpl[mindx+1] ) stdedx1 += vfpl[ii];
175 };
176 maxrel = vfpl[mindx];
177 } else {
178 stdedx1 = 0.;
179 maxrel = 0.;
180 };
181 // cout<<stdedx1<<" "<<maxrel<<"\n";
182 //
183 if ( debug ) printf(" if ( !usetrack ) return: usetrack %i ntr %i \n",usetrack,ntr);
184 //
185 //
186 // if ( !usetrack ) return;
187 //
188 PamTrack *ptrack = 0;
189 CaloTrkVar *track = 0;
190 //
191 if ( usetrack ){
192 if ( ntr >= 0 ){
193 ptrack = L2->GetTrack(ntr);
194 if ( ptrack ) track = ptrack->GetCaloTrack();
195 } else {
196 track = L2->GetCaloStoredTrack(ntr);
197 };
198 //
199 if ( !track && ntr >= 0 ){
200 printf(" ERROR: cannot find any track!\n");
201 printf(" ERROR: CaloNuclei variables not completely filled \n");
202 return;
203 };
204 } else {
205 if ( ntr >= 0 ){
206 if ( debug ) printf(" ERROR: you asked not to use a track but you are looking for track number %i !\n",ntr);
207 if ( debug ) printf(" ERROR: CaloNuclei variables not completely filled \n");
208 return;
209 };
210 };
211 //
212 // Float_t defethr = 6. * 0.90;
213 Float_t defethr = 6.25; // = (sqrt(9) - 0.5) ** 2.;
214 //
215 // Calculate dedx1 and dedx3
216 //
217 for ( Int_t i=0; i<L2->GetCaloLevel1()->istrip; i++ ){
218 //
219 mip = L2->GetCaloLevel1()->DecodeEstrip(i,view,plane,strip);
220 //
221 if ( !usepl18x && view==0 && plane==18 ) mip = 0.;
222 //
223 if ( ntr >= 0 ){
224 //
225 if ( strip != -1 &&
226 view == 1 &&
227 plane == 0 &&
228 ( strip == (track->tibar[0][1]-1) || strip == (track->tibar[0][1]-2) || strip == (track->tibar[0][1]) )
229 && true ){
230 dedx1 += mip;
231 };
232 if ( strip != -1 &&
233 (( view == 1 && ( plane == 0 || plane == 1 ) ) ||
234 ( view == 0 && plane == 0 )) &&
235 (( view == 0 && ( strip == track->tibar[0][0] || strip == (track->tibar[0][0]-1) || strip == (track->tibar[0][0]-2) )) ||
236 ( view == 1 && ( strip == track->tibar[0][1] || strip == (track->tibar[0][1]-1) || strip == (track->tibar[0][1]-2) )) ||
237 ( view == 1 && ( strip == track->tibar[1][1] || strip == (track->tibar[1][1]-1) || strip == (track->tibar[1][1]-2) ))) &&
238 true ){
239 dedx3 += mip;
240 };
241 } else {
242 //
243 if ( strip != -1 &&
244 view == 1 &&
245 plane == 0 &&
246 ( strip == (L2->GetCaloLevel2()->cibar[0][1]-1) || strip == (L2->GetCaloLevel2()->cibar[0][1]-2) || strip == (L2->GetCaloLevel2()->cibar[0][1]) )
247 && true ){
248 dedx1 += mip;
249 };
250 if ( strip != -1 &&
251 (( view == 1 && ( plane == 0 || plane == 1 ) ) ||
252 ( view == 0 && plane == 0 )) &&
253 (( view == 0 && ( strip == L2->GetCaloLevel2()->cibar[0][0] || strip == (L2->GetCaloLevel2()->cibar[0][0]-1) || strip == (L2->GetCaloLevel2()->cibar[0][0]-2) )) ||
254 ( view == 1 && ( strip == L2->GetCaloLevel2()->cibar[0][1] || strip == (L2->GetCaloLevel2()->cibar[0][1]-1) || strip == (L2->GetCaloLevel2()->cibar[0][1]-2) )) ||
255 ( view == 1 && ( strip == L2->GetCaloLevel2()->cibar[1][1] || strip == (L2->GetCaloLevel2()->cibar[1][1]-1) || strip == (L2->GetCaloLevel2()->cibar[1][1]-2) ))) &&
