| 54 | Float_t dedx3; ///< Energy release (MIP) along the track on the first three Silicon detectors (Y EVEN, X EVEN, Y ODD). | Float_t dedx3; ///< Energy release (MIP) along the track on the first three Silicon detectors (Y EVEN, X EVEN, Y ODD). | 
| 55 | Float_t qpremean; ///< Truncated mean (MIP) along the track up to the interaction plane preq using three points | Float_t qpremean; ///< Truncated mean (MIP) along the track up to the interaction plane preq using three points | 
| 56 | Float_t qpremeanN; ///< Truncated mean (MIP) along the track up to the interaction plane preq using N points | Float_t qpremeanN; ///< Truncated mean (MIP) along the track up to the interaction plane preq using N points | 
| 57 |  | Float_t qNmin1; ///< Truncated mean (MIP) along the track using N-1 measurements before of the interaction plane | 
| 58 |  | Float_t maxrel; ///<Energy maximum release on first Calorimeter plane (dedx of strip with maximum release) | 
| 59 | Float_t ethr; ///< Threshold (MIP) needed to find the interaction plane | Float_t ethr; ///< Threshold (MIP) needed to find the interaction plane | 
| 60 | Bool_t multhit; ///< True if the interaction plane has been determined by multiple hit counting | Bool_t multhit; ///< True if the interaction plane has been determined by multiple hit counting | 
| 61 | Bool_t gap; ///< True if determining the interaction plane a big (>5 planes) gap has been found between a point and another along the track | Bool_t gap; ///< True if determining the interaction plane a big (>5 planes) gap has been found between a point and another along the track | 
| 62 | // | Float_t charge_siegen1; | 
| 63 |  | Float_t ZCalo_dedx_b;  //Z from Calo using dedx in first Calorimeter plane vs. beta | 
| 64 |  | Float_t ZCalo_maxrel_b; //Z from Calo using maximum release in first Calorimeter plane vs. beta | 
| 65 |  | Float_t ZCalo_dedx_defl; //Z from Calo using dedx in first Calorimeter plane vs. rigidity | 
| 66 |  | Float_t ZCalo_Nmin1_defl;  //Z from Calo using truncated mean on N-1 Calorimeter planes (plane N+1 is the interaction plane) vs. rigidity | 
| 67 |  | // | 
| 68 |  | Float_t qNmin1_w; | 
| 69 |  | Int_t S2; | 
| 70 | public: | public: | 
| 71 | // | // | 
| 72 | // | // | 
| 73 |  | //char* version(); | 
| 74 |  |  | 
| 75 | Int_t Get_interplane(){ Process(); return interplane;}; ///< Number of available dE/dx measurements before interaction or exit from the calo (interaction plane) | Int_t Get_interplane(){ Process(); return interplane;}; ///< Number of available dE/dx measurements before interaction or exit from the calo (interaction plane) | 
| 76 | Int_t Get_N(){ return N;}; ///< Number of dE/dx measurements to be used to calculate qpremeanN, default N = 5 | Int_t Get_N(){ return N;}; ///< Number of dE/dx measurements to be used to calculate qpremeanN, default N = 5 | 
| 77 | Int_t Get_UsedN(){ return UN;}; ///< Number of dE/dx measurements really used to calculate qpremeanN | Int_t Get_UsedN(){ return UN;}; ///< Number of dE/dx measurements really used to calculate qpremeanN | 
| 83 | Float_t Get_dEdx3(){ Process(); return dedx3;}; ///< Energy release (MIP) along the track on the first three Silicon detectors (Y EVEN, X EVEN, Y ODD). | Float_t Get_dEdx3(){ Process(); return dedx3;}; ///< Energy release (MIP) along the track on the first three Silicon detectors (Y EVEN, X EVEN, Y ODD). | 
| 84 | Float_t Get_qpremean(){ Process(); return qpremean;}; ///< Truncated mean (MIP) along the track up to the interaction plane preq using three points | Float_t Get_qpremean(){ Process(); return qpremean;}; ///< Truncated mean (MIP) along the track up to the interaction plane preq using three points | 
| 85 | Float_t Get_qpremeanN(){ Process(); return qpremeanN;}; ///< Truncated mean (MIP) along the track up to the interaction plane preq using N points | Float_t Get_qpremeanN(){ Process(); return qpremeanN;}; ///< Truncated mean (MIP) along the track up to the interaction plane preq using N points | 
| 86 |  | Float_t Get_qNmin1(){ Process(); return qNmin1;}; ///< Truncated mean (MIP) along the track using N-1 measurements before of the interaction plane | 
| 87 |  | Float_t Get_maxrel(){ Process(); return maxrel;}; ///<Energy maximum release on first Calorimeter plane (dedx of strip with maximum release) | 
| 88 | Float_t Get_ethr(){ Process(); return ethr;}; ///< Threshold (MIP) needed to find the interaction plane | Float_t Get_ethr(){ Process(); return ethr;}; ///< Threshold (MIP) needed to find the interaction plane | 
| 89 | Bool_t IsMulthit(){ Process(); return multhit;}; ///< True if the interaction plane has been determined by multiple hit counting | Bool_t IsMulthit(){ Process(); return multhit;}; ///< True if the interaction plane has been determined by multiple hit counting | 
| 90 | // | // | 
| 91 |  | Float_t Get_charge_siegen1(){ Process(); return charge_siegen1;}; ///< charge Siegen method stdedx1 vs. beta | 
| 92 |  | Float_t Get_ZCalo_dedx_b(){ Process(); return ZCalo_dedx_b;};  //Z from Calo using dedx (or StdEdx) in first Calorimeter plane vs. beta | 
| 93 |  | Float_t Get_ZCalo_maxrel_b(){ Process(); return ZCalo_maxrel_b;}; //Z from Calo using maximum release in first Calorimeter plane vs. beta | 
| 94 |  | Float_t Get_ZCalo_dedx_defl(){ Process(); return ZCalo_dedx_defl;}; //Z from Calo using dedx in first Calorimeter plane vs. rigidity | 
| 95 |  | Float_t Get_ZCalo_Nmin1_defl(){ Process(); return ZCalo_Nmin1_defl;};  //Z from Calo using truncated mean on N-1 Calorimeter planes (plane N+1 is the interaction plane) vs. rigidity | 
| 96 |  |  | 
| 97 |  | // | 
| 98 | void Set_N(Int_t n){ N=n;}; | void Set_N(Int_t n){ N=n;}; | 
| 99 | void Set_R(Int_t r){ R=r;}; | void Set_R(Int_t r){ R=r;}; | 
| 100 | // | // |