54 |
Float_t dedx3; ///< Energy release (MIP) along the track on the first three Silicon detectors (Y EVEN, X EVEN, Y ODD). |
Float_t dedx3; ///< Energy release (MIP) along the track on the first three Silicon detectors (Y EVEN, X EVEN, Y ODD). |
55 |
Float_t qpremean; ///< Truncated mean (MIP) along the track up to the interaction plane preq using three points |
Float_t qpremean; ///< Truncated mean (MIP) along the track up to the interaction plane preq using three points |
56 |
Float_t qpremeanN; ///< Truncated mean (MIP) along the track up to the interaction plane preq using N points |
Float_t qpremeanN; ///< Truncated mean (MIP) along the track up to the interaction plane preq using N points |
57 |
|
Float_t qNmin1; ///< Truncated mean (MIP) along the track using N-1 measurements before of the interaction plane |
58 |
|
Float_t maxrel; ///<Energy maximum release on first Calorimeter plane (dedx of strip with maximum release) |
59 |
Float_t ethr; ///< Threshold (MIP) needed to find the interaction plane |
Float_t ethr; ///< Threshold (MIP) needed to find the interaction plane |
60 |
Bool_t multhit; ///< True if the interaction plane has been determined by multiple hit counting |
Bool_t multhit; ///< True if the interaction plane has been determined by multiple hit counting |
61 |
Bool_t gap; ///< True if determining the interaction plane a big (>5 planes) gap has been found between a point and another along the track |
Bool_t gap; ///< True if determining the interaction plane a big (>5 planes) gap has been found between a point and another along the track |
62 |
// |
Float_t charge_siegen1; |
63 |
|
Float_t ZCalo_dedx_b; //Z from Calo using dedx in first Calorimeter plane vs. beta |
64 |
|
Float_t ZCalo_maxrel_b; //Z from Calo using maximum release in first Calorimeter plane vs. beta |
65 |
|
Float_t ZCalo_dedx_defl; //Z from Calo using dedx in first Calorimeter plane vs. rigidity |
66 |
|
Float_t ZCalo_Nmin1_defl; //Z from Calo using truncated mean on N-1 Calorimeter planes (plane N+1 is the interaction plane) vs. rigidity |
67 |
|
// |
68 |
|
Float_t qNmin1_w; |
69 |
|
Int_t S2; |
70 |
public: |
public: |
71 |
// |
// |
72 |
// |
// |
73 |
|
//char* version(); |
74 |
|
|
75 |
Int_t Get_interplane(){ Process(); return interplane;}; ///< Number of available dE/dx measurements before interaction or exit from the calo (interaction plane) |
Int_t Get_interplane(){ Process(); return interplane;}; ///< Number of available dE/dx measurements before interaction or exit from the calo (interaction plane) |
76 |
Int_t Get_N(){ return N;}; ///< Number of dE/dx measurements to be used to calculate qpremeanN, default N = 5 |
Int_t Get_N(){ return N;}; ///< Number of dE/dx measurements to be used to calculate qpremeanN, default N = 5 |
77 |
Int_t Get_UsedN(){ return UN;}; ///< Number of dE/dx measurements really used to calculate qpremeanN |
Int_t Get_UsedN(){ return UN;}; ///< Number of dE/dx measurements really used to calculate qpremeanN |
83 |
Float_t Get_dEdx3(){ Process(); return dedx3;}; ///< Energy release (MIP) along the track on the first three Silicon detectors (Y EVEN, X EVEN, Y ODD). |
Float_t Get_dEdx3(){ Process(); return dedx3;}; ///< Energy release (MIP) along the track on the first three Silicon detectors (Y EVEN, X EVEN, Y ODD). |
84 |
Float_t Get_qpremean(){ Process(); return qpremean;}; ///< Truncated mean (MIP) along the track up to the interaction plane preq using three points |
Float_t Get_qpremean(){ Process(); return qpremean;}; ///< Truncated mean (MIP) along the track up to the interaction plane preq using three points |
85 |
Float_t Get_qpremeanN(){ Process(); return qpremeanN;}; ///< Truncated mean (MIP) along the track up to the interaction plane preq using N points |
Float_t Get_qpremeanN(){ Process(); return qpremeanN;}; ///< Truncated mean (MIP) along the track up to the interaction plane preq using N points |
86 |
|
Float_t Get_qNmin1(){ Process(); return qNmin1;}; ///< Truncated mean (MIP) along the track using N-1 measurements before of the interaction plane |
87 |
|
Float_t Get_maxrel(){ Process(); return maxrel;}; ///<Energy maximum release on first Calorimeter plane (dedx of strip with maximum release) |
88 |
Float_t Get_ethr(){ Process(); return ethr;}; ///< Threshold (MIP) needed to find the interaction plane |
Float_t Get_ethr(){ Process(); return ethr;}; ///< Threshold (MIP) needed to find the interaction plane |
89 |
Bool_t IsMulthit(){ Process(); return multhit;}; ///< True if the interaction plane has been determined by multiple hit counting |
Bool_t IsMulthit(){ Process(); return multhit;}; ///< True if the interaction plane has been determined by multiple hit counting |
90 |
// |
// |
91 |
|
Float_t Get_charge_siegen1(){ Process(); return charge_siegen1;}; ///< charge Siegen method stdedx1 vs. beta |
92 |
|
Float_t Get_ZCalo_dedx_b(){ Process(); return ZCalo_dedx_b;}; //Z from Calo using dedx (or StdEdx) in first Calorimeter plane vs. beta |
93 |
|
Float_t Get_ZCalo_maxrel_b(){ Process(); return ZCalo_maxrel_b;}; //Z from Calo using maximum release in first Calorimeter plane vs. beta |
94 |
|
Float_t Get_ZCalo_dedx_defl(){ Process(); return ZCalo_dedx_defl;}; //Z from Calo using dedx in first Calorimeter plane vs. rigidity |
95 |
|
Float_t Get_ZCalo_Nmin1_defl(){ Process(); return ZCalo_Nmin1_defl;}; //Z from Calo using truncated mean on N-1 Calorimeter planes (plane N+1 is the interaction plane) vs. rigidity |
96 |
|
|
97 |
|
// |
98 |
void Set_N(Int_t n){ N=n;}; |
void Set_N(Int_t n){ N=n;}; |
99 |
void Set_R(Int_t r){ R=r;}; |
void Set_R(Int_t r){ R=r;}; |
100 |
// |
// |