256 true ){
257 dedx3 += mip;
258 };
259 };
260 //
261 };
262 //
263 dedx3 /= 3.;
264 // Float_t mesethr = dedx1 * 0.90;
265 Float_t mesethr = 0.;
266 if ( dedx1 > 0. ) mesethr = (sqrt(dedx1) - 0.50)*(sqrt(dedx1) - 0.50);
267 Bool_t aldone = false;
268 //
269 retry:
270 //
271 if ( debug ) printf("retry\n");
272 //
273 interplane = 0;
274 //
275 ethr = TMath::Max(defethr,mesethr);
276 //
277 // Find the interaction plane "interplane"
278 //
279 Int_t gapth = 3;
280 Int_t nhit[2] = {0,0};
281 Int_t splane[2] = {-1,-1};
282 Int_t sview[2] = {-1,-1};
283 Int_t interpl[2] = {-1,-1};
284 Int_t interv[2] = {-1,-1};
285 Bool_t wmulthit[2] = {false,false};
286 Bool_t wgap[2] = {false,false};
287 Int_t ii = 0;
288 while ( ii<L2->GetCaloLevel1()->istrip ){
289 //
290 mip = L2->GetCaloLevel1()->DecodeEstrip(ii,view,plane,strip);
291 //
292 if ( !usepl18x && view==0 && plane==18 ) mip = 0.;
293 //
294 //
295 if ( ntr >= 0 ){
296 if ( strip != -1 && mip > ethr && !wmulthit[view] && !wgap[view] &&
297 ( strip == (track->tibar[plane][view]-1) || strip == (track->tibar[plane][view]-2) || strip == (track->tibar[plane][view]) )
298 && true ){
299 if ( debug ) printf(" inside loop: ii %i mip %f view %i plane %i strip %i tibar %i nhit %i splane %i sview %i \n",ii,mip,view,plane,strip,track->tibar[plane][view]-1,nhit[view],splane[view],sview[view]);
300 interpl[view] = plane;
301 interv[view] = view;
302 if ( splane[view] != plane || sview[view] != view ){
303 if ( nhit[view] > 1 ){
304 wmulthit[view] = true;
305 // if ( splane[view] == -1 ) splane[view] = 0; //
306 // if ( sview[view] == -1 ) sview[view] = view; //
307 interpl[view] = splane[view];
308 interv[view] = sview[view];
309 };
310 if ( plane > splane[view]+gapth ){
311 wgap[view] = true;
312 // if ( splane[view] == -1 ) splane[view] = 0;//
313 // if ( sview[view] == -1 ) sview[view] = view; //
314 interpl[view] = splane[view];
315 interv[view] = sview[view];
316 };
317 splane[view] = plane;
318 sview[view] = view;
319 nhit[view] = 1;
320 } else {
321 nhit[view]++;
322 };
323 };
324 } else {
325 if ( strip != -1 && mip > ethr && !wmulthit[view] && !wgap[view] &&
326 ( strip == (L2->GetCaloLevel2()->cibar[plane][view]-1) || strip == (L2->GetCaloLevel2()->cibar[plane][view]-2) || strip == (L2->GetCaloLevel2()->cibar[plane][view]) )
327 && true ){
328 if ( debug ) printf(" inside loop: ii %i mip %f view %i plane %i strip %i cibar %i nhit %i splane %i sview %i \n",ii,mip,view,plane,strip,L2->GetCaloLevel2()->cibar[plane][view]-1,nhit[view],splane[view],sview[view]);
329 interpl[view] = plane;
330 interv[view] = view;
331 if ( splane[view] != plane || sview[view] != view ){
332 if ( nhit[view] > 1 ){
333 wmulthit[view] = true;
334 // if ( splane[view] == -1 ) splane[view] = 0; //
335 // if ( sview[view] == -1 ) sview[view] = view; //
336 interpl[view] = splane[view];
