/** * \file CaloNuclei.h * \author Emiliano Mocchiutti */ #ifndef calonuclei_h #define calonuclei_h #include #include #include #include #include #include #include #include #include #include #include using namespace std; /** * * Class to store and calculate variables useful for nuclei analysis */ class CaloNuclei : public TObject { private: // PamLevel2 *L2; Bool_t debug; // // needed to avoid reprocessing the same event over and over to obtain the variables // UInt_t OBT; UInt_t PKT; UInt_t atime; Int_t tr; // Int_t interplane; ///< Number of available dE/dx measurements before interaction or exit from the calo (interaction plane) Int_t N; ///< Number of dE/dx measurements to be used to calculate qpremeanN, default N = 5 Int_t R; ///< Number of strip to be used around the trajectory to calculate qpremeanN, default R = 3 Float_t preq; ///< Energy release (MIP) up to the interaction plane (included) Float_t postq; ///< Energy release (MIP) from the interaction plane (excluded) up to the last plane Float_t dedx1; ///< Energy release (MIP) along the track on the first Silicon detector (Y EVEN). Float_t dedx3; ///< Energy release (MIP) along the track on the first three Silicon detectors (Y EVEN, X EVEN, Y ODD). Float_t qpremean; ///< Truncated mean (MIP) along the track up to the interaction plane preq using three points Float_t qpremeanN; ///< Truncated mean (MIP) along the track up to the interaction plane preq using N points Float_t ethr; ///< Threshold (MIP) needed to find the interaction plane Bool_t multhit; ///< True if the interaction plane has been determined by multiple hit counting Bool_t gap; ///< True if determining the interaction plane a big (>5 planes) gap has been found between a point and another along the track // public: // // Int_t Get_interplane(){ Process(); return interplane;}; ///< Number of available dE/dx measurements before interaction or exit from the calo (interaction plane) Int_t Get_N(){ return N;}; ///< Number of available dE/dx measurements before interaction or exit from the calo (interaction plane) Int_t Get_R(){ return R;}; ///< Number of strip to be used around the trajectory to calculate qpremeanN, default R = 3 Float_t Get_preq(){ Process(); return preq;}; ///< Energy release (MIP) up to the interaction plane (included) Float_t Get_postq(){ Process(); return postq;}; ///< Energy release (MIP) from the interaction plane (excluded) up to the last plane Float_t Get_dEdx1(){ Process(); return dedx1;}; ///< Energy release (MIP) along the track on the first Silicon detector (Y EVEN). Float_t Get_dEdx3(){ Process(); return dedx3;}; ///< Energy release (MIP) along the track on the first three Silicon detectors (Y EVEN, X EVEN, Y ODD). Float_t Get_qpremean(){ Process(); return qpremean;}; ///< Truncated mean (MIP) along the track up to the interaction plane preq using three points Float_t Get_qpremeanN(){ Process(); return qpremeanN;}; ///< Truncated mean (MIP) along the track up to the interaction plane preq using N points Float_t Get_ethr(){ Process(); return ethr;}; ///< Threshold (MIP) needed to find the interaction plane Bool_t IsMulthit(){ Process(); return multhit;}; ///< True if the interaction plane has been determined by multiple hit counting // void Set_N(Int_t n){ N=n;}; void Set_R(Int_t r){ R=r;}; // CaloNuclei(); CaloNuclei(PamLevel2 *L2); ~CaloNuclei(){ Delete(); }; // void SetDebug(Bool_t d){ debug=d; }; // void Clear(); void Clear(Option_t *option){Clear();}; void Delete(); // void Process(); ///< Process data for track number 0 void Process(Int_t ntr); ///< Process data for track number ntr void Print(); // ClassDef(CaloNuclei,1); }; #endif