337 interv[view] = sview[view];
338 };
339 if ( plane > splane[view]+gapth ){
340 wgap[view] = true;
341 // if ( splane[view] == -1 ) splane[view] = 0;//
342 // if ( sview[view] == -1 ) sview[view] = view; //
343 interpl[view] = splane[view];
344 interv[view] = sview[view];
345 };
346 splane[view] = plane;
347 sview[view] = view;
348 nhit[view] = 1;
349 } else {
350 nhit[view]++;
351 };
352 };
353 };
354 //
355 ii++;
356 //
357 };
358 //
359 if (debug ) printf("conversion interpl %i interv %i multhit %i interplane %i \n",interpl[0],interv[0],multhit,interplane);
360 Int_t winterplane[2] = {-1,-1};
361 //
362 for ( Int_t view = 0; view < 2; view++){
363 //
364 if ( nhit[view] > 1 && !wmulthit[view] && !wgap[view] ){
365 wmulthit[view] = true;
366 interpl[view] = splane[view];
367 interv[view] = sview[view];
368 };
369 //
370 if ( wmulthit[view] ) multhit = true;
371 if ( wgap[view] ) gap = true;
372 //
373 // convert view and plane number of interaction plane into number of available dE/dx measurements before the interaction plane
374 //
375 if ( interpl[view] >= 0 ) {
376 if ( interv[view] == 0 ){
377 winterplane[view] = (1 + interpl[view]) * 2;
378 } else {
379 winterplane[view] = (1 + interpl[view]) + (1 + interpl[view] - 1);
380 };
381 if ( wmulthit[view] ) winterplane[view]--;
382 };
383 };
384 if ( winterplane[0] > 0 && winterplane[1] > 0 ){
385 if ( multhit ){
386 interplane = TMath::Min(winterplane[0],winterplane[1]);
387 } else {
388 interplane = TMath::Max(winterplane[0],winterplane[1]);
389 };
390 } else {
391 if ( !winterplane[0] || !winterplane[1] ){
392 interplane = 0;
393 } else {
394 interplane = TMath::Max(winterplane[0],winterplane[1]);
395 };
396 };
397 //
398 if ( debug ) printf("2conversion interpl %i interv %i multhit %i interplane %i \n",interpl[1],interv[1],multhit,interplane);
399 if ( debug ) printf("3conversion winterpl0 %i winterpl1 %i \n",winterplane[0],winterplane[1]);
400 //
401 Int_t ipl = 0;
402 if ( interplane > 0 ){
403 //
404 // Calculate preq, postq, qpremean
405 //
406 cont++;
407 ii = 0;
408 Int_t ind = -1;
409 Int_t qsplane = -1;
410 Int_t qsview = -1;
411 Int_t ind2 = -1;
412 Int_t qsplane2 = -1;
413 Int_t qsview2 = -1;
414 Float_t qme[200];
415 memset(qme,0,200*sizeof(Float_t));
416 Float_t qme2[2112];
417 memset(qme2,0,2112*sizeof(Float_t));
418 //
419 while ( ii<L2->GetCaloLevel1()->istrip ){
420 //
421 mip = L2->GetCaloLevel1()->DecodeEstrip(ii,view,plane,strip);
422 //
423 if ( !usepl18x && view==0 && plane==18 ) mip = 0.;
424 //
425 //
426 if ( strip != -1 ){
427 if ( view == 0 ){
428 ipl = (1 + plane) * 2;
429 } else {
430 ipl = (1 + plane) + (1 + plane - 1 );
431 };
432 if ( ipl > interplane ){
433 postq += mip;
434 } else {
435 preq += mip;
436 if ( ntr >= 0 ){
437 if ( strip == (track->tibar[plane][view]-1) || strip == (track->tibar[plane][view]-2) || strip == (track->tibar[plane][view]) ){
438 if ( qsplane != plane || qsview != view ){
439 qsplane = plane;
440 qsview = view;
441 ind++;
442 if ( debug && ind > 199 ) printf(" AAAGH!! \n");
443 qme[ind] = 0.;
444 };
445 qme[ind] += mip;
446 };
447 for ( Int_t ns = 0; ns < R ; ns++){
448 Int_t ms = track->tibar[plane][view] - 1 - ns + (R - 1)/2;
449 if ( strip == ms ){
450 if ( qsplane2 != plane || qsview2 != view ){
451 qsplane2 = plane;
452 qsview2 = view;
453 ind2++;
454 if ( debug && ind2 > 2112 ) printf(" AAAGH!! \n");
455 qme2[ind2] = 0.;
456 };
457 qme2[ind2] += mip;
458 };
459 };
460 } else {
461 if ( strip == (L2->GetCaloLevel2()->cibar[plane][view]-1) || strip == (L2->GetCaloLevel2()->cibar[plane][view]-2) || strip == (L2->GetCaloLevel2()->cibar[plane][view]) ){
462 if ( qsplane != plane || qsview != view ){
463 qsplane = plane;
464 qsview = view;
465 ind++;
466 if ( debug && ind > 199 ) printf(" AAAGH!! \n");
467 qme[ind] = 0.;
468 };
469 qme[ind] += mip;
470 };
471 for ( Int_t ns = 0; ns < R ; ns++){
472 Int_t ms = L2->GetCaloLevel2()->cibar[plane][view] - 1 - ns + (R - 1)/2;
473 if ( strip == ms ){
474 if ( qsplane2 != plane || qsview2 != view ){
475 qsplane2 = plane;
476 qsview2 = view;
477 ind2++;
478 if ( debug && ind2 > 2112 ) printf(" AAAGH!! \n");
479 qme2[ind2] = 0.;
480 };
481 qme2[ind2] += mip;
482 };
483 };
484 };
485 };
486 //
487 };
488 //
489 ii++;
490 //
491 };
492
493
494 //
495 // here we must calculate qpremean, order vector qme, select 3 lowest measurements and caculate the mean...
496 //
497 if ( debug ){
498 for (Int_t l=0; l < interplane; l++){
499 printf(" qme[%i] = %f \n",l,qme[l]);
500 };
501 };
502 //
503 Long64_t work[200];
504 ind = 0;
505 Int_t l = 0;
506 Int_t RN = 0;
507 Float_t qm = 0.;
508 Float_t qm2 = 0.;
509 //
510 Float_t qmt = ethr*0.8; // *0.9
511 //
512 Int_t uplim = TMath::Max(3,N);
513 Int_t uplim2 = interplane-1;
514 //
515 while ( l < uplim && ind < interplane ){
516 qm = TMath::KOrdStat((Long64_t)interplane,qme,(Long64_t)ind,work);
517 if ( qm >= qmt ){
518 if ( l < 3 ){
519 qpremean += qm;
520 RN++;
521 };
522 l++;
523 if ( debug ) printf(" value no %i qm %f qmt %f \n",l,qm,qmt);
524 };
525 ind++;
526 };
527 //
528 qpremean /= (Float_t)RN;
529 ind = 0;
530 l = 0;
531 RN = 0;
532 while ( l < uplim && ind < interplane ){
533 qm2 = TMath::KOrdStat((Long64_t)interplane,qme2,(Long64_t)ind,work);
534 if ( qm2 >= qmt ){
535 if ( l < N ){
536 qpremeanN += qm2;
537 RN++;
538 };
539 l++;
540 if ( debug ) printf(" qm2 value no %i qm %f qmt %f RN %i \n",l,qm2,qmt,RN);
541 };
542 ind++;
543 };
544 ////////////////////////////////////
545 //to calculate qNmin1///////////////
546 ///////////////////////////////////
547 //values under threshold
548 qm2=0;
549 ind = 0;
550 l = 0;
551 RN = 0;
552 S2=0;
553 while ( l < uplim2 && ind<interplane){
554 qm2 = TMath::KOrdStat((Long64_t)interplane,qme2,(Long64_t)ind,work);
555 if ( qm2 < qmt ) S2++;
556 ind++;
557 }
558 qm2=0;
559 ind = 0;
560 l = 0;
561 RN = 0;
562 while ( l < uplim2 && ind < interplane ){
563 qm2 = TMath::KOrdStat((Long64_t)interplane,qme2,(Long64_t)ind,work);
564 if ( qm2 >= qmt ){
565 if ( l < (interplane - 1 - S2)){
566 qNmin1_w += qm2;
567 RN++;
568 };
569 l++;
570 if ( debug ) printf(" qm2 value no %i qm %f qmt %f RN %i \n",l,qm2,qmt,RN);
571 };
572 ind++;
573 };
574 qpremeanN /= (Float_t)RN;
575 qNmin1_w /= (Float_t)RN;
576 UN = RN;
577 ///////set qNmin1 definition///////////
578 if (interplane==1 || interplane==2){
579 if (dedx1>0) qNmin1=dedx1;
580 else if (stdedx1>0) qNmin1=stdedx1;
581 }
582 else if (interplane > 2){
583 qNmin1 = qNmin1_w;
584 }
585 ////////////////////////////////////
586 //////////////////////////////////
587 //
588 if ( debug ) printf(" charge is %f \n",sqrt(qpremean));
589 //
590 if ( mesethr != ethr && interplane >= 3 && !aldone ){
591 Float_t mesethr2 = (sqrt(qpremean) - 0.50)*(sqrt(qpremean) - 0.50);
592 if ( mesethr2 < mesethr*0.90 ){
593 mesethr = (sqrt(dedx1) - 0.25)*(sqrt(dedx1) - 0.25);
594 } else {
595 mesethr = mesethr2;
596 };
597 aldone = true;
598 if ( mesethr > defethr ){
599 interplane = 0;
600 preq = 0.;
601 postq = 0.;
602 qpremean = 0.;
603 qpremeanN = 0.;
604 qNmin1 = 0;
605 multhit = false;
606 gap = false;
607 goto retry;
608 };
609 };
610 };
611
612
613
614 //=======================================================================
615 //=========== charge determination stdedx1 vs. beta ===============
616 //====================== Siegen method ===========================
617 //=======================================================================
618
619 // Data from file Calo_Bands_New_7.dat
620 Float_t C0[9] = {0 , 1 , 2 , 3 , 4 , 5 , 6 , 8 , 90 };
621 Float_t B0[9] = {0 , -2.03769 , 7.61781 , 19.7098 , 60.5598 , 57.9226 , 14.8368 , -1358.83 , 8200 };
622 Float_t B1[9] = {0 , 0.0211274 , 9.32057e-010 , 4.47241e-07 , 1.44826e-06 , 2.6189e-05 , 0.00278178 , 55.5445 , 0 };
623 Float_t B2[9] = {0 , -3.91742 , -20.0359 , -16.3043 , -16.9471 , -14.4622 , -10.9594 , -2.38014 , 0 };
624 Float_t B3[9] = {0 , 11.1469 , -6.63105 , -27.8834 , -132.044 , -55.341 , 173.25 , 4115 , 0 };
625 Float_t B4[9] = {0 , -14.3465 , -0.485215 , 18.8122 , 117.533 , -14.0898 , -325.269 , -4388.89 , 0 };
626 Float_t B5[9] = {0 , 6.24281 , 3.96018 , 0 , -26.1881 , 42.9731 , 182.697 , 1661.01 , 0 };
627
628 Float_t x1[9],y1[9];
629 Int_t n1 = 9;
630
631 Float_t charge = 1000.;
632 Float_t beta = 100.;
633
634 //------- First try track dependent beta
635 if( L2->GetTrkLevel2()->GetNTracks()>=1 ){
636 PamTrack *TRKtrack = L2->GetTrack(0);
637 if (fabs(TRKtrack->GetToFTrack()->beta[12]) < 100.) beta = fabs(TRKtrack->GetToFTrack()->beta[12]);
638 }
639 //------- If no beta found, try standalone beta
640 if (beta == 100.) {
641 ToFTrkVar *ttrack = L2->GetToFStoredTrack(-1);
642 beta = fabs(ttrack->beta[12]);
643 }
644
645 if (beta<2.) { // it makes no sense to allow beta=5 or so...
646
647 Float_t mip=0;
648 mip=stdedx1 ;
649
650 if (mip>0) {
651
652 Float_t betahelp = pow(beta, 1.8);
653 Float_t ym = mip*betahelp;
654 Float_t xb = beta;
655
656 for ( Int_t jj=0; jj<9; jj++ ){
657 x1[jj] = B0[jj]+B1[jj]*pow(xb,B2[jj])+B3[jj]*xb+B4[jj]*xb*xb+B5[jj]*xb*xb*xb;
658 y1[jj] = C0[jj]*C0[jj] ;
659 }
660
661 TGraph *gr1 = new TGraph(n1,x1,y1);
662 TSpline3 *spl1 = new TSpline3("grs",gr1); // use a cubic spline
663 Float_t chelp = spl1->Eval(ym);
664 charge = TMath::Sqrt(chelp);
665 gr1->Delete();
666 spl1->Delete();
667
668 } // if (mip1>0)
669 } // beta < 100
670
671
672 charge_siegen1 = charge;
673
674 //======================= end charge Siegen ===========================
675
676
677 // //=======================================================================
678 // //=========== charge determination Maximum release vs. beta ===============
679 // //====================== Rome method ===========================
680 // //=======================================================================
681
682 Float_t D0[9] = {0, 1, 2, 3 , 4 , 5 , 6, 8, 90};
683 Float_t E1[9] = {0, 500, 500, 923.553 , 659.842, 1113.97, 3037.25, 3034.84, 0};
684 Float_t E2[9] = {0, 11.0, 7.5, 6.92574 , 5.08865, 5.29349, 6.41442, 5.52969, 0};
685 Float_t E3[9] = {0, 1.2, 4, 9.7227 , 13.18, 23.5444, 38.2057, 63.6784, 80000};
686
687 Float_t xx1[9],yy1[9];
688 n1 = 9;
689
690 charge = 1000.;
691 mip=0;
692
693
694 if (beta<2.) { // it makes no sense to allow beta=5 or so...
695
696
697 mip=maxrel;
698
699 if (mip>0) {
700 Float_t ym = mip;
701 Float_t xb = beta;
702
703 for ( Int_t jj=0; jj<n1; jj++ ){
704 xx1[jj] = E1[jj]*exp(-E2[jj]*xb)+E3[jj];
705 yy1[jj] = D0[jj]*D0[jj] ;
706 }
707
708 TGraph *gr1 = new TGraph(n1,xx1,yy1);
709 TSpline3 *spl1 = new TSpline3("grs",gr1); // use a cubic spline
710 Float_t chelp = spl1->Eval(ym);
711 charge = TMath::Sqrt(chelp);
712 gr1->Delete();
713 spl1->Delete();
714
715
716 } // if (mip1>0)
717 } // beta < 100
718
719
720 ZCalo_maxrel_b = charge;
721
722 //======================= end charge Rome: maxril vs beta ===========================
723
724
725
726 // =======================================================================
727 // =========== charge determination dedx vs. beta ===============
728 // ====================== Rome method ===========================
729 // =======================================================================
730
731 Float_t F0[9] = {0., 1., 2., 3. ,4., 5. , 6., 8, 90};
732 Float_t G1[9] = {0, 500, 500, 642.935 , 848.684, 1346.05, 3238.82, 3468.6, 0};
733 Float_t G2[9] = {0, 11, 7.5, 6.2038 , 5.51723, 5.65265, 6.54089, 5.72723, 0};
734 Float_t G3[9] = {0, 1.2, 4, 9.2421 , 13.9858, 25.3912, 39.6332, 64.5674, 80000};
735
736
737 charge = 1000.;
738 mip=0;
739
740
741 if (beta<2.) { // it makes no sense to allow beta=5 or so...
742
743
744 if( L2->GetTrkLevel2()->GetNTracks()>=1 ){
745 mip=dedx1;
746 }
747 if (mip==0) mip=stdedx1;
748
749
750 if (mip>0) {
751
752 Float_t ym = mip;
753 Float_t xb = beta;
754
755 for ( Int_t jj=0; jj<n1; jj++ ){
756 xx1[jj] = G1[jj]*exp(-G2[jj]*xb)+G3[jj];
757 yy1[jj] = F0[jj]*F0[jj] ;
758 }
759
760 TGraph *gr1 = new TGraph(n1,xx1,yy1);
761 TSpline3 *spl1 = new TSpline3("grs",gr1); // use a cubic spline
762 Float_t chelp = spl1->Eval(ym);
763 charge = TMath::Sqrt(chelp);
764 gr1->Delete();
765 spl1->Delete();
766
767 } //if (mip1>0)
768 } //beta < 100
769
770 ZCalo_dedx_b = charge;
771
772 //======================= end charge Rome: dedx vs beta ===========================
773
774
775 //=======================================================================
776 //=========== charge determination dedx vs. defl ===============
777 //====================== Rome method ===========================
778 //=======================================================================
779
780 Float_t H0[9] = {0, 1, 2, 3 , 4 , 5 , 6, 8, 90 };
781 Float_t I1[9] = {0, 3.5, 40, 56.1019, 101.673, 109.225, 150.599, 388.531, 0};
782 Float_t I2[9] = {0, -1, -13.6, -12.5581, -22.5543, -15.9823, -28.2207, -93.6871, 0};
783 Float_t I3[9] = {0, 1, 5.3, 11.6218, 19.664, 32.1817, 45.7527, 84.5992, 80000};
784
785
786 charge = 1000.;
787 mip=0;
788 Float_t defl=0;
789
790
791 if (beta<2.) { // it makes no sense to allow beta=5 or so...
792
793 if( L2->GetTrkLevel2()->GetNTracks()>=1 ){
794 PamTrack *TRKtrack = L2->GetTrack(0);
795 mip=dedx1;
796 if (mip==0) mip=stdedx1;
797 defl=TRKtrack->GetTrkTrack()->al[4];
798
799
800 if (mip>0 && defl<0.7 && defl>0) {
801
802 Float_t ym = mip;
803 Float_t xb = defl;
804
805 for ( Int_t jj=0; jj<n1; jj++ ){
806 xx1[jj] = I1[jj]*xb*xb+I2[jj]*xb+I3[jj];
807 yy1[jj] = H0[jj]*H0[jj] ;
808 }
809
810 TGraph *gr1 = new TGraph(n1,xx1,yy1);
811 TSpline3 *spl1 = new TSpline3("grs",gr1); // use a cubic spline
812 Float_t chelp = spl1->Eval(ym);
813 charge = TMath::Sqrt(chelp);
814 gr1->Delete();
815 spl1->Delete();
816
817 } // if (mip1>0 && defl<0.5 && defl>0)
818 }//Ntrack>=1
819 } //beta < 100
820
821 ZCalo_dedx_defl = charge;
822
823 //======================= end charge Rome: dedx vs defl ===========================
824
825
826 //============================================================================================
827 //=========== charge determination Truncated mean (N-1 planes) vs. defl ===================
828 //================================ Rome method ========================================
829 //============================================================================================
830
831 Float_t L0[9] = {0, 1, 2, 3 , 4 , 5 , 6, 8, 90};
832 Float_t M1[9] = {0, 3.5, 27, 63.0145, 120.504, 173.663, 245.33, 236.517, 0};
833 Float_t M2[9] = {0, -1, -10.6, -15.005, -31.0635, -39.4988, -60.5011, -46.3992, 0};
834 Float_t M3[9] = {0, 1, 7, 12.5037, 22.8652, 35.2907, 51.4678, 86.4155, 80000};
835
836 charge = 1000.;
837 mip=0;
838
839
840 if (beta<2.) { // it makes no sense to allow beta=5 or so...
841
842 if( L2->GetTrkLevel2()->GetNTracks()>=1 ){
843 mip=qNmin1;
844
845 if (mip>0 && defl<0.7 && defl>0) {
846
847 Float_t ym = mip;
848 Float_t xb = defl;
849
850 for ( Int_t jj=0; jj<n1; jj++ ){
851 xx1[jj] = M1[jj]*xb*xb+M2[jj]*xb+M3[jj];
852 yy1[jj] = L0[jj]*L0[jj] ;
853 }
854
855 TGraph *gr1 = new TGraph(n1,xx1,yy1);
856 TSpline3 *spl1 = new TSpline3("grs",gr1); // use a cubic spline
857 Float_t chelp = spl1->Eval(ym);
858 charge = TMath::Sqrt(chelp);
859 gr1->Delete();
860 spl1->Delete();
861
862 } // if (mip1>0 && defl<0.5 && defl>0)
863 }//Ntrack>=1
864 } //beta < 100
865
866 ZCalo_Nmin1_defl = charge;
867
868 //======================= end charge Rome: Nmin1 vs defl ===========================
869
870
871
872
873
874 //
875 if ( debug ) this->Print();
876 if ( debug ) printf(" esci \n");
877 //
878 };

  ViewVC Help
Powered by ViewVC 1.1